Zeitschrift: Eclogae Geologicae Helvetiae

Herausgeber: Schweizerische Geologische Gesellschaft

Band: 18 (1923-1924)

Heft: 1

Artikel: Die Casannaschiefer des oberen Val de Bagnes (Wallis)

Autor: Tschopp, Hermann

Kapitel: B: Petrographische Beschreibung

DOI: https://doi.org/10.5169/seals-158250

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Den hochgradigen Dislokationsbewegungen an der Grenze der beiden verschiedenen Medien, Casannaschiefer und Kalkschiefer, verdanken die "konglomeratischen" Triasbildungen von Torrembey ihre Entstehung, während die innerhalb der Casannaschiefer steckengebliebenen Triasreste, wie z.B. jene des Fensters von Vingt-Huit und z.T. auch diejenigen von Mazériaz, abgesehen von ganz untergeordneter Mylonitisierung, in ihrer ursprünglichen Form erhalten geblieben sind.

B. Petrographische Beschreibung.

Der Versuch, die Casannaschiefer des obern Val de Bagnes petrographisch zu gliedern, stösst infolge der überaus reichen Fülle von Gesteinstypen mit ihren zahllosen Übergangsformen in Mineralbestand, Struktur und Textur auf grosse Hindernisse. Immerhin lassen sich bereits im Felde einzelne Haupttypen unterscheiden, deren hauptsächlichste schon Duparc (Lit. 12) anführt. In die "Sammlung von Gesteinen der Schweiz" (1904) von Schmidt (Lit. 25) sind drei Typen von Casannaschiefern des Val de Bagnes aufgenommen: 1. Albitchloritschiefer, 2. Glaukophanchloritschiefer, 3. Epidotglaukophanschiefer, entsprechend unsern Typen: VII. 1., V. 1. und IV. 4. - Umfassender ist die Einteilung, die Woyno (Lit. 37, pag. 141) 1908 gab, doch führt er die schon von Duparc angeführten "schistes amphiboliques" nicht an. Ausser den genannten Gesteinstypen war es mir noch möglich, eine ganze Reihe neuer Typen auszuscheiden, die im obern Val de Bagnes teilweise in selbständig auftretenden, linsenartigen Vorkommen angetroffen werden. Während Woyno die Bezeichnungsweise seiner Typen der "Nomenclatura e sistematica delle roccie verdi nelle Alpi occidentali" von Novarese (Lit. 20) entnimmt, konnte ich mich grösstenteils an die von Grubenmann¹) angegebene allgemeine Systematik anlehnen.

Die Casannaschiefer des obern Val de Bagnes lassen sich in folgende 7 Familien bzw. Hauptgruppen einteilen:

- I. Quarzitgesteine.
- II. Albitgneise.
- III. Phyllite.
- IV. Glaukophanite.
- V. Glaukophanalbitschiefer.
- VI. Albitamphibolite.
- VII. Chloritschiefer.

¹⁾ U. GRUBENMANN, Die kristallinen Schiefer, II. Aufl. 1910, Berlin. ECLOG. GEOL. HELV. XVIII, 1. — Octobre 1923.

Die Gruppen IV bis VII incl. können als Ophiolithe zusammengefasst werden. Nach der Klassifikation von Novarese entsprechen sie den Glaukophan-, Hornblende- und Chloritprasiniten.

I. Quarzitgesteine.

Wie in der einleitenden geologischen Übersicht auseinandergesetzt wurde, stellen die Quarzitgesteine keinen in Mineralbestand und Struktur einheitlichen Gesteinskomplex dar, vielmehr bilden sie eine stetige Übergangsreihe von feinblättrigen Serizitquarziten zu grobflaserigen Gneisquarziten, die ihrerseits zu den gewöhnlichen Serizitalbitgneisen überleiten. Das gemeinsame Merkmal der Quarzitgesteine ist ihre helle grünlichweisse bis hellgraue Gesteinsfarbe, die bald durch einen grünen, kleinblättrigen, bald durch einen fast farblosen, feinschuppigen Glimmer hervorgerufen wird. Schon im Terrain lassen sich 4 Haupttypen unterscheiden, von denen die ersten drei durch mannigfache Übergänge verbunden sind, während der vierte seinem Vorkommen nach eine von den ersten vollkommen unabhängige Stellung einnimmt, selbst aber mit Graphitoidund Sismondinphylliten in enger Beziehung steht. Die 4 Haupttypen sind folgende:

- 1. Hellgrüne, feinblättrige Serizitquarzite, turmalinführend.
- 2. Grünlichweisse, plattige Serizitquarzite mit geringerem Serizitgehalt als in 1.
- 3. Grüne bis silbergraue, feinschieferige oder verworrenflaserige Gneisquarzite mit zunehmendem Albitgehalt.
- 4 Schwarze Graphitoidquarzite mit lagenartig angereichertem Graphitoidgehalt.

1. Turmalinführende Serizitquarzite.

Diese infolge ihres grossen Serizitgehaltes leicht zerfallenden Gesteine bilden stets nur wenig mächtige, oft schon nach einigen Metern im Streichen wieder aussetzende Bänke. Man trifft sie anstehend auf der rechten Talseite der Drance, oberhalb der Hütten der Alpe de Torrembey auf ca. 2030 m Höhe. Makroskopisch bestehen sie aus flachgedrückten, zuckerkörnigen Quarzlinsen, die von feinen Lagen eines seidenglänzenden, dem blossen Auge hellgrünlich erscheinenden Serizites umschmiegt werden. Durch Zunehmen des Serizitgehaltes kann ein serizit-phyllitisches Aussehen hervorgerufen werden.

Unter dem Mikroskop erscheint der Serizit schwach grünlich gefärbt und zeigt einen sehr kleinen Axenwinkel.

Auf seine übrigen optischen Verhältnisse werde ich bei der folgenden Gruppe näher eintreten. Im Serizit liegen massenhaft gelbbraune Rutilnadeln und zahlreiche hemimorphe, oft isomorph geschichtete Turmalinsäulchen von ca. 1 mm Länge, die für diese Serizitquarzite überaus charakteristisch sind. Sie zeigen eine ausgesprochene Absorption c > a und einen starken Dichroismus a blassgrün, c tiefgrün. Die einzelnen Säulchen sind durch die Formen (1011) (0221) kristallographisch scharf begrenzt und häufig in einzelne, nur unbeträchtlich voneinander verschobene Bruchstücke zerfallen. Sie müssen darum als authigene Nebengemengteile dieser Serizitquarzite aufgefasst werden. Abgerundete Zirkonkörnchen sind ziemlich selten. Die Kristallisationsschieferung ist infolge des grossen Serizitgehaltes sehr augenfällig. Zuckerkörniger Quarz, zerbrochene Turmalinsäulchen, sowie die oft feingewellten Serizitlagen deuten darauf hin, dass auch kataklastische Vorgänge eine nicht unbedeutende Teilnahme an der Texturbildung genommen haben. Die Struktur ist granoblastisch-lepidoblastisch.

2. Grobschieferige bis plattige Serizitquarzite.

Wie alle hellgefärbten, graphitoidfreien Quarzitgesteine finden sie ihre alleinige Verbreitung zwischen der Alpe de Torrembey einerseits und der Alpe de Vingt-Huit und de Pte. Chermontane andererseits. Stets von untergeordneter Mächtigkeit, begleiten sie die grünen Gneisquarzite, deren albitärmste bis albitfreie Modifikation sie darstellen. Abgesehen vom fast völligen Fehlen der Feldspäte stimmen sie in Mineralbestand, Struktur und Textur mit den im folgenden zu besprechenden Gneisquarziten vollkommen überein, so dass ich hier auf eine nähere Beschreibung derselben verzichte.

3. Gneisquarzite.

Hieher gehört der Grossteil aller Quarzitgesteine. Wie schon oben bemerkt, sind die Gneisquarzite mit den plattigen bis grobschieferigen Serizitquarziten durch kontinuierliche Übergänge verbunden und stellen auch das Bindeglied zu den typischen Serizitalbitgneisen dar.

Im Handstück sind es meist hellgrün gefärbte Gesteine, mit mehr oder weniger gut ausgeprägter Schieferung. In den gutgeschieferten Varietäten bildet der Glimmer dünne Lagen, die dem Hauptbruch des Gesteines eine glänzend grüne Färbung verleihen, auf dem Quer- und Längsbruch hingegen als feine Linien wahrgenommen werden, die zwischen den Quarz-Albitaggregaten fast verschwinden.

Unter dem Mikroskop beobachtete man als Hauptgemengteile Quarz und phengitischen Glimmer, als Nebengemengteile Albit und untergeordnet auch Kalifeldspat; akzessorisch sind vertreten: Chlorit, Epidot, Titanit, Rutil, Zirkon, Turmalin und Pyrit. Der Quarz erscheint bald in Gestalt länglicher, abgeplatteter Körnchen von ziemlich gleichmässiger Grösse, bald in unregelmässig begrenzten, zackig ineinandergreifenden Individuen mit undulöser Auslöschung. Sehr selten schreitet dabei die Kataklase bis zur beginnenden Mörtelbildung fort. In einzelnen reliktischen Körnernfindet man kleinste Flüssigkeitseinschlüsse mit beweglichen Libellen. Der Glimmer ist nach Quarz der häufigste Gemengteil. Er liegt in feinen, selten 1 mm übersteigenden, öfters gestauchten Blättchen zwischen den Quarzalbitaggregaten oder ist dem Albit poikiloblastisch eingestreut. Die makroskopisch seegrüne Farbe des Glimmers ist unter dem Mikroskop nur mehr in lichtgrünen Tönen wahrnehmbar. Der schwache Pleochroismus ist

$$c = b$$
 > a schmutziggrün hellgrün bis farblos

Die Doppelbrechung beträgt ca. 0,036, die Auslöschungsschiefe $c = 1-2^{\circ}$. Der scheinbare Axenwinkel schwankt meist zwischen 30° und 35°. Ähnliche Glimmer rechnete Schmidt) der Phengitreihe zu. — Der Albit zeigt keine regelmässige Verteilung. Seine grösseren, oft 1 mm übersteigenden Körner besitzen eine gut ausgeprägte Spaltbarkeit nach (001) und (010) und sind öfters nach dem Albitgesetz, sehr selten auch nach dem Karlsbadergesetz verzwillingt. Als Maxima der symmetrischen Auslöschung in der Zone \bot (010) wurden gemessen

$$\begin{bmatrix} 13 \\ 15 \end{bmatrix} 14^{\circ}, \quad \begin{bmatrix} 14 \\ 15 \end{bmatrix} 14,5^{\circ}, \quad \begin{bmatrix} 14 \\ 16 \end{bmatrix} 15^{\circ}, \quad \begin{bmatrix} 15 \\ 17 \end{bmatrix} 16^{\circ}.$$

Schnitte annähernd \perp zur negativen Bisektrix a ergaben im Mittel eine Auslöschungsschiefe von ca. 16°, Schnitte annähernd \perp zur positiven Bisektrix c im Mittel ca. 20°; Bestimmungen nach der Lichtbrechungsmethode von Becke ergaben die Verhältnisse:

+ Stellung:
$$\omega > \gamma'$$
, $\varepsilon > \alpha'$
|| Stellung: $\omega > \alpha'$, $\varepsilon > \gamma'$.

¹⁾ C. SCHMIDT, Beiträge zur Kenntnis der im Gebiete von Blatt XIV, 1:100000 der Schweiz auftretenden Gesteine. Anhang zur 25. Lieferung der Beiträge zur geologischen Karte der Schweiz, Bern 1891.

Diese Messungen sprechen für einen ziemlich reinen Albit. Kataklastische Phänomene machen sich manchmal in Form schwacher undulöser Auslöschung, seltener in gegenseitiger Verschiebung der Albitlamellen und in teilweiser Zertrümmerung einzelner Körner bemerkbar. Im Albit findet man sehr spärliche Einschlüsse von Mikroklin. Grössere Körnchen erreichen kaum 0,2 mm Grösse. Die Gitterlamellierung ist bald deutlich sichtbar, bald auch nur verschwommen undulierend. Ebenso wechselt engmaschige und weitmaschige Gitterung oft in demselben Individuum ab, öfters setzen die Maschen auch ganz aus. In diesen gitterfreien Partien bleibt die Lichtbrechung immer unter derjenigen des Albites zurück. Ich fasse sie darum als Orthoklas auf. In einigen Durchschnitten mit besonders wohlentwickelter Gitterstreifung mass ich auf (001) beiderseits der (010) entsprechenden Zwillingsnaht Auslöschungsschiefen von ca. 16° im Mittel, was deutlich für Mikroklin spricht. Die Entstehung des Mikroklins bzw. der Mikroklinverzwillingung möchte ich bei der herrschenden Kataklase im Gestein auf die Einwirkung des Gebirgsdruckes auf den Orthoklas zurückführen. Es. ist dies eine Erscheinung, wie sie Futterer¹) aus dem gepressten Quarzporphyr von Tal bei Eisenach und ähnlich auch Salomon²) aus gepressten alpinen Gneisen beschreiben. Der Mikroklin ist durchwegs wasserklar und frei von Einschlüssen. — Einmal konnte man das Eindringen von feinen Albitlamellen in den Mikroklin parallel (010) feststellen, ohne dass es aber dabei zur Bildung der typischen Mikroklin-Mikroperthitstruktur kommt. Öfters tritt der Fall ein, dass mehrere optisch gleich orientierte Mikroklinkörner in einem grössseren Albitkorn derart eingebettet liegen, als ob dieselben ursprünglich einem Individuum angehört hätten. Derartige Einschlüsse betrachte ich als Relikte, entstanden bei allmählicher Verdrängung und Aufzehrung des Mikroklins. Bemerkenswert ist das glasig-frische Aussehen der Mikroklinrelikte. — An Akzessorien sind zu erwähnen: Rutil in feinsten "Tonschiefernädelchen" im Quarz oder im Glimmer eingeschlossen: vereinzelte Zirkon- und Titanitkörnchen und von den Erzen Pyrit. Karbonate, einzeln auftretend oder in unregelmässigen zusammenhängenden Partien umschliessen öfters Quarzkörnchen. Chlorit siedelt sich gerne auf Bruchstellen und an den Rändern des Glimmers an, ist aber immer nur

¹⁾ K. Futterer in Mitteil. Grossherz. Bad. geol. Landesanstalt, 2. 1891. 1.

²) W. Salomon, Gequetschte Gesteine des Matirolotales. N. J. f. M. Beil. Bd. XI. 1897.

sehr untergeordnet. Der *Epidot* bildet spärliche Körnchen. Zerfressen aussehende Fetzen eines fleckig grünen Minerales mit starker Absorption O > E weisen auf *Turmalin* hin.

Die *Textur* erscheint unter dem Mikroskop als Kristallisationsschieferung, die durch den Hinzutritt der Kataklase modifiziert wird. Die *Struktur* ist granoblastisch, mit zunehmendem Glimmergehalt, bei plattiger Ausbildung der Quarzkörner hingegen granoblastisch-lepidoblastisch.

Durch das vollständige Austreten des Mikroklins und des grünen, phengitischen Glimmers, an dessen Stelle ein farbloser Serizit tritt, entstehen silbergraue, flaserige Gneisquarzite, wie man sie öfters einige Meter unter dem Triaskontakt trifft. Durch Aufnahme von Karbonaten gehen sie lokal in karbonatreiche Serizitschiefer über. Sie besitzen eine ausgesprochene Lentikulartextur, hervorgerufen durch schmale Kornflasern von zuckerkörnigem Quarz. Den Hauptbruch überziehen silberglänzende, zusammenhängende Serizithäute, in die vereinzelte Albitporphyroblasten eingestreut liegen.

Für die Gneisquarzite lässt sich folgende kristalloblastische Reihe aufstellen: Rutil, Pyrit-Titanit, Epidot-Serizit, Chlorit-Albit, Quarz.

4. Die Graphitoidquarzite.

Diese bilden wenig mächtige und stets rasch auskeilende Einlagerungen innerhalb der Phyllite der Deckfalte von Boussine, worin die Graphitoidquarzite die einzigen Vertreter der Quarzitgesteine darstellen. Mit den gleichzeitig auftretenden Sismondinphylliten sind sie durch Graphitoidphyllite verbunden und können somit als das quarz und graphitoidreichste Endglied der Sismondinphyllite aufgefasst werden. Gegenüber den vorerwähnten Quarzitgesteinen sind sie innerhalb der Deckfalte von Boussine an kein stratigraphisches Niveau gebunden. So trifft man sie sowohl in den Phylliten, die ungefähr beim ersten "t" von Vingt-Huit anstehen, als auch in den obersten Gliedern der Casannaschiefer auf Alpe de Boussine.

Das dunkelgraue bis fast schwarze Gestein zeigt dem blossen Auge einen Aufbau aus feinen, ebenen bis gefältelten Lagen, die je nach dem Gehalt an kohliger Substanz heller oder dunkler erscheinen.

Im Dünnschliff erweist sich der Quarz als häufigster Gemengteil. Seine meist vollkommen zertrümmerten, von Quarz und kohliger Substanz wieder verkitteten Körner bilden ein annähernd gleichmässiges Mosaik. Undulöse, brecciöse Auslöschung der einzelnen Bruchstücke ist verbreitet. Albit

wird nur ganz selten beobachtet. Serizit ist in feinen Schuppen dem Quarzmosaik regellos eingestreut. Hin und wieder sammeln sich seine Blättchen zu länglichen Paketen, deren Längserstreckung \perp zu den basalen Verwachsungsflächen gerichtet ist, ähnlich wie dies bei Querbiotiten der Fall ist. Die Absorption des Serizites ist merklich $\mathfrak{c}=\mathfrak{b}>\mathfrak{a}$.

Der Graphitoid markiert in erster Linie die Umrisse der Quarzkörner, dringt aber auch auf Rissen und Sprüngen in dieselben ein. Seine Menge wurde durch Glühen einer lufttrockenen Probe des Gesteinspulvers vor dem Gebläse zu ca. 3% bestimmt (aus dem Glühverlust; ein aus dem Serizit stammender, mitgerechneter Wassergehalt kann wegen der sehr geringen Serizitmenge vernachlässigt werden).

Als Nebengemengteile treten auf: Ilmenitfetzen, die von Leukoxen überrindet oder von Rutilhaufwerken und einzelnen formlosen Titanitkörnchen begleitet sind. Granat in vereinzelten, idioblastischen Individuen mit zentralgehäuftem, kohligem Pigment vervollständigt das mikroskopische Bild.

Im Dünnschliff zeigt sich schwach angedeutete Lagentextur; die Struktur ist granoblastisch-lepidoblastisch bei zunehmendem Serizitgehalt.

Genetisch sind diese Gesteine am ehesten mit karbonischen Sandsteinen in Beziehung zu brirgen.

II. Albitgneise.

Je nach der Menge des vorhandenen Serizites, mit dessen Abnahme in der Regel ein stärkeres Auftreten des Epidotes und Chlorites verbunden ist, sind die Albitgneise bald den tonerdereichen Serizitalbitgneisen, bald den Epidotalbitgneisen zuzurechnen.

1. Serizitalbitgneise.

Diese umfassen den weitaus grössten Teil der Casannaschiefer des obern Val de Bagnes. Nach dem jeweiligen Vorwalten der Übergemengeteile: Chlorit und Glaukophan, die zu Hauptgemengteilen werden können, unterscheide ich zwei verschiedene Gesteinsgruppen:

- a) Chlorit-Serizitalbitgneise,
- b) Glaukophan-Serizitalbitgneise.

Der grosse Reichtum an Serizit und Chlorit verweist diese Gesteine in die Ordnung der tonerdereichen Sericitalbitgneise der obersten Zone Grubenmanns. Während die Chlorit-Serizitalbitgneise die verbreitetste Gesteinsart des oberen Val de Bagnes darstellen, sind die Glaukophan-Serizitalbitgneise fast nur an die Nachbarschaft der glaukophanführenden Ophiolithe gebunden. Von diesen letzteren sind sie gewöhnlich noch durch eine schmale Zone von massig bis linear texturierten Glaukophan-Epidotalbitgneisen getrennt. Bei vollständiger Chloritisierung des Glaukophans gehen sie in schieferige Chlorit-Serizitalbitgneise über.

Da abgesehen vom Glaukophangehalt der Mineralbestand der beiden Gneisarten sehr ähnlich ist, soll im folgenden deren petrographische Beschreibung zusammenfassend behandelt werden.

Zu den Chlorit- und Glaukophan-Serizitgneisen gehören silberglänzende, hellgraugrüne Gesteine von flaseriger, lentikulärer bis augenartiger, selten gestreckter Textur. Die Schieferungsflächen sind stets von silbergrauen Serizithäuten überkleidet, denen kleine, beliebig oder regelmässig eingestreute Chlorithäufchen ein gesprenkeltes Aussehen verleihen. Ausserdem lassen sich von blossem Auge Quarz-, Albit-, limonitisch verwitterte Karbonate und nicht selten auch schlanke oder zerbrochene Turmalinsäulchen unterscheiden. Ein vorhandener Glaukophangehalt kann makroskopisch gewöhnlich nur aus der helleren oder dunkleren Gesteinsfarbe vermutet werden, da der Glaukophan das Stadium kleinster Nädelchen selten überschreitet. Die mikroskopische Untersuchung fügt zu diesem Mineralbestand ferner noch Epidot, Apatit und verschiedene Erze.

Unter dem Mikroskop bildet der Albit mit Quarz zusammen öfters eine feinkörnige Pseudogrundmasse, in der alle andern Komponenten regellos eingebettet liegen. Gewöhnlich aber übertrifft er an Korngrösse die andern Gemengteile und übernimmt dann gerne die Rolle von Porphyroblasten. In den Gesteinen mit Augentextur zerfallen unter dem Mikroskop die Augen grösstenteils in buchtig ineinandergreifende Albitkörner, die nesterartige Haufwerke darstellen und vielleicht aus der Zertrümmerung eines grossen Albitindividuums hervorgegangen sind. Meist begegnet aber der Albit den kataklastischen Einwirkungen durch Umkristallisation. Spalcrisse sind häufig anzutreffen, weniger hingegen Zwillingsbildung in Form rasch auskeilender Albitlamellen. Zwillingslamellen nach dem Periklingesetz wurden nie angetroffen und scheinen überhaupt dem Albit der Casannaschiefer des Val de Bagnes zu fehlen. Die Albitnatur des Feldspates wurde an lamellierten Schnitten aus der symmetrischen Zone (010) bestimmt. Als maximale

Auslöschungsschiefen ergaben sich Werte, die zwischen 15° und 18º liegen. Die Lichtbrechung ist stets niedriger als beim Quarz. Der Albit ist von zahlreichen Einschlüssen poikiloblastisch durchspickt. So erfüllt ihn öfters, neben den anderen Gemengteilen, namentlich Quarz in kleinsten rundlichen Tröpfchen oder eckigen Zwickeln, wodurch ein der Granophyrstruktur ähnliches Gefüge hervorgerufen wird. Als sehr seltene Erscheinung soll erwähnt werden, dass kleine frische Albitidioblasten in grossen Albitindividuen eingeschlossen sind. Der Quarz gleicht, wenn wir absehen von den durch grössere Albitkörner heteroblastisch struierten Gesteinsvarietäten, ganz dem Albit, von dem er sich meist erst im konvergenten Licht sowie durch seine Armut an Einschlüssen und dem Reichtum kataklastischer Erscheinungen unterscheiden lässt. Die Kataklase kommt in wandernder Auslöschung, in Sektorenteilung und in der Bildung von Mörtelkränzen zum Ausdruck. Die Richtung der Drucksuturen ist parallel bis subparallel der kleineren Elastizitätsrichtung c oder | c und dürfte somit einer Richtung maximalster Homogenität entsprechen. Hin und wieder können in kataklastisch beeinflussten Quarzkörnern beim Heben des Tubus feinste narbenartige Streifen erkannt werden. Sie sind gewöhnlich durch staubförmige Pigmente deutlich markiert und zeigen fast durchwegs die annähernde Orientierung $\|\omega\|$ oder a', also \perp c. Becke beschreibt diese Erscheinung aus den bayrischen Alpen und nennt sie nach Böhm, ihrem ersten Entdecker, "Böhm'sche Streifung". Er führt sie auf ausgeheilte Zerrklüfte zurück. Sie entsprechen auch den "Translationslamellen" von Mügge (vgl. Sander1).

Der Serizit ist in einzelnen Schüppchen den Quarzalbitaggregaten eingestreut, in der Hauptmasse aber reichert er sich in schwach welligen bis intensiv gefältelten Flaserzügen an oder durchzieht in feinen helizitischen Fältchen den Schliff. Wo diese den Albit durchsetzen, erscheinen sie aufgeblättert und wie resorbiert infolge ihrer gegen den Albit hin oft völlig unregelmässigen Umgrenzung. Er ist häufig mit Chlorit parallel verwachsen und zeigt wie dieser dentritenartige Verwachsungen mit Albit. Mit zunehmendem Glimmergehalt nehmen die Serizitblättchen grössere Dimensionen an und werden muscovitartig. Eine eigentümliche Erscheinung stellt die Verdrängung des Serizites durch Albit dar, die in ähnlicher Weise auch beim Chlorit verfolgt werden kann. Die Verdrängung geht so

¹⁾ Br. Sander: Über Zusammenhänge zwischen Teilbewegung und Gefüge in Gesteinen. T. M. P. M. N. F. Bd. 30, pag. 281-315.

vor sich, dass die Albitsubstanz randlich einzelne Serizitblättchen korrodiert oder auf Spaltrissen in sie eindringt. Im Albit eingeschlossene Serizite werden auf diese Weise oft spurlos aufgezehrt und nur mehr einzelne ehemalige Einschlüsse des Serizites, wo opake Erznädelchen und Rutilmikrolithen weisen in ihrer eigenartigen Übereinanderlagerung auf das ehemalige Serizitmineral zurück. Anders verhält es sich mit Serizitleisten, die zwischen dem Quarz-Albitgewebe eingestreut liegen. Bei ihnen beobachtet man alle Stadien der Verdrängung, beginnend mit Serizitleisten mit nur schmalem Albitrand bis zu leistenförmigen Albitpseudomorphosen, die öfters noch einen ganz geringen Rest von korrodiertem Serizit aufweisen. Darauf verschwindet auch dieser, bis schliesslich eine reine Albitleiste vorliegt, deren Umrandung gegenüber den Nachbarmineralien sehr oft durch eine kleine Bestäubung markiert ist. Vom umgebenden Quarz unterscheidet er sich nicht nur durch die niedere Lichtbrechung, sondern auch durch einen graueren Farbenton. Der neugebildete Pseudomorphosenalbit weist nur selten Spaltenrisse auf, die dann immer senkrecht zur Längserstreckung der Leisten verlaufen. Hin und wieder handelt es sich auch nur um Querrisse, die beim Schleifen des Gesteins entstanden sein dürften. Zwillingsbildung wurde an diesem Albit nie konstatiert. Wo er die Umrissformen des Serizites nicht übernimmt, breitet er sich gerne amöboid zwischen den Quarz-Albitaggregaten aus. Er trägt somit ganz den Charakter eines Holokristalloblasten im Sinne Sanders (vgl. loc. cit.). Auf die Frage nach der Ursache dieser einzigartigen Erscheinung, die ich im Nachfolgenden der Kürze wegen immer mit dem Ausdruck: Albitisierung des Serizites bezeichnen werde, weiss ich bis jetzt keine bestimmte Antwort zu geben. Die Tatsache, dass ich sie stets nur in Gesteinen mit sich stark chloritisierendem Glaukophan fand, dürfte die Annahme nahelegen, dass beide Vorgänge, die Chloritisierung des Glaukophans sowohl wie auch die Albitisierung des Serizites, in ursächlichem Zusammenhange stehen. Die Frage, ob neben Glaukophan noch eine andere Natronquelle zu berücksichtigen ist, möchte ich verneinen.

Aus den Alpen beschreibt meines Wissens erstmals Staub¹) eine ähnliche Pseudomorphosenbildung nach Glimmer. Der Glimmer ist bei ihm allerdings Biotit, das neugebildete Mineral hingegen meist Quarz, seltener Albit. Für die Pseudomorphosen-

¹) Rudolf Staub: Petrographische Untersuchungen im westlichen Berninagebirge. Diss. Zürich 1915.

bildung macht Staub einen grossen SiO₂-Überschuss im Gestein und hydrothermale Prozesse verantwortlich. Er vergleicht die Erscheinung mit der Baueritisierung Rinne's. Darunter versteht Rinne einen Verwitterungsvorgang, bei dem dunkler Glimmer durch Kieselhydrat ersetzt wird. Dass Baueritisierung für die mir vorliegende Erscheinung nicht in Betracht kommen kann, liegt auf der Hand. Für die Albitisierung des Serizites muss vielmehr als chemische Voraussetzung ein Überschuss an Natron und als physikalische Bildungsbedingung hoher Druck und hohe Temperatur angesehen werden.

Der Chlorit der Serizitalbitgneise zeigt immer eine intensiv grüne Eigenfarbe und meistens einen starken Pleochroismus:

$$c = b$$
 > a gelblichgrün

Dies, sowie seine niedere Doppelbrechung (ca. 0.002), sein negativ opt. Charakter, seine abnormalen, tief indigoblauen Interferenzfarben (nicht selten mit einem Stich ins Violette), charakterisieren den Chlorit als Pennin. In den glaukophanführenden Gliedern der Serizitalbitgneise neigt der Charakter der Doppelbrechung bald zu positiv, bald zu negativ hin. In den Ophiolithen schliesslich ist der Chlorit stets Klinochor. Auf diese Weise kann ein langsamer Übergang des Pennins der Serizitalbitgneise in den Klinochlor der Ophiolithe konstatiert werden. An Einschlüssen beherbergt er krümelige Erzreste und winzige epidotähnliche Körnchen, die ab und zu pleochroitische Höfe zeigen. Auf letztere Erscheinung werde ich noch später eingehen.

Glaukophan ist in seiner Menge bedeutenden Schwankungen unterworfen. Seine Menge hängt von der Nähe der Glaukophangesteine ab, wie dies im Felde gelegentlich sehr gut beobachtet werden kann. Glaukophanreiche Typen leiten rasch zu den Glaukophan-Epidot-Albitgneisen über. Seine bis 1 mm Länge erreichenden Prismen bevorzugen mit ihrer Längsrichtung meistenteils die Texturrichtung. Fast regelmässig zeigen seine Individuen weitgehende Umwandlungen in Chlorit, oft bis zur vollständigen Verdrängung der Glaukophansubstanz. Dabei dringen auf feinen Haarspältchen und besonders auf den Spaltrissen nach (110) winzige Chloritschüppchen in die Glaukophansubstanz ein und zehren sie nach und nach ganz auf. So entstehen Pseudomorphosen nach Glaukophan, die in Schnitten 1 zur Prismenzone gewöhnlich noch eine deutliche Rhombenform erkennen lassen. Die ehemalige prismatische Spaltbarkeit des Glaukophans wird durch unter 124° sich kreuzende Chloritleisten angedeutet. Das so entstandene Maschenwerk von Chloritblättchen enthält gelegentlich noch einen geringen Rest von unzersetztem Glaukophan kernartig eingeschlossen. Meist sind aber die Interstitien der einzelnen Maschen mit einer bald glashellen, bald mit Chlorit mikrodiablastisch verwachsenen Mineralsubstanz ausgefüllt, deren niederere Lichtbrechung als Quarz auf Albit hindeutet. Darin eingestreut finden sich mitunter winzigste Epidot- und Titanitkörnchen und Erzpartikelchen. Letztere lassen sich öfters als schwach rotbraun durchscheinende Hämatitflitterchen nachweisen. (Eine ähnliche Umwandlung von Glaukophan unter Erhaltung seiner Form beschreibt Colomba¹) aus einem triassischen Glaukophangestein der Beaume.) Infolge dieser Zersetzungserscheinungen lassen sich hier die optischen Eigenschaften des Glaukophans nicht gut beobachten; sie stimmen aber im wesentlichen mit denen des Glaukophans der Glaukophan-Epidotalbitgneise überein, weswegen ich auf das dort Gesagte verweise.

Als wichtigster Übergemengteil kommt neben Glaukophan Epidot in Betracht. Gewöhnlich schwimmt er in nach b gestreckten Säulchen in den Serizit-Chloritwellen, an deren Umbiegungsstellen seine teilweise wohlbegrenzten Individuen öfters zerbrochen und der Texturrichtung eingeordnet sind. Hin und wieder umschliesst er kernförmige Reste von blaugrau bis rostig aussehendem Orthit.

Turmalin ist ein in der ganzen Gneisserie immer wiederkehrender Übergemengteil. Im Handstück beobachtet man ab und zu seine bis 1 cm langen, schlanken Säulchen, die öfters schwache Biegung und Torsion, öfters auch Zertrümmerung in mehrere, beieinanderliegende Bruchstücke aufweisen. seltenen Fällen treten seine Prismen zu divergent- bis radialstrahligen Gebilden zusammen, die an Turmalinsonnen erinnern. Diese Aggregierung setzt es ausser Zweifel, dass es sich nicht um klastische Relikte detritischen Ursprungs, sondern nur um authigene Neubildungen handeln kann. Granat wird in den Glaukophan-Serizitalbitgneisen fast immer angetroffen. Er ist immer blassrosa gefärbt und führt zentral gehäufte Einschlüsse, unter denen Quarz vorherrscht. Seine Aufzehrung durch Chlorit führt zur Bildung kleiner Chloritputzen. Der Apatit erscheint in rundlichen, isometrischen, oft auch zerbrochenen Körnern und ist gelegentlich von feinsten, parallel orientierten Rutilmikrolithen durchschwärmt. Titanit ist sowohl in kleinsten Idioblasten als auch in leukoxenartigen Körner-

¹⁾ L. COLOMBA, Sulla Glaukophane della Beaume, Torino 1894.

aggregaten vertreten. Nicht selten führt er noch einen geringen Rest von Titaneisenerz. Rutil kommt in Form von kurz gedrungenen Säulchen mit pyramidaler Endbegrenzung recht häufig vor. Er ist mit rotbrauner Farbe durchscheinend, lässt aber keine Absorptionsunterschiede erkennen. Er begleitet fast ausnahmslos korrodierte, zerfressen aussehende Erzreste, die sich manchmal ganz in Haufwerke kleinster, aber wohlindividualisierter Rutilkriställchen aufzulösen scheinen. Es handelt sich dementsprechend um Titaneisenerz. In einzelnen, hierher gehörenden Gneisen findet man den Albit oft reich erfüllt mit winzigen, aber vollkommen idioblastischen Magnetitoktaederchen. Ab und zu sieht man einzelne, krapprot durchscheinende Hämatitflitterchen.

Als kristalloblastische Reihe wurde gefunden: Erze, Rutil, Turmalin, Apatit-Granat, Glaukophan-Titanit, Epidot-Serizit, Chlorit-Albit, Quarz-Kalzit.

Die Textur ist schieferig, bei bedeutendem Glaukophangehalt mehr linear. Die Struktur ist meistensteils granoblastischlepidoblastisch. Mit zunehmendem Grössenwachstum der Chloritblättchen kommt eine porphyroblastische Struktur mit granoblastischem bis lepidoblastischem Grundgewebe zur Ausbildung. Mit diesen Strukturen verbunden ist stets mehr oder weniger ausgeprägte Kataklase, die im extremsten Falle bis zur Mikromylonitstruktur führen kann, wie ich sie in einem Serizitalbitgneis vom rechten Dranceufer südlich Lancey beobachten konnte. Im allgemeinen aber halten sich Kataklase und Kristalloblastese so ziemlich die Wage.

Als Nachtrag führe ich noch ein Gestein an, das infolge seines grossen Turmalingehaltes den Namen eines Turmalingneises verdient. Das Gestein steht auf dem rechten Dranceufer, etwa 100 m oberhalb des Schluchtausganges von Pte. Chermontane und zwar in der unmittelbaren Nähe eines Epidot-Chloritschiefers an. Es trägt ganz den Charakter eines Chlorit-Serizitalbitgneises, in dessen Serizithäuten massenhaft feinste, mehrere Millimeter lange Turmalinnadeln eingebettet liegen. Es handelt sich dabei um einen tiefgrünlichblauen Eisenturmalin mit deutlichem c > a und gelegentlich recht deutlichen kataklastischen Einwirkungen. Merkwürdigerweise führt das Gestein ganz unregelmässig und schlierenartig grobkörnige Partien. Diese bestehen aus Albitindividuen in bis zu zentimetergrossen, von Turmalinnädelchen durchspiessten Porphyroblasten und aus wasserhellen Quarzausscheidungen, die in einer feinverfilzten "Grundmasse" von Chlorit mit Turmalin neben wenigen 2-3 mm langen Pistazitstengeln liegen. Dass hier authigener Turmalin vorliegt, ist unzweifelhaft. Auf feinen Rutschflächen, die das Gestein durchziehen, ist der Turmalin nirgends anzutreffen. Diese dürften somit erst nach der Auskristallisation des Turmalins entstanden sein.

Die Bildung der grobkörnigen Partien im allgemeinen und des Turmalins im besonderen kann nur durch Zuhilfenahme pneumatolytischer Vorgänge, die entweder bei der Ophiolithintrusion oder bei der Bildung des kristallinen Schiefers stattfanden, erklärt werden.

2. Epidotalbitgneise.

Unter dieser Bezeichnung "Epidotalbitgneise" fasse ich Gesteine zusammen, die zwischen den Ophiolithen und den Serizitalbitgneisen sowohl im Habitus als auch im Mineralbestand eine deutliche Mittelstellung einnehmen. Um die Ophiolithe bilden die Epidotalbitgneise stets eine schmale, heller gefärbte Randzone, die öfters sowohl in ihrem Hangenden als auch in ihrem Liegenden angetroffen werden kann. Gestützt auf Terrainstudien lässt sich der Satz aufstellen: Wo immer im Felde der Übergang von Ophiolithen zu Gneisen sichtbar ist, da stellen sich mit grosser Gewissheit auch Epidotalbitgneise ein, die einen raschen Übergang zu den tonerdereichen Serizitalbitgneisen vermitteln. Dieser Wechsel vollzieht sich allerdings oft so schnell, dass er schon im Handstück vor sich geht und nicht selten eine deutliche Kontaktlinie zwischen Ophiolith und Gneis zur Ausbildung kommt. Ein direkter Zusammenhang zwischen den Epidotalbitgneisen und den Serizit- bzw. Gneisquarziten liess sich nirgends feststellen. Wie die Ophiolithe, in die sie übergehen, sind die Epidotalbitgneise von meist massiger bis stengelig schieferiger Textur, unterscheiden sich aber von ihnen durch eine hellere Gesteinsfarbe und in der Mineralzusammensetzung durch eine Abnahme der femischen Gemengteile, besonders des Glaukophanes und des Chlorites zugunsten der Quarz-Serizitkomponenten. Das Gestein wird so zusehends leukokrater und die Textur gleichzeitig schieferiger. Je nachdem der Epidotalbitgneis ein Glaukophan- oder Chloritgestein umhüllt, tritt Glaukophan oder Chlorit in ihm als wichtigster dunkler Hauptgemengteil auf. Dementsprechend teile ich die Epidotalbitgneise in folgende zwei Gruppen ein:

- a) Chlorit-Epidotalbitgneise,
- b) Glaukophan-Epidotalbitgneise.

Die Verbreitung dieser Gesteine ist entsprechend der Häufigkeit der Ophiolithe, als deren Begleitgesteine sie auftreten, eine sehr grosse. Ihre Mächtigkeit ist jedoch stets nur sehr gering.

In ihrer mineralogischen Zusammensetzung unterscheiden sie sich von den soeben beschriebenen Serizitalbitgneisen nur durch das stärkere Vorherrschen der gefärbten Gemengteile.

Unter dem Mikroskop erscheinen Albit, Quarz, Epidot, Chlorit, Serizit und Glaukophan als Hauptgemengteile; Erze, Titanminerale und Apatit als Nebengemengteile; sporadischer Granat, wenig Kalzit und vereinzelt auch Turmalin als Übergemengteile.

Albit und Quarz unterscheiden sich in ihrem Auftreten kaum merklich von dem der übrigen Epidotalbitgneise. Das gleiche gilt für Serizit und Chlorit, von denen der erstere wieder eine weitgehende Albitisierung zeigt. Epidot-mineralien sind in Form von schwach gelbgrün gefärbtem Pistazit und farblosem Klinozoisit vertreten. Beide bilden unregelmässige bis schalenartige Verwachsungen. Der Glaukophan steht bei den Glaukophan-Epidotalbitgneisen an erster Stelle. Einordnung seiner Individuen in die Texturebene ist stark ausgeprägt. Kristallographisch zeigen diese nur in der Prismenzone eine gute Entwicklung. In Querschliffen, die fast nur die rhombenförmigen Querschnitte des Glaukophanes liefern, findet man stets (110), öfters in Kombination (010). Eine terminale Endbegrenzung kommt nie zur Ausbildung; vielmehr erscheinen die Prismen oft wie abgebrochen, oder lösen sich terminal in feinste Chloritfasern auf, die divergierend in den umgebenden Albit hineinspiessen. Die Spaltbarkeit ist vollkommen nach (110), mehr oder weniger gut nach (010). Senkrecht zur Längserstreckung macht sich eine etwas undeutliche Querklüftung bemerkbar. Die blauviolette Farbe des Glaukophanes ist meist nicht einheitlich, sondern fleckenhaft. Frischerscheinende Glaukophanindividuen zeigen einen ziemlich schwankenden Auslöschungswinkel: $c\gamma = 10-14^{\circ}$ und den Pleochroismus:

c > b > a hellblau hellviolett hellgelb bis farblos.

Die Axenebene ist in (010) gelegen. Der Axenwinkel liess sich infolge der stark verschwommenen Hyperbeln nur annähernd zu 60—70° (für 2 E) bestimmen. Die Axendispersion ist deutlich $v > \varrho$. Gegen den Rand der Körner, seltener gegen deren Zentrum hin, nimmt die Stärke der Absorption meistens

zu. Der Axenwinkel wird dabei nur unbeträchtlich, aber doch merklich verringert. Die Absorptionsfarben sind dann:

c > b > a dunkelblau violett hellgelb bis grünlichgelb.

Zugleich zeigen die niedrigeren Interferenzfarben, dass die Doppelbrechung kleiner geworden ist. An diese, das Licht stärker absorbierenden randlichen Partien direkt anstossend, erscheint zuweilen eine grüne bis blaugrüne Randhornblende, die seltener einen raschen Übergang zum Glaukophan darstellt, als vielmehr kristallographisch scharf von ihm abgetrennt ist. Sie ist mit dem Glaukophan stets parallel verwachsen und besitzt die folgenden Absorptionsfarben:

Nur selten tritt diese Randhornblende in zusammenhängenden Partien auf, in der Hauptsache bildet sie um den Glaukophan eine im Querschnitt feinkrümelig erscheinende Randzone, bestehend aus zahlreichen, oft erst mit den stärksten Vergrösserungen wahrnehmbaren Nädelchen grüner Hornblenden, die im Querschnitt stets die Kombination (110) und (010) erkennen lassen. Die Breite dieser Randzone beträgt in der Regel nur einen Bruchteil des Glaukophandurchmessers. Vollständig von blaugrüner Hornblende verdrängte Glaukophanindividuen liessen sich in diesem Gestein nur selten nachweisen. Immerhin deutet doch das wechselnde gegenseitige Grössenverhältnis von Glaukophan und grüner Hornblende darauf hin, dass es sich um die Bildung einer homoaxen Pseudomorphose von grüner Hornblende nach Glaukophan handelt. Dabei dürfte die molekulare Umlagerung in erster Linie als eine Verschiebung des Natron- und Eisengehaltes des Mutterminerales aufgefasst werden. Mit der blaugrünen Randhornblende dürfte auch der von Stelzner (Lit. 29) aus einem erratischen Glaukophangestein von Sonvilier beschriebene Arfvedsonit zu identifizieren sein. Wenigstens kann die von Stelzner gelieferte Beschreibung ganz auf unsere Randhornblende bezogen werden. Übrigens kommen arfvedsonitische Amphibole nach Rosenbusch (loc. cit. pag. 239) in den kristallinen Schiefern nicht vor. Viel häufiger als der eben beschriebenen Umwandlung begegnet man der Zersetzung des Glaukophans in Chlorit. Die in den Quarzaggregaten eingeschlossenen Chloritpseudomorphosen nach Glaukophan scheinen gegenüber den im Chlorit schwimmenden besser erhalten zu sein. Man möchte darum vermuten, dass

die geringere Reaktionsfähigkeit der Quarzkörnchen gegenüber derjenigen der basischen Gemengteile in erster Linie zur Konservierung dieser zarten Gebilde beigetragen hat. Beide Umwandlungsarten des Glaukophans treten bald getrennt, bald an dem gleichen Individuum gleichzeitig auf, so dass nicht selten der Fall beobachtet wird, dass ein glaukophanfreies Chlorit-Maschenwerk von einem im Querschnitt rhombenförmigen schmalen Kranz von Randhornblende umsäumt wird. Obwohl nach und nach auch in die grüne Hornblende Chlorit eindringt, vermag sie doch der Chloritisierung bedeutend länger Widerstand entgegenzusetzen als der blaue Amphibol. Bei beiden Arten der Glaukophanumwandlung dürfte es sich um sekundäre, erst nach der Gebirgsfaltung entstandene Umbildungen handeln. Dieses gibt sich sowohl aus dem vollständigen Fehlen irgendwelcher Biegungs- oder Stauchungserscheinungen an dem Pseudomorphosen-Chlorit während doch die grossen, selbständigen Chloritblätter diese Phänomene häufig zeigen — als auch aus der einfachen Überlegung, dass jede stärkere Pression diese zarten Maschenwerke unfehlbar desaggregiert hätte. Einschlüsse sind im Glaukophan sehr selten. Einmal beobachtete ich um ein in Glaukophan eingeschlossenes, epidotähnliches Mineralkörnchen einen pleochroitischen Hof von bedeutender Reichweite.

Titanit ist gewöhnlich in der Spitzrhombenform oder als Titanomorphit vorhanden, vereinzelt geht er sekundär in Epidot über. Rutil ist in gelbbraunen, fast isometrischen Kriställchen dem oktaedrischen Titanerz aufgewachsen. Stark zerfressene Turmaline mit fleckenhaft ausgebildeter isomorpher Schichtung, Apatit in unregelmässigen Körnern oder im Chlorit eingeschlossenen, kurzen Säulchen, sowie da und dort im Albit eingestreute, rundliche Kalzitkörner mit Gleitlamellen nach (0112) und spärliche, grösstenteils chloritisierte Granatkörnchen beschliessen den Mineralbestand.

Die kristalloblastische Reihe lautet: Titanit, Rutil, Erze-Apatit, Granat-Glaukophan, Serizit-Epidot, Chlorit-Quarz, Albit, Kalzit.

Strukturell zeigen diese Gesteine gewöhnlich ein granoblastisch-lepidoblatisches Gefüge mit poikiloblastischem Albit. Die Textur ist grobschieferig bis annähernd massig. Als Ausnahme darf Kristallisationsschieferung angeführt werden.

Anhangweise nenne ich noch einen. Turmalin-reichen Chloritalbitgneis. Ich fand denselben mit Epidotchloritschiefern vergesellschaftet, auf dem rechten Dranceufer ob Pkt.

1833. Der Albit liegt in 1—2 mm grossen Körnern neben wenig Quarz zwischen reichlichem Chlorit. Das Gestein durchziehende, silberglänzende Serizithäute deuten eine schwache Texturebene an. Die meist zerbrochenen, gelegentlich deutlich verbogenen Turmalinsäulchen können sich lokal stark anreichern. Mit der Turmalinführung ist manchenorts ein Gröberwerden des Kornes verbunden. Unter dem Mikroskop kommen zu diesem Mineralbestand noch spärliche Epidotkörnchen sowie Titanerzreste mit Haufwerken gelbbrauner fast isometrischer Rutilsäulchen, spärlich Titanit und Apatit und zwischen den Albitkörnern sich ausbreitende Karbonatfetzen. Grösseres Interesse bieten nur Chlorit und Turmalin. Der Chlorit ist nach Albit der häufigste Gemengteil. Seine fächerförmigen, aggregierten Blättchen zeigen einen intensiven Pleochroismus in grünen und gelblichen Tönen. Die einzelnen Lamellen sind schwach schief miteinander verwachsen, wodurch eine flaumige wandernde Auslöschung hervorgerufen wird. Infolge ihrer starken Eigenfarbe zeigen sie abnormal graugelbe bis graubraune Interferenzfarben. Die Doppelbrechung kann zu ca. 0.005 bestimmt werden. Die Auslöschung ist $c\gamma = 7^{\circ}$ ca. Dispersion c: $c \varrho < c$: $c \upsilon$. Der Charakter der Hauptzone ist negativ, der optische Charakter positiv. All dies spricht für Klinochlor. In zahlreichen Blättchen werden um winzige Einschlüsse pleochroitische Höfe wahr-Schon anlässlich der Beschreibung der Serizitalbitgneise und der Epidotalbitgneise führte ich die Beobachtung solcher Höfe an. Nirgends aber traten sie in dieser Grösse und in dieser Intensität der Absorption auf wie hier. Ich trete hier darum etwas näher auf sie ein. Die Natur der Einschlüsse ist sehr fraglich, da ihre geringe Grösse eine genaue Diagnose verunmöglicht. Nur einmal gelang es mir, den Durchmesser eines 0,025 mm langen, dünnen Mikroliths, der ziemlich schief auszulöschen schien, zu messen. Aus Analogie mit den pleochroitischen Höfen in den Phylliten, die nachweislich von Orthiteinschlüssen herrühren, möchte ich auch hier das Vorhandensein dieses Minerales in mikrolithischer Ausbildung vermuten. Die Gestalt der Höfe ist um punktförmige Einschlüsse stets kreisrund, um langgestreckte, stäbchenartige hingegen elliptisch. Für die Grösse des Hofes scheint die Grösse des Einschlusses nicht massgebend zu sein, wenigstens zeigen mitunter Höfe, deren zentraler Einschluss sich kaum wahrnehmen liess, einen grösseren Totaldurchmesser als Höfe um Einschlüsse, die die Grösse der erstgenannten um ein vielfaches überboten.

Zwischen Nicols werden die Absorptionsfarben des Chlorites innerhalb des Hofes parallel (001) in ein tiefes braungelb verstärkt. Normal zu (001) zeigt sich keine Veränderung. Viel deutlicher ist die Einwirkung zwischen + Nicols sichtbar. Das Maximum dieser Einwirkung liegt unmittelbar am Rande des Einschlusses, wo an Stelle der gewöhnlichen Interferenzfarbe des Chlorites ein helles, abnormales Gelbgrün der I. Ordnung tritt. Daran anschliessend folgt ein anormal blau polarisierender Ring, dessen Doppelbrechung ungefähr derjenigen des negativen Pennins entspricht. Die Höfe sind also doppelt und zwar so, dass in der, dem unbeeinflussten Chlorit am nächsten gelegenen, äussern Zone Erniedrigung der Doppelbrechung von 0,005 ca. auf 0,001 ca. stattfindet, in der innern gelbgrünen Zone hingegen Erhöhung von 0,005 ca. auf 0,01 ca.

Die äussern Ränder jeder Zone entsprechen nach Mügge¹), HÖVERMANN²), HIRSCHI³) und den neueren Radiologen der Reichweite der verschiedenen a-Strahlen. Die blau und gelbgrün interferierenden Zonen zeigen ziemlich gleiche Breiten (vgl. auch Weber4).

So fand ich z. B. in drei Fällen:

gelbgrüne Zone	blaue Zone	Totalbreite
0.010 mm	0,011 mm	0,021 mm
0,019 mm	0,019 mm	0,038 mm
0,028 mm	0,027 mm	0,055 mm

Die äusserste Grenze des Gesamthofes wird eingenommen von einer schmalen ringartigen, isotropen Übergangszone. Zugleich mit der Änderung der Absorption und der Doppelbrechung findet eine Umkehrung des optisch-negativen Charakters statt: gegenüber der optisch-negativen Hauptzone des Klinochlors zeigen sowohl die blaue als auch die gelbgrüne Zone positiven Charakter. Die Richtung von c des positiven, unveränderten Klinochlor geht mit a des Hofes parallel, also normal zu (001).

¹⁾ O. Mügge, Radioaktivität als Ursache der pleochroitischen Höfe des Cordierites. C. M. 1907, pag. 397—399 und Radioaktivität und pleo-

chroitische Höfe. C. M. 1909, pag. 65, 113 und 142.

2) G. HÖVERMANN, Über pleochroitische Höfe in Biotit, Hornblende und Cordierit und ihre Beziehungen zu den a-Strahlen radioaktiver Elemente. N. J. f. M. Beil. Bd. XXXIV. 1912. pag. 312-400.

³⁾ H. Hirschi, Anregungen zur absoluten Altersbestimmung radioaktiver Gesteine der Schweiz. Heim-Festschrift. Viertelsjahrschr. d. Naturf. Ges. Zürich. LXIV, 1919, pag. 65 u. ff.

4) F. Weber, Über den Kalisyenit des Piz Giuf und Umgebung usw.

Beitr. zur geolog. Karte der Schweiz. N. F. XIV. Lieferung, Bern 1904.

Der Turmalin bildet bis 1 cm lange Porphyroblasten mit (1010) und (1120) in der Prismenzone und mit deutlicher Endbegrenzung. Seine Farbe ist fleckiggrün bis blaugrün. Zonarstruktur wird durch lokale, abwechselnd grün und blaugrüne Schalen hervorgerufen. Die Absorptionsfarben sind:

Seine Begrenzung ist gegen den Chlorit hin meist idioblastisch. Mit dem Albit hingegen ist er mit ausgefetzten, zackigen Rändern verwachsen. Turmaline, die ganz von Albit umschlossen werden, zeigen ein löcheriges Aussehen, hervorgerufen durch ein korrosionartiges Eindringen von Albit. Parasitäre Karbonatfetzen beteiligen sich an dieser Korrosion recht häufig. Im Gegensatz zu Woyno, der die Turmaline der Serizitalbitgneise als allothigene, detritische Relikte der sedimentogenen Gneise deutet, betrachte ich auch diesen Turmalin als authigen (Vergrösserung des Gesteinskorns, idioblastische Umrisse gegen den Chlorit hin). Die an der Grenze zum Albit zerfressen aussehende Umrandung des Turmalins erkläre ich mir durch nachträgliche, korrodierende Prozesse entstanden.

Die im Gefolge dieser turmalinführenden Gesteine auftretenden grobkörnigen Partien dürfen nicht mit den drusenartigen Bildungen verwechselt werden, die häufig den N 50° E streichenden Clivage-Klüften entlang verfolgt werden können.

III. Die Phyllite.

Wie ich bereits in der geologischen Übersicht bemerkte, sind die Phyllite im Gebiet zwischen Vingt-Huit und Lancey zu einem mächtigen Gesteinskomplex entwickelt. Stress scheint hier intensiver gewirkt zu haben als im Gebiet von Torrembey, womit auch das häufige Vorkommen heteroblastisch struierter Gesteinstypen mit Granat-, Sismondin-, Glaukophan- und Epidotporphyroblasten zusammenhängt. Die Phyllite zeigen immer eine deutliche Paralleltextur, bald in ebenschieferiger bis gefältelter, bald in mehr flaseriger Ausbildung. Ihr hochkristalliner Habitus erinnert besonders bei der letztgenannten Texturausbildung an Glimmerschiefer, doch ist ihnen durchgehend der typomorphe Mineralbestand der obersten Tiefenstufe Grubenmanns charakteristisch.

Nach ihrem Mineralbestand lassen sie sich in folgende Unterabteilungen gliedern:

- 1. Graphitoidphyllite,
- 2. Sismondinphyllite,
- 3. Sismondinglaukophanphyllite,
- 4. Glaukophanphyllite.

Die phyllitisch ausgebildeten Varietäten der Serizitquarzite lasse ich dabei ausser Betracht, da ihrer bereits bei den Serizitquarziten gedacht wurde, als deren serizitreichere und darum feinblätterige Ausbildungsform sie aufgefasst werden können.

1. Graphitoidphyllite.

Ihre Heimat ist ausschliesslich auf das Gebiet zwischen Vingt-Huit und Lancey beschränkt. Graphitoidführend sind z. B. die Phyllite, die an die Trias des Fensters von Vingt-Huit grenzen; zu wiederholten Malen begegnet man ihnen auch am Weg, der auf dem rechten Dranceufer zur Klubhütte von Chanrion führt, so z. B. ungefähr unterhalb des ersten "t" von Vingt-Huit, hier mit Graphitoidquarziten in Verbindung stehend, sowie bei der Brücke, die etwas südlich der Endmoräne des Durandgletschers über die Drance führt. Graphitoidquarzite übergehende und mit ihnen sowie mit Sismondinphylliten wechsellagernde Graphitoidphyllite traf ich mehrfach auch auf der Alpe de Boussine in den obersten Partien der Casannaschiefer. Es sind schmutzigbraun bis tiefblauschwarz anwitternde Gesteine, wobei die Verwitterung längs der Schieferungsfläche tief ins Gestein vordringt. ist darum sehr schwer, einigermassen frische Handstücke zu schlagen. Dies trifft hauptsächlich auf die wenig graphitoidführenden Nachbargesteine des Fensters von Vingt-Huit zu. Diese werden von dichtgedrängten Rutschflächen durchzogen, die ihrerseits von rotbraunen bis bronzefarbenen Zersetzungsprodukten überkleidet sind. Die Farbe des unverwitterten Gesteins wechselt mit dem lagenweise angereicherten Graphitoidgehalt und wird in den graphitoidreichsten Typen dunkelgrau bis schwarz. Die serizitreichen Lagen sind graphitoidreicher, die quarzreichen hingegen graphitoidärmer. Vereinzelt dem Gestein eingestreute Albitkörner verraten sich durch ihre glänzenden, bald schwarzen, bald wasserhellen Spaltflächen. Hellroter Granat lässt sich nur in kleinsten, kaum 1 mm erreichenden Kriställchen wahrnehmen. — Unter dem Mikroskop bildet der Quarz ein feinkörniges, mylonitartiges Mosaik von teils nahezu isometrischen, teils buchtig ineinandergreifenden Körnern. Kataklastische Erscheinungen zeigen sich bei

grösseren Xenoblasten in Form von wandernder Auslöschung und Sektorenteilung. Der Albit zeichnet sich durch seine porphyroblastenartige Grösse aus. Er ist nur akzessorisch. Gewöhnlich ist er von sigmoidartig gebogenen Graphitoidzügen durchsetzt, wodurch eine Art helizitischer Struktur im Sinne Weinschenks entsteht. Die Graphitoidzüge korrespondiren nicht mit den entsprechenden Graphitoidzügen der Serizit-Chloritlagen. Die Verlegungsphase des internen, relikten "Graphitoid"-inhaltes muss somit mit der Auskristallisation des Albites gleichzeitig, d. h. parakristallin im Sinne SANDERS sein (loc. cit. SANDER). Als ihre Ursache müssen Teilbewegungen im festen Gestein angenommen werden. Der Sericit durchsetzt oder umschmiegt in feinsten Häuten oder Wellenzügen die Quarzlinsen. Grössere Blättchen, die den Namen Muskovit verdienen, sind spärlich. Parallel der Schieferungsebene vordringende limonitische Lösungen färben die Serizitzüge rostbraun. Den Serizit begleitet in bald grösserer, bald geringerer Menge ein negativer, tief indigoblau polarisierender Pennin. Der Graphitoid durchstäubt die meisten Komponenten, markiert aber in erster Linie deren Ränder und durch parallel den Serizit-Chloritzügen eingelagerte Graphitoidschnüre auch die Texturebene. Der Gehalt an Graphitoid kann maximal bis zu 5% ca. ansteigen. Der Granat ist nur spärlich und dem Gestein in grossen Porphyroblasten eingesprengt. Risse, die ihn zahlreich durchsetzen, sind mit kleinschuppigem Pennin ausgefüllt. Die übrigen Über- und Nebengemengteile, wie Epidot, Turmalin, Apatit, Rutil und Erzreste, sind nur in den geringsten Mengen vorhanden und verdienen keine spezielle Bemerkung.

Unter dem Mikroskop trägt die Textur ein grösstenteils mechanisch schieferiges Gepräge, Kataklase herrscht über Kristalloblastese bedeutend vor. Die *Struktur* ist granoblastisch-nematoblastisch.

2. Die Sismondingranatphyllite.

Woyno hat für das mittlere Val de Bagnes die Sismondinphyllite nach ihrer texturellen Ausbildung in zwei Abarten unterschieden, nämlich in dünnschieferige und in grobschieferige bis flaserige Ausbildungsformen. Ähnliches gilt auch für das obere Val de Bagnes. Den Typus der dünnschieferigen Sismondinphyllite fand ich anstehend knapp nördlich des Glacier du Durand auf ca. 2150 m Höhe. Diese Gesteine zeichnen sich neben ihrer Ebenschieferigkeit durch eine Unmenge von kleinen, selten 1 mm Grösse übersteigenden, schwarzen Sismondinblättchen aus, die den Hauptbruch des Gesteins dicht übersäen. Da die Sismondinblättchen der Verwitterung einen grösseren Widerstand entgegensetzen als die übrigen Gemengteile, treten sie auf der angewitterten Gesteinsoberfläche deutlich aus dem quarzserizitischen Grundgewebe hervor. Bis erbsengrosse Granatkörner fehlen diesen Gesteinen nie, weshalb ich sämtliche als Sismondingranatphyllite bezeichne.

Flaserig texturierte Sismondingranatphyllite kenne ich als schmale Lagen vereinzelt aus den obersten Casannaschiefern beider Talseiten von Torrembey, aber stets nur in geringer Entwicklung. In grösserer Mächtigkeit finden sie sich südlich der untern Alphütten von Vingt-Huit. Südwärts fortschreitend beobachtet man hier ihren Übergang in Graphitoidphyllite und -quarzite, in Sismondinglaukophanphyllite und in Glaukophanite. Gegenüber den nur untergeordneten Phyllitvorkommen von Torrembey ist für diese Gesteine ein bedeutender Granatgehalt bezeichnend.

Der makroskopisch wahrnehmbare Mineralbestand dieser rostbraun anwitternden, auf frischem Bruch aber hellgrauen Gesteine besteht im wesentlichen aus Quarz, Serizit und Sismondin als Hauptgemengteile mit schwankenden Mengen von Chlorit, Granat und sporadisch auftretendem Turmalin. Für den flaserigen Sismondinphyllit von Vingt-Huit ist das stellenweise vollständige Aussetzen des Quarzes charakteristisch, für die angeführten ebenschiefrigen Gesteine hingegen das fast vollständige Fehlen von Chlorit.

Im Dünnschliff sieht man den Quarz in einzelnen Nestern angereichert oder bei quarzreicheren Typen als granoblastisches Grundgewebe, das von Serizit in helizitischen Windungen durchzogen wird. Ausnahmsweise tritt er fast ganz aus dem Mineralbestand aus. Lappige, buchtige Umgrenzung, unregelmässige bis plattige Ausbildung sind seine Haupteigenschaften. Seine Sprödigkeit macht ihn auch hier wieder zum Hauptträger der Kataklase, die bald nur in undulierender Aufhellung, bald aber auch in Drucksuturen und Mörtelkränzen zum Ausdrucke kommt. Der Serizit ist der Hauptgesteinsbildner der Sismondingranatphyllite. Mit abnehmendem Quarzgehalt der Gesteine geht er in äusserst feinschuppige bis fast dichte Ausbildungsformen über. Meist stellt ihn aber seine Entwicklung an die Grenze von Serizit und Muskovit und in Verwachsung mit dem Sprödglimmer ist er zu eigentlichen Muskovitblättchen individualisiert. Die feinschuppigen Serizite sind meist in dicht gedrängte Mikrofalten gelegt, die grösseren Blättchen

liegen als schmale Leisten zwischen den Quarzkörnchen und sind meist verbogen. Der Sismondin¹) bildet im Maximum bis 2 mm grosse Porphyroblasten, die zu einem grossen Teile parallel der Schieferung im Serizitgewebe liegen. Die Sismondinblättchen zeigen eine vollkommene Spaltbarkeit, nach (001) und eine weniger gute nach (101), ausserdem macht sich eine weitere Spaltrichtung in Form von einzelnen, unter ca. 120° sich schneidenden Rissen und Sprüngen bemerkbar, die wahrscheinlich (110) entsprechen. Andeutungsweise findet man auch eine schlechte Spaltbarkeit nach (010), deren Orientierung sich aus den optischen Verhältnissen ergibt. Im Dünnschliff sind diese beiden letztgenannten Spaltbarkeiten an Querschnitten durch deutliche Querrisse ausgeprägt, längs denen die Sismondinindividuen gern in einzelne Stücke zerbrechen. Im polarisierten Licht erweisen sich die Porphyroblasten in den meisten Fällen als durch Viellingsbildung entstandene Komposite. Die Zwillingsbildung geht anscheinend nach (001), wenigstens verläuft die Zwillingsgrenze annähernd parallel (001). Die \pm (001) geschnittenen Komposite bestehen aus mehreren bis vielen, geradlinig aneinandergrenzenden und oft gegenseitig auskeilenden Lamellen, deren Interferenzfarben abwechselnd höhere und tiefere sind. Die höheren entsprechen den mit grünen Tönen pleochoritischen Lamellen, die niederer doppelbrechenden hingegen den Lamellen mit grünblauen bis grüngelben Interferenzfarben. Wir haben somit das Absorptionsschema:

> a > b > c olivgrün grünlichblau grünlichgelb.

a und b, die sonst an den Sprödglimmern optisch ziemlich schwer zu unterscheiden sind, (vgl. Niggli²) pag. 24) lassen sich hier an Basisblättchen mit Hilfe der Absorptionsfarben leicht auseinanderhalten. Solche zeigen den schiefen Austritt der positiven spitzen Bisektrix eines bedeutenden Axenwinkels.

In Schnitten senkrecht zur Basis zeigen die mit blauen Tönen pleochoritischen Lamellen stets die grössten Auslöschungsschiefen. Es liegt somit die Symmetrieebene in den Absorptionsaxen grünlichgelb und grünlichblau, die Axen-

¹) Sismondin nenne ich den vorliegenden Sprödglimmer aus Analogie mit den vollkommen gleichartigen, nach Sismonda "Sismondin" genannten Sprödglimmern des Piemont.

²⁾ P. Niggli, Die Chloritoidschiefer und die sedimentäre Zone am Nordostrande des Gotthardmassives. Beitr. z. geol. Karte d. Schweiz. N. F. Lieferung XXXVI, Bern 1912.

ebene hingegen geht mit den Absorptionsaxen c und a parallel. Die Axendispersion ist deutlich $\rho > v$, die Bisektrisendispersion c: co > c: cv, der Unterschied (für gelb und rot) beträgt ca. 30-40. Die Doppelbrechung ist wenig höher als diejenige des Quarzes, nämlich 0,009-0,010 ca. Die maximale Auslöschungsschiefe, gemessen nach den basalen Spaltrissen, erreicht ca. 25°, in nahezu symmetrisch zueinander auslöschenden Lamellen, hingegen im Mittel ca. 13°. Die Lamellensysteme ein und desselben Kompositen zeigen öfters neben schwach schief bis gerade auslöschenden Lamellen (Orthopinakoidalschnitte) solche, deren Auslöschungsrichtungen zueinander einen Winkel von 30°-40° bilden. Wie schon Niggli (loc. cit. pag. 25) darauf aufmerksam macht, hängt dies mit der gegenseitigen Drehung der Zwillingsindividuen um 120° zusammen. Sanduhrstruktur ist nur schwach andeutungsweise vorhanden. Häufig geht der Sismondin mit Muskovit Parallelverwachsungen ein. Dasselbe gilt in noch höherem Masse vom Chlorit. So beobachtet man alle Formen von Doppelporphyroblasten mit wenig Chlorit bis zu solchen, in denen der Sismondin nur noch in reliktartigen Stücken grosse Chloritblätter begleitet. Im letzteren Falle möchte man fast an Chloritpseudomorphosen nach Sismondin, also an Umwandlungsvorgänge denken. Die Grossblätterigkeit des Chlorites spricht aber gänzlich gegen eine derartige Annahme und lässt derartige Verbandsverhältnisse eher als primär, d. h. als während der gleichzeitigen Entstehung der beiden Mineralien entstandene Verwachsungen erscheinen. — Der Chlorit zeigt die indigoblauen Interferenzfarben des Pennins mit positivem Zonencharakter. Kleine, stark lichtbrechende Einschlüsse rufen dunkelgrüne pleochroitische Höfe im Pennin hervor. Der Durchmesser derselben ist im Mittel 0.025 mm (vgl. auch pag. 126). Innerhalb des Hofes findet sowohl eine Erhöhung der Doppelbrechung als auch eine Änderung des optischen Charakters statt. Es tritt nämlich an Stelle des sonst positiven optischen Zonencharakters ein schwach negativer. In Gesteinen, in denen limonitische Infiltrationen eine Rolle spielen, breitet sich längs den Spaltrissen des Pennins ein stark licht- und doppelbrechendes, pleochroitisches Glimmermineral aus. Im polarisierten Licht erscheinen dann die indigoblauen Penninblätter wie von glänzenden Goldfäden parallel durchzogen. - Granat ist in allen zwischen Vingt-Huit und Lancey gelegenen Gesteinen der Übergemengteil katexochen. Gegenüber den meisten andern Gesteinen entwickelt er selten oder nie grössere Rhombendodekaeder, vielmehr ist hier die Kleinheit seiner Individuen bezeichnend. Zugleich mit dem Kleinerwerden erfahren diese eine zunehmende idioblastische Ausbildung. Gewöhnlich sind viele Granatkörnchen und Kriställchen auf einem relativ engen Raume vereinigt, so dass sie durch Zertrümmerung grösserer Körner entstanden scheinen, besonders wenn sie sich mörtelartig um ein grösseres, unregelmässig begrenztes Granatkorn scharen. Gegen ihren kataklastischen Ursprung spricht aber die scharfe kristallographische Begrenzung der kleinsten Individuen, sowie die Beobachtung, dass ganze Reihen von Serizit- und länglichen Erzeinschlüssen sowohl durch die zentral gelegenen grösseren Granatkörner als auch durch die sie umgebenden Ansammlungen kleinster Granatkriställchen ungehindert hindurchsetzen. Dies wäre bei einer nachträglichen Zermalmung grösserer Körner nicht möglich. Die Bildung dieser Granathaufwerke dürfte vielmehr als eine erste Phase der Porphyroblastenbildung angesehen werden. Der Granat ist im Dünnschliff mit blassrötlicher Farbe durchscheinend. Er ist vollkommen isotrop und zeigt nie optische Anomalien. Wie im Sismondin so sind auch im Granat gelbbraune Rutilsäulchen und opake Titanerzfetzen eingewachsen. Das Erz bildet ausserdem zerhackte, lappige Partien, die von einer dünnen Leukoxenrinde überzogen oder von breiten Titanomorphiträndern umsäumt werden. Titanitin wohlindividualisierten, spitzrhombischen Kriställchen wird nur in den Sismondinphylliten von Vingt-Huit in grösserer Verbreitung angetroffen. Apatit in grösseren, zerbrochenen Körnern und Zirkon in abgerundeten, gerollten Säulchen, sind hin und wieder anzutreffen. Orthit ist in den glaukophanfreien Sismondinphylliten nur sporadisch. Er bildet fetzenartige, rostig zersetzte Reste, deren Orthitnatur sich aus dem kaffeebraunen bis gelbbraunen Pleochroismus ergibt, sowie aus der grossen Auslöschungsschiefe nach einzelnen Spaltrissen und den gelegentlich im Serizit und Chlorit erzeugten pleochroitischen Höfen. Turmalintrümmer erscheinen nur selten. Kohlige Substanz (Graphitoid) reichert sich gegen die Graphitoidphyllite hin an.

Die kristalloblastische Reihe dürfte lauten: Rutil, Titanit, Granat, Sismondin-Muskovit-Chlorit-Serizit, Erze-Quarz.

Die Textur ist unter dem Mikroskop feingefältelt, helizitisch. Die Fältelung ist in den serizitreichen Typen sehr intensiv, in quarzreichern Gesteinen macht sie mehr einem mikrolentikularen Gefüge Platz. Das Strukturbild wird beherrscht durch die heteroblastische Ausbildung der einzelnen Komponenten, wobei Sismondin, Granat und eventuell Muskovit und Pennin als Porphyroblasten auftreten. Die Struktur ist

somit porphyroblastisch bei lepidoblastischem bis nematoblastischem Grundgewebe.

Durch Aufnahme von Albit gehen die Sismondingranatphyllite in Gesteine über, die den tonerdereichen Serizitalbitgneisen nahestehen. Zugleich tritt in den Mineralbestand auch Epidot ein, der den Sismondin zu verdrängen scheint. Wenigstens tritt der Sismondin mit der Zunahme der Kalksilikate rasch aus dem Mineralbestand aus. CaO wirkt somit auch hier "vergiftend" auf die Sprödglimmerbildung (vgl. Goldschmidt1). An Stelle des Sismondins tritt negativer Pennin, der nun die Rolle der Porphyroblasten übernimmt. Es ist in solchen Fällen oft schwer zu entscheiden, ob es sich um Penninphyllite mit akzessorischem Albitgehalt, oder um albitarme Chlorit-Serizitalbitgneise handelt. Solche Gesteine kenne ich aus den die Trias unterteufenden Casannaschiefern von Torrembey. Ich erwähne speziell derartige Vorkommen vom linken Ufer, die den Übergang von Sismondinphylliten über verschiedene Gneise zu Epidotchloritschiefern zeigen.

Gesteine, deren Granatreichtum sehr beträchtlich geworden ist, während der Sismondin zurücktritt bis fast fehlt, nähern sich eigentlichen Granatphylliten. Der Granat wird in ihnen ausnahmsweise bis haselnussgross. Aus beiden Fällen kann aber mit Deutlichkeit ersehen werden, dass sowohl Pennin als auch Granat vikariierend für den Sprödglimmer eintreten können.

3. Sismondinglaukophanphyllite.

Die typischen Vertreter dieser Gesteine stehen in dem bereits bei den Sismondingranatphylliten erwähnten Phyllitprofil von Vingt-Huit an (vgl. pag. 130). Grosse am Wege liegende Blöcke und Felsstücke führen uns diese Gesteine in all ihren verschiedenartigen Ausbildungsformen vor. In der Hauptsache handelt es sich um bunt anwitternde, grobschieferige Gesteine, die schon makroskopisch einen grossen Sismondinund Glaukophangehalt wahrnehmen lassen. Im nördlichen Teile des Phyllitprofiles von Vingt-Huit herrscht Sismondin über Glaukophan vor, in der südlichen Hälfte aber kehrt sich mit der Annäherung an die Glaukophanite das Verhältnis allmählich um, so dass man einerseits von Sismondinglaukophanund anderseits von Glaukophansismondinphylliten reden könnte.

¹) V. M. Goldschmidt, Die Kontaktmetamorphose im Kristianiagebiete, Kristiania 1911.

Die Sismondinabnahme führt hier aber nie bis zur Ausbildung selbständiger Glaukophanphyllite. Die Glaukophanund Sismondinporphyroblasten verleihen dem Gestein ein grobkörniges Aussehen. Erstere erreichen im Maximum bis 1,5 cm Kantenlänge, letztere bilden bis 1 mm dicke Blättchen, die sich, mit der Lupe betrachtet, gewöhnlich aus mehreren, öfters rosettenartig gruppierten Einzelindividuen aufbauen. In den glaukophanreicheren Typen erkennt man oft schon durch das unbewaffnete Auge eine deutliche Verteilung der dunkelblauen Glaukophanprismen auf die quarzreicheren Gesteinspartien und der glänzenden, schwarzen Sismondinblättchen auf die serizitischen Lagen. Der Granatreichtum dieser Gesteine tritt besonders auf der angewitterten Gesteinsoberfläche hervor. Diese erscheint von erbsengrossen, rotbraunen Granatkörnern häufig wie übersät.

Einen von dem eben angeführten texturell abweichenden Typus stellen die Sismondinglaukophanphyllite der Alpe de Boussine dar. Die feinschieferigen Gesteine von Boussine zeigen einen seidenglänzenden Hauptbruch, der schwach wellenfurchenartig gerippt und von zahlreichen, aber nur kleinsten Sismondinschüppchen bestreut ist. Glaukophan ist darin in grosser Menge, aber nur in mit der Lupe erkennbaren Prismen sichtbar. — Im Dünnschliff ergibt sich für die Glaukophansismondinphyllite ein Mineralbestand von Quarz, Sismondin, Glaukophan, Chlorit und Granat als Hauptgemengteile; Apatit, Eisenerze und Titanminerale als Nebengemengteile; Graphitoid, Orthit und Turmalin als Akzessorien. Chlorit und biotitartiger Glimmer treten als Zersetzungsprodukte des Glaukophans auf. Quarz verhält sich ähnlich wie in den Sismondingranatphylliten. Während er in grobschieferigen Typen bedeutende Körnergrösse und dementsprechend auch schöne Mörtelkränze zeigt, bevorzugt er in den feinschieferigen Abarten eine mehr plattige Ausbildung. Als Einschluss im Glaukophan ist er häufig. Serizit und Muskovit unterscheiden sich nicht von demjenigen der übrigen Phyllite. Um linsenförmige Quarzanreicherungen bildet der Serizit gerne Gleitfasern (im Sinne Beckes). In Verwachsung mit grösseren Orthitsetzen zeigt er die Erscheinung der pleochroitischen Höfe. Da aber die Orthitreste den Serizit an Grösse meistens übertreffen, machen sich seltener hofförmige als vielmehr nur partienweise Absorptionsunterschiede geltend. Die Absorptionsfarben sind dann:

$$c = b > a$$
 blassgelb farblos.

Eine Änderung im optischen Charakter oder in der Doppelbrechung konnte nicht nachgewiesen werden. Die Absorption im unbeeinflussten Serizit ist sehr schwach blassgelb farblos. Muskovitische Basisblättchen zeigen einen normalen Axenwinkel von ca. 60°. — Der Glaukophan ist in porphyroblastischer Ausbildung einzig auf die Phyllite beschränkt. Er erreicht hier die grössten Dimensionen, die je am Glaukophan der Casannaschiefer des obern Val de Bagnes beobachtet werden. Querschnitte von ca. 1 mm Durchmesser parallel der längeren Diagonale gehören nicht zu den Seltenheiten. An Grösse überragt er hier häufig den Sismondin, ausgenommen in den feinschieferigen Gesteinstypen, wo er feine, wohlbegrenzte Säulchen bildet. Die Porphyroblasten ordnen sich mit ihrer Längserstreckung fast ausnahmslos der Texturebene ein. Für Kataklase sind nur die grösseren Individuen empfänglich. Diese werden bisweilen durch parallel der c-Axe verlaufende Drucksuturen in mehrere quarzsektorenartige Lamellen zerlegt, von denen jede einzelne eine senkrecht zur Längsrichtung undulierende Auslöschung besitzt. Die gestaltliche Ausbildung des Glaukophans ist bedingt durch das Auftreten von (110) und gelegentlich (010). Eine terminale Begrenzung fehlt auch hier; bald brechen die einzelnen Säulchen ganz unvermittelt ab oder spiessen mit zwei oder mehreren Strahlen in die Quarzaggregate hinein, bald auch sind die Enden der Säulchen der Ort lebhafter Zersetzungsprozesse. Neben der vollkommenen Spaltbarkeit nach dem Prisma (110) zeigt der Glaukophan eine weniger gute nach (010) und ausserdem eine deutliche Querklüftung in annähernd basal verlaufenden, groben Rissen. Die optischen Eigenschaften sind die des gewöhnlichen Glaukophanes. Er zeigt meist eine ziemlich einheitliche Färbung und den Pleochroismus:

c > b > a hellblau violett . blassgelb bis farblos.

Die Auslöschungsschiefe beträgt meist c γ 12° ca., die Doppelbrechung 0,026 ca. Der Axenwinkel bewegt sich ziemlich konstant um 2 E = 68° ca. (Bestimmung mit dem Mikroskop). Änderungen im Axenwinkel oder in der Lage der Axenebene wurden im Glaukophan der Phyllite nie wahrgenommen. Parallel den Spaltrissen sind im Glaukophan hin und wieder Rutilsäulchen eingewachsen; in seinen grösseren Individuen wird er von tröpfchenartigem Quarz siebartig durchbrochen. Häufig erscheint er von staubförmig verteiltem Graphitoid

getrübt. Seltene Einschlüsse sind kleinste, in grünen Tönen pleochroitische Turmalinsäulchen mit trigonaler Endbegrenzung, sowie Orthitkörnchen mit pleochroitischen Höfen. Dieser Erscheinung begegnete ich nur in einem Gestein von Vingt-Huit. Die Höfe sind klein. Als grössten Durchmesser fand ich 0,06 mm, als Grösse des Einschlusses ca. 0,03 mm. Der Pleochroismus in den Höfen stellt sich als eine Verstärkung der Absorption des Glaukophanes dar, d. h. an Stelle der blauen und violetten Absorptionsfarben des Glaukophans erscheint stets ein schmutziges Grün, das parallel c seine grösste Intensität erreicht. Wir haben also:

b tiefgrün bis blaugrün grün farblos bis blassgelb. Die Auslöschungsschiefe wird um 2-3° ca. verringert, die Doppelbrechung um 0,003 ca. erhöht. Diese Erscheinungen stimmen ziemlich gut mit den Beobachtungen Hövermanns überein (siehe pag. 60 loc. cit.), die er an der mit RaBr bestrahlten Hornblende von Pargas machte. Sie decken sich auch mit den Ergebnissen der Experimente, die Mügge (s. pag. 60, loc. cit.) am Glaukophan von Syra anstellte. Mügge beobachtete den Übergang der blauen und violetten in gelbbraune Farbentöne bei gleichzeitiger Erhöhung der Doppelbrechung. Aus Glaukophangesteinen beschrieb erstmals KTENAS¹) pleochroitische Höfe im Glaukophan um Zirkon und nach ihm ebenso Mügge (loc. cit.) aus dem Glaukophanquarzit eines Geschiebes auf Gotland.

Grosses Interesse beanspruchen auch die Umwandlungsvorgänge am Glaukophan. Seine Umwandlungsprodukte sind Chlorit sowie tief- bis braungrüne glimmerige Substanzen, die dem Biotit nahestehen. Bei der Chloritisierung breiten sich feinste Chloritaggregate von Quer- und Spaltrissen aus parasitär in der Glaukophansubstanz aus, ohne dabei aber die Orientierung nach den Spaltrissen des Glaukophanes zu zeigen, wie wir sie bei den Chloritalbitpseudomorphosen der Glaukophan-Epidotalbitgneise zu sehen Gelegenheit hatten. Den Hauptort der Chloritisierung bilden die Endigungen der Glaukophanprismen. Hier bilden feinste Chloritblättchen faser- oder bartartige Ansätze. Mit zunehmender Chloritisierung gehen diese in Aggregate über, die an einen zarten Graswuchs erinnern, der aus dem Glaukophan üppig hervorzuspriessen scheint. Dieser Chlorit zeigt durchwegs das optische Verhalten des negativen

¹) A. Ktenas, Die Einlagerungen im kristallinen Gebirge der Kykladen auf Syra und Sifnos. T. M. P. M. Bd. XXVI, pag. 257. 1907

Pennins. Als Zwischenstadium zwischen dem Pennin und dem unzersetzten Glaukophan, z. T. auch selbständig, beobachtet man ab und zu ein biotitähnliches Glimmermineral. In seiner Aggregatform unterscheidet sich dieser vom Pseudomorphosenchlorit nicht, wohl aber durch seine intensiveren Absorptionsfarben:

$$c = b$$
 > a olivgrün, öfters mit bräunlichem Ton blassgelb

sowie durch die bedeutende Doppelbrechung. Ausserdem deuten auch vereinzelte, grössere Basisschnitte, die ein deutlich einachsiges, negatives Interferenzkreuz zeigen, auf einen biotitartigen Glimmer hin.

Oft beobachtet man den Fall, dass der helle Glimmer im Kontakt mit sich desaggregierendem, ausblassendem Glaukophan auf seiner Oberfläche eine feine Chagrinierung zeigt, die ganz an die dichtgedrängten Gänge des Holzwurmes erinnert. Die Ursache dieser Erscheinung liegt in einer krypto- bis mikrodiablastischen Verwachsung von Serizit bzw. Muskovit mit einem grün zu farblos pleochroitischen Glimmermineral. Ob es sich dabei ebenfalls um einen biotitartigen Glimmer oder aber um Chlorit (Leptochlorite?) handelt, konnte nicht ermittelt werden. Vielleicht kommt die Erscheinung durch einen "reaction rim"artigen Stoffaustausch zwischen Glaukophan und hellem Glimmer zustande. Neben diesen Umwandlungsprodukten sind vollständige Chloritalbitpseudomorphosen nach Glaukophan sehr selten.

Dem Pseudomorphosenchlorit sind hin und wieder feinkrümelige, hoch licht- aber nieder doppelbrechende Körnchen beigesellt. Es dürfte sich um eisenärmere Epidotmineralien handeln, an die sich der aus dem Strahlsteinmolekel des Glaukophans stammende Kalkgehalt band. Kleinste, blutrot durchscheinende Hämatitkörnchen und Flitterchen sind ebenfalls keine allzu seltenen Begleiter. Neben diesen Umwandlungserscheinungen tritt die Bildung der blaugrünen Hornblende stark zurück. Diese ist dieselbe wie in den Epidotalbitgneisen.

Der Sismondin ist derselbe wie in den Sismondinphylliten. In den grobschieferigen Gesteinstypen ist er stets in grossen Kompositen ausgebildet, in den feinschieferigen hingegen scheint nicht nur seine Grösse, sondern auch die Viellingsbildung stark reduziert zu sein. Demgemäss entwickelt er in letzterem Falle meist nur kleine, aus einem Einzelindividuum bestehende Blättchen. In direkten Schliffen zeigt er den Pleochroismus:

6 olivgrün pflaumenblau grünlichgelb.

Ebenfalls in dickeren Schliffen ist auch eine Sanduhrstruktur manchmal recht deutlich sichtbar. Längs- und Querschnitte zeigen die Sanduhrform lang und schlank, annähernd basale Schnitte dagegen kurz und gedrängt. Während bei Kreuzstellung des Polarisators mit den Spaltrissen des Sismondins die Sanduhrform nur schwach angedeutet ist oder fast ganz verschwindet, erreicht sie bei Parallelstellung das Maximum ihrer Sichtbarkeit. Auf Basisblättchen liegt die Längsrichtung der Sanduhrform parallel der olivgrünen Absorptionsfarbe, also parallel a. Sie besteht aus das Licht schwächer oder stärker absorbierenden Sektoren. Die Absorptionsunterschiede der einzelnen Anwachskegel scheinen also in erster Linie die Ursache des Sanduhrbaues zu sein. Mikroskopisch sichtbare, opake Einschlüsse, wie sie in dem von Niggli (loc. cit.) beschriebenen Chloritoid der Chloritoidschiefer des Tavetsch Sanduhrbau hervorrufen, sind hier auch mit der feinsten Vergrösserung nicht wahrzunehmen. Die Sanduhrstruktur muss demnach, wie bereits Goldschmidt (loc. cit.), Lehmann¹) und Pelikan2) nachgewiesen haben, nicht auf isomorpher Schichtung, sondern auf die Anwesenheit nicht isomorpher, submikroskopischer Stoffe zurückgeführt werden. Im allgemeinen ist der Sismondin ziemlich einschlussarm, neben wenigen regellos eingewachsenen Rutilsäulchen und Turmalinprismen findet man mitunter stark lichtbrechende, als Orthitepidot gedeutete Körnchen eingeschlossen, die im Glaukophan, Pennin und Serizit, nicht aber im Sismondin pleochroitische Höfe erzeugen. So kommt es, dass solche, an der Berührungslinie von Pennin mit Sismondin liegende Körnchen im anliegenden Pennin die bekannten Absorptionsverstärkungen hervorrufen, während im angrenzenden Sismondin nicht die geringste Spur davon zu sehen ist. Nur einmal schienen sich in einem dickeren Spaltblättchen um einen orthitartigen Einschluss hofartige Farben- und Absorptionsunterschiede bemerkbar zu machen. Die Sprödglimmer sind somit für radioaktive Strahlung weniger empfindlich, wie sich auch aus den Untersuchungen Mügge's (loc. cit.) ergibt. Die Rutileinschlüsse finden ihre genetische Erklärung darin, dass das zur Sismondinbildung notwendige Eisen aus dem anwesenden Titaneisen

O. LEHMANN, in Anal. physik. Chemie, N. F. Bd. 15.
 A. PELIKAN, Über den Schichtenbau der Kristalle. T. M. P. M. Bd. 16, pag. 1-64, 1896.

entnommen wurde, wobei der restierende TiO,-Gehalt als Rutil zur Ausscheidung gelangte. — Pennin, Granat, von Hämatit umsäumtes Magneteisen oder von Leukoxen überrindetes Titaneisen, sowie Rutil, Turmalin und Apatit kommen in ähnlicher Ausbildung vor wie in den übrigen Phyllitgesteinen. Spärlich erscheinen auch Karbonate in gut begrenzten Rhomboedern oder in abgerundeten Körnern mit reichlicher Ausscheidung von Ferriten. — Ein stets aber nur in sehr geringer Menge vorhandener Übergemengteil der Glaukophansismondinphyllite ist der Orthit. Seine unregelmässig geformten Körner zeigen ein stark zersetztes Aussehen. Die wenigen, wahrnehmbaren optischen Eigenschaften fanden bereits bei den Sismondingranatphylliten Erwähnung. Die Epidotränder sind nur schmal oder überhaupt nicht vorhanden. Häufiger hingegen gehen aus dem Zerfall des Orthites Haufwerke von nieder doppelbrechenden Epidotmineralien hervor, die von Erzpartikelchen und sonstigen unentwirrbaren Trübungsprodukten erfüllt sind. Die betreffenden Epidotminerale sind von kurzsäuliger Gestalt, besitzen graue bis tiefblaue Interferenzfarben und dürften am ehesten Zoisitsäulchen darstellen.

Die kristalloblastische Reihe lautet ähnlich wie bei den Sismondinphylliten: Rutil, Turmalin-Glaukophan, Sismondin, Granat-Muskovit, Chlorit-Serizit, Erze-Karbonat-Quarz.

Unter dem Mikroskop wird die grobschieferige Textur durch die flaserige Anordnung der blätterigen Komponenten sowie durch die nesterweise Verteilung des Quarzes hervorgerufen. Die feinschieferige Textur ist an die parallele Lage der Serizit-Chloritkomponenten geknüpft, in geringem Masse auch an die nach der Schieferungsebene abgeflachten Quarzkörner (Kristallisationsschieferung). In diesem letzteren Falle verlieren Sismondin und Glaukophan zusehends an Grösse und verlieren auf diese Weise den Charakter von Porphyroblasten unter gleichzeitiger totaler Einordnung in die Texturebene. Es kann dies als ein deutlicher Beweis dafür gelten, dass die Kristallisationsschieferung der Porphyroblastenbildung direkt entgegenwirkt, währenddem in den grobschieferigen bis gefältelten Phylliten im festen Gesteinsgefüge auftretende Differenzialbewegungen eine allmähliche Herausbildung der kreuz und quer gelagerten Porphyroblasten bewirkt haben. Serizitreiche bis quarzfreie Gesteinstypen erscheinen infolge der dichtgescharten Serizitfältchen helizitisch texturiert (im Sinne Grubenmanns). Die heteroblastische Struktur wird durch die "einsprenglingsartige" Ausbildung von Sismondin, Glaukophan, Pennin und Granat hervorgebracht. Die Porphyroblasten liegen in einem granoblastisch-lepidoblastischen, stellenweise sogar nematoblastischen Grundgewebe. Kataklastische Phänomene wurden bereits mehrfach erwähnt.

Die Analyse eines Sismondinglaukophanphyllites von Vingt-Huit mit einem geringen Glaukophangehalt ergab folgendes Resultat:

	Analysenwerte	MolProportion
SiO_2	60,70	70,94
TiO_2	1,60	_
$\text{Al}_2\tilde{\text{O}}_3\ldots\ldots$	19,18	12,94
$\mathbf{Fe_2^0O_3^0}$	1,93	
\mathbf{FeO} \dots	5,04	5,64
CaO		1,09
MgO	3,42	5,88
Na ₂ O	1,20	1,33
$K_2\bar{O}\ldots\ldots$	2,97	2,18
$H_2^{-}O$	2,90	
$CO_2 \ldots \ldots$	0,65	
	100,49	100,00
Werte nach Osann-Grubenmann		Projektionswerte
S = 70,94	n = 3.8	$\mathbf{a} = 6.5$
A = 3.51	m = 10,0	c = 2,1
C = 1.09	k = 2,0	f = 21.4
F = 11,52	M = 0.0	7 20.0
120	T = 8,34	$\mathbf{\Sigma} = 30,0$

Der hohe Wert von S ist auf den bedeutenden Quarzgehalt zurückzuführen. Die geringe CO₂-Menge stammt aus spurenartig auftretenden Karbonaten. Der geringe Glaukophangehalt findet im Na₂O seinen Ausdruck. Die grosse Tonerdeübersättigung, T = 8,34, entspricht dem sedimentogenen Charakter dieser Gesteine. Systematisch muss das Gestein in die zweite Gruppe Grubenmanns (Tonerdesilikatgneise) und speziell in die Familie der eigentlichen Phyllite eingereiht werden.

Die Sismondinglaukophanphyllite können ähnlich, wie dies Grubenmann und Woyno für die Serizitalbitgneise tun, als "polymikte Tuffite" aufgefasst werden, nur mit dem Unterschiede, dass der grössere Reichtum an Tonerdesilikaten der Sismondinglaukophanphyllite auf eine geringere Beimischung von Eruptivmaterial gegenüber den Serizitalbitgneisen hinweist.

4. Glaukophanphyllite.

Die hierher gehörigen Gesteine entsprechen teilweise dem Glaukophan-Muskovitschiefer Grubenmanns (Glaukophan-Serizitschiefer Woyno's), allerdings mit der Unterscheidung, dass die Glaukophanphyllite infolge des Fehlens des Albites einen Mineralbestand von vollkommen phyllitischem Charakter aufweisen. Ihr Fundort ist hauptsächlich das Gebiet von Lancey, wo sie als feingefältelte Zwischenglieder die Serizit-Glaukophanite und Phyllite miteinander verbinden. Bei den oberen Alphütten von Vingt-Huit (2210 m) beobachtet man ebenfalls diese Übergänge. Die Glaukophanphyllite sind hier aber nur wenig mächtig und oft auf nur wenige Zentimeter reduziert. Der Übergang von den Serizitglaukophaniten zu den Glaukophanphylliten vollzieht sich äusserlich ziemlich rasch durch das Auftreten von flachgedrückten Quarzlinsen mit muskovitischem Glimmer. Letzterer wird immer serizitischer und bildet schliesslich geschlossene Häute, in denen zahlreich Glaukophan- und Epidotporphyroblasten eingebettet liegen. Die bis 5 mm langen, ölgrünen Epidotstengelchen sind besonders schön auf der angewitterten Gesteinsoberfläche sichtbar. Mit zunehmender Annäherung an die Sismondinphyllite nimmt der Epidot sowohl an Grösse als auch an Menge rasch ab, wird akzessorisch und verschwindet endlich ganz. Nach seinem Verschwinden stellt sich sofort der Sismondin ein, der nun bestandsfähig zu sein scheint. Wir beobachten somit auch hier wieder diese Wechselbeziehung zwischen Sismondin und Epidot1).

Unter dem Mikroskop zeigen Quarz, Glaukophan, Epidot Serizit und Chlorit dieselben Eigenschaften wie in den bereits erwähnten Phylliten. Der Titanit nimmt gegen die Glaukophanite an Menge zu. Karbonate können sich in einzelnen Gesteinstypen stark anreichern und schieben sich einzeln oder zu Komplexen vereinigt lagenartig zwischen die übrigen Komponenten hinein. Dies deutet auf ihren primären Charakter hin. Das nur vereinzelte Auftreten von Drucklamellen nach $-\frac{1}{2}$ R (0112), die gelegentlich autoblastische Ausbildung sowie die öfters reichlich ausgeschiedenen Eisenoxyde (besonders Limonit und Hämatit) stellen die Karbonate in die Reihe Breunerit-Ankerit. Das Eintreten des Karbonates in den Mineralbestand, d. h. ein bedeutender CaO-Gehalt des Gesteins, scheint das Existenzfeld der Glaukophanphyllite gegen die Glaukophan-Sismondinphyllite hin zu erweitern, wenigstens erreichen karbonatführende Glaukophanphyllite eine grössere Mächtigkeit als karbonatfreie. — Die Akzessorien stimmen sowohl in ihrem Auftreten als auch in ihren optischen Eigenschaften

¹) Diese Tatsache dürfte einen wichtigen Anknüpfungspunkt für phasentheoretische Betrachtungen darstellen.

mit denjenigen der bereits behandelten Phyllite überein, sie bestehen aus den erwähnten Titanitkriställchen, wenig xenoblastischem Albit, seltenen Zirkonkörnchen, grösseren Körnern von Apatit, korrodierten Turmalinresten und Rutil als Begleiter von Titanerzresten sowie Pyritfetzen.

Die Struktur ist unter dem Mikroskop porphyroblastisch bei granoblastisch-lepidoblastischem Grundgewebe. Mit zunehmendem Glaukophangehalt, d. h. mit Annäherung an die Serizitglaukophanite wird sie zusehends homöoblastisch. Die Textur erweist sich als typisches Beispiel einer Kristallisationsschieferung nach dem Rieckeschen Prinzipe. Die Anordnung der blätterigen und stengeligen Komponenten erfolgt sowohl dimensional als grösstenteils auch kristallographisch parallel der Texturebene. Die grossen Chloritblätter sind mit ihren Basisflächen, die Glaukophanstengel hingegen mit der Längsrichtung und der längeren Diagonale der Querschnitte, also mit der b = und c = Axe mehr oder weniger parallel gerichtet. So kommt es dann, dass bei Parallelstellung von Polarisator und Texturebene neben den sattgrünen Absorptionsfarben des Chlorites in erster Linie die blauen und violetten Farbentöne des Glaukophans erscheinen. Bei Drehung um 90° treten neben den vorherrschenden gelben nur mehr vereinzelte violette Längsschnitte des Glaukophans auf, die dann meistens Schnitte normal zur spitzen Bisektrix a darstellen. Reichert sich der Karbonatgehalt im Gesteine stark an, so erhält es einen mehr massiggrobschieferigen Anblick und nähert sich dann stark einem karbonatreichen Glaukophanit.

Das Auftreten und der geologische Verband der Glaukophanphyllite ist korrelat demjenigen der Glaukophanepidotalbitgneise. Abgesehen von ihrem phyllitischen Habitus unterscheiden sie sich von den Glaukophanepidotalbitgneisen nur durch das Fehlen eines bedeutenden Albitgehaltes.

IV. Die Glaukophanite.

Glaukophanite nennt Grubenmann (loc. cit. pag. 200) dunkelblaugrüne bis dunkelblaue Gesteine mit Glaukophan und Epidot als Hauptgemengteile. Gesteine, die im wesentlichen dieser Zusammensetzung aus Epidot und Glaukophan entsprechen, können im obern Val de Bagnes nur in sehr beschränktem Umfange angetroffen werden. Weit zahlreicher aber sind Gesteine, die sich vorwiegend aus Glaukophan aufbauen, so dass sie meist tiefblau erscheinen, somit im wahren Sinne

des Wortes die Bezeichnung Glaukophanit verdienen. Unter diesem Sammelnamen fasse ich darum Gesteine zusammen, deren Hauptkriterium der Glaukophan als einziger Hauptgemengteil ist, eine Eigenschaft, die in gewissen Typen allein Pistazit und Zoisit mit ihm zu teilen vermögen, während in den Mineralbestand eintretender Serizit, Granat oder Karbonat dem Gestein wohl ein spezifisches Aussehen verleihen, stets aber nur die Rolle von charakteristischen Nebengemengteilen spielen. Dementsprechend unterscheide ich:

- 1. Zoisitglaukophanite,
- 2. Granatglaukophanite,
- 3. Serizitglaukophanite,
- 4. Pistazitglaukophanite.

1. Die Zoisitglaukophanite.

Den ersten Vertreter dieser eigenartigen Gesteine fand ich erratisch bei der Brücke über die Dranceschlucht nördlich der Alphütten von Pte. Chermontane. Das Gestein schien mir damals für dieses Gebiet wie überhaupt für die Casannaschiefer vollkommen fremdartig zu sein, erst als ich ca. 1 km südlich davon im Verbande mit Granat- und Serizitglaukophaniten derartige Gesteine anstehend fand, war der Beweis ihrer Zugehörigkeit zu den Casannaschiefern endgültig geliefert.

Das richtungslos massige Gestein erscheint auf den ersten Blick eher als ein unverändertes Eruptivgestein als zu den kristallinen Schiefern gehörig. Von graublauer Farbe zeigt es ein gleichmässiges, fein- bis mittelkörniges Gefüge, das nur ausnahmsweise die einzelnen Komponenten von blossem Auge identifizieren lässt. Mit der Lupe unterscheidet man als weitaus vorwiegendsten Gesteinsbildner graublaue Hornblende mit zwischengelagerten salischen Komponenten. Vereinzelte rötliche Pünktchen werden für Granat gehalten, spärliche gelbgrüne Körnchen deuten auf ein nur sehr untergeordnetes Auftreten des Pistazites. Die beim Betupfen des Gesteins mit verdünnter HCl stattfindende CO₂-Entwicklung verrät einen gewissen Kalzitgehalt.

Unter dem Mikroskop ergibt sich, dass Glaukophan und Epidotmineralien den weitaus grössten Anteil am Aufbau des Gesteins nehmen. Sehr wenig Albit und ganz vereinzelt auch Quarz füllen die letzten Zwischenräume aus. Als weitere Übergemengteile kommen ausserdem in Betracht: Granat, Chlorit und Serizit und als Nebengemengteile Titanminerale und Apatit.

Der Glaukophan stellt nicht etwa einheitliche Individuen dar, vielmehr ist er fast durchwegs mit einer grünen Hornblende homoax verwachsen. Diese letztere, aus der der Glaukophan hervorgegangen zu sein scheint, bildet unregelmässig begrenzte, kernartige Partien im Innern des Glaukophans, wobei aber der Glaukophan den weitaus grössten Raum einnimmt. Homogene Glaukophanindividuen überwiegen in einzelnen Gesteinspartien die Mischindividuen. Spaltbarkeit nach (110) und Absonderung \(\preceq\) c sind bei beiden gleich ausgebildet. Der Glaukophan charakterisiert sich durch seine blasse Färbung, was in der graublauen bis grünblauen Gesteinsfarbe zum Ausdruck kommt. Die beiden Amphibole lassen sich schon im gewöhnlichen Licht durch gegenseitig verschiedene Absorptionsfarben leicht unterscheiden, während das Absorptionsverhältnis bei beiden dasselbe ist.

```
 \begin{array}{c} \text{Glaukophan} & \text{Grüne Hornblende} \\ \mathfrak{a} \text{ blassgelbgrün bis farblos} \\ \mathfrak{b} \text{ blassviolett} \\ \mathfrak{c} \text{ blassblau} \end{array} \right\} \mathfrak{c} = \mathfrak{b} > \mathfrak{a} \left\{ \begin{array}{c} \mathfrak{a} \text{ blassgrün bis farblos} \\ \mathfrak{b} \text{ grün} \\ \mathfrak{c} \text{ grün bis bräunlich-grün} \end{array} \right.
```

Die approximativen Werte¹) der Doppelbrechung sind:

```
Glaukophan Grüne Hornblende \gamma - \alpha = 0.021 ca. \gamma - \alpha = 0.018 ca. \beta - \alpha = 0.019 ca. \beta - \alpha = 0.012 ca. \gamma - \beta = 0.002 ca. \gamma - \beta = 0.006 ca.
```

Aus dem Vergleiche der beidseitigen Werte ersehen wir, dass die Doppelbrechung des Glaukophans, abgesehen von Schnitten senkrecht zur spitzen Bisektrix, stets höher ist als diejenige der grünen Hornblende. Zugleich ersehen wir auch aus der Tabelle, dass die gegenseitigen Unterschiede der Interferenzfarben in Querschnitten sich in sprunghaften Änderungen ausprägen müssen, in allen übrigen Schnitten aber schiebt sich zwischen die blaue und grüne Hornblende eine mehr oder weniger breite Übergangszone ein, die die zwischenliegenden Interferenzfarben in ab- bzw. aufsteigendem Sinne zeigt. Die Auslöschungsschiefe ändert mit dem Grade der Umwandlung in Glaukophan, indem c γ der grünen Hornblende maximal bis 20° ca. erreicht und beim Glaukophan bis auf 4° ca. hinuntergeht. Der Glaukophan zeigt somit in jeder Hinsicht gastalditischen Charakter. Die Axenebene liegt bei beiden

¹⁾ Die Bestimmungen erfolgten nach der Farbentafel von MICHEL LÉVY-LACROIX.

Amphibolen parallelsymmetrisch und a ist die spitze Bisektrix. Der Axenwinkel kann beim Glaukophan schätzungsweise mit über 70° ca. angegeben werden, steigt aber bei der grünen Hornblende noch bedeutend. Die Dispersion der Axen ist $v > \rho$. Für die Frage nach den gegenseitigen Altersbeziehungen der beiden Hornblenden ist einerseits das kernartige Auftreten der grünen Hornblende und anderseits das reichlichere Vorkommen feinster Körnchen und Spindeln von Titanit und von wenig zahlreichen Rutilnädelchen im Glaukophan ausschlaggebend. Es deutet dies alles auf eine Umwandlung der grünen in die blaue Hornblende. Dadurch nämlich, dass sich aus der grünen Hornblende Titanit ausschied, wobei das CaO des Aktinolithmoleküles sich an TiO2 band, wurde die Hornblende relativ alkalireicher, sodass langsam eine Anreicherung des Glaukophanmoleküles (auf Kosten des Aktinolithmoleküles), stattfinden musste. Die grüne Hornblende selbst muss mit der braungrünen bzw. braunen Hornblende der Zoisitalbitamphibolite in genetische Beziehung gebracht werden. — Wo der Glaukophan an Albit grenzt, ist er randlich in eine strahlsteinartige Randhornblende umgewandelt unter gleichzeitiger Ausfaserung der Enden der Prismen. Der Pleochroismus dieser Hornblende bewegt sich zwischen bläulichgrün und blassgelblich, die Auslöschung liegt zwischen 10° und 15°. Die Polarisationsfarben sind auffallend nieder und leiten oft zu denjenigen des häufig daneben auftretenden Hornblendechlorites über. Für dieses Nebeneinanderauftreten der Aktinolithisierung und der Chloritisierung, das auch in den übrigen Gesteinen sehr oft zu beobachten ist, dürfte die Ursache in der Scheidung der Moleküle des Glaukophans in Aktinolithmoleküle und tonerdereiche Tschermaksche Moleküle gesucht werden. Während letztere sich chloritisierten, lieferten die ersteren die aktinolithische Randhornblende. - Wo nur Glaukophanindividuen aneinanderstossen, trifft man die Hornblendisierung des Glaukophanes nie, wohl aber untergeordnet eine schwache Chloritisierung. — Neben den Amphibolen müssen als die charakteristischsten und häufigsten Gemengteile die Epidotmineralien angeführt werden. Diese liegen in Form von Zoisit α und β , von Klinozoisit und von sehr wenig Pistazit vor. Während die Zoisite ihre Hauptverbreitung in den Gesteinen mit den oben beschriebenen Verwachsungshornblenden finden, herrscht hingegen der Klinozoisit in den glaukophanreichsten Gesteinstypen vor. — Der Zoisit β ist in zahlreichen, breitsäuligen Individuen im Gesteinsgewebe Seine Grösse kann im Maximum 5 mm erreichen, zerstreut.

wobei Breite und Länge gewöhnlich im Verhältnis von 1:2 bis 1:3 stehen. Die Umgrenzung ist parallel der Hauptzone scharf und geradlinig, die Endbegrenzung hingegen ist äusserst mangelhaft. Gewöhnlich dringen hier Nachbarmineralien bis tief in den Zoisit ein. Die auf diese Weise entstehenden Einbuchtungen können den Zoisit sogar in zwei scheinbar getrennte parallele Individuen zerlegen. An Spaltrissen bemerkt man sowohl solche parallel der Hauptzone, als auch dazu. Daneben treten unregelmässige Querklüfte auf. Von Färbung oder Pleochroismus kann nichts wahrgenommen werden. Die Auslöschung ist gerade. Der Charakter der Hauptzone ist negativ, in wenigen Schnitten positiv. Die Interferenzfarben sind normal und erreichen bei 0,04 mm Schliffdicke ein klareres Grau. Die Doppelbrechung ist somit 0,006 ca. In Schliffen \perp zur spitzen, positiven Bisektrix sinkt die Doppelbrechung beinahe auf 0,00, da der Axenwinkel kaum einige Grade beträgt. Die Axenebene verläuft \perp zur Spaltbarkeit, die Dispersion ist stark $\varrho > v$. Diese Spaltbarkeit identifizieren wir mit (100) nach Wein-SCHENK¹) oder mit (010) nach Termier²). Die β -Natur dieses Zoisits ist damit erwiesen. Bisweilen beobachtet man parallel der Hauptzone verlaufende Bänder mit blaugrauen Interferenzfarben. Wird ein solches Band \(\preceq\) zur spitzen Bisektrix angetroffen, so entspricht ihm eine tief lavendelblaue Interferenzfarbe. Der Axenwinkel ist grösser als beim Zoisit β und die Axenebene liegt den Spaltrissen nach (100) (im Sinne Weinschenks) parallel, also \(\perceq\) zu derjenigen des mitverwachsenen Zoisit \(\beta \). Ebenso ist auch die Dispersion umgekehrt, nämlich $v > \varrho$. Diese optischen Eigenschaften lassen keinen Zweifel übrig, dass es sich um den Zoisit a Weinschenks handelt. Beide Zoisite verwachsen somit parallel (100), wobei folgende Elastizitätsaxen einander entsprechen:

Zoisit β
ь
a
c

¹) E. Weinschenk, Die gesteinbildenden Mineralien, II. Auflage, Freiburg, 1911.

²) P. Termier, Sur une variété de zoisite des schistes métamorphiques des Alpes et sur les propriétés optiques de la zoisite classique. Bull. Soc. Franc. de Min. 1898, t. XXI, pag. 148—170.

P. Termier, Sur une association d'épidote et de zoisite et sur les rapports cristallographiques, etc. Extr. du Bull. Soc. Franc. de Min. 1900, pag. 6-20.

Unregelmässige Durchdringungen, wie bei den eisenhaltigen Epidotmineralien, kommen hier nicht zustande.

Neben diesen Zoisiten tritt noch Klinozoisit in oft fetzenartigen, formlosen Partien auf. Eine bessere Ausbildung (100) (001), (101) erlangt er nur, wenn er im Karbonat, Albit oder Klinochlor eingeschlossen ist. Mit Granat bildet er häufig Verwachsungen. Zwillinge nach (100), hin und wieder in Form schmaler Lamellen, sind nicht allzu häufig. Der optische Charakter ist positiv, der Axenwinkel ist sehr gross, die Axendispersion stark $v > \varrho$. Die Dispersion der Bisektrixen ist ebenfalls deutlich $c: av > c: a\varrho$. An Einschlüssen führt er nur Rutil und reihenweise angeordnete winzigste Körnchen von unbekannter Natur. Das reichlichere Auftreten des Klinozoisites in den glaukophanreichsten Schliffen spricht deutlich dafür, dass mit zunehmendem Fe $_2O_3$ -Gehalt des Gesteines an Stelle des fast eisenfreien Zoisites der Klinozoisit tritt.

Neben den genannten Mineralien nehmen die übrigen Komponenten quantitativ eine nur untergeordnete Stellung ein. Der Feldspat erweist sich stets als Albit bis Albit-Oligoklas. In Form von wasserklaren Xenoblasten greift er zwischen die einzelnen Gemengteile hinein. In Form rundlicher Körner hingegen bildet er vereinzelte Nester. Er führt nur wenig Einschlüsse, gelegentlich aber Gaseinschlüsse mit tanzenden Libellen. Quarz wird nur ausnahmsweise angetroffen, ebenso der Serizit. Häufiger ist ein Klinochlor mit einer Doppelbrechung von 0,006 ca. und deutlicher Bisektricendispersion $c: cv > c: c\rho$. Die Auslöschung ist seidenartig flaumig, $c\gamma = 3^{\circ}$ ca. Der Pleochroismus ist im Gegensatz zu demjenigen des meist angetroffenen Klinochlor stets sehr schwach von bläulichgrün zu gelbgrün. Der Axenwinkel ist klein. — Der Granat kommt nie zu Bedeutung. Er zeigt teils vollkommen idioblastische Ausbildung mit mannigfachen Einschlüssen, teils ist er mit Klinozoisit siebartig verwachsen. Apatit bildet rundliche Körner. Titanit kommt in Insekteneierform vor. Leukoxenhaufwerke sind seltener. Das Karbonat ist nur wenig gestreift, braust aber mit verdünnter HCl betupft stark auf. Es liegt also Kalzit vor.

Erze sind keine vorhanden. Die gegenseitige Ausbildung der Komponenten lässt folgende kristalloblastische Reihe aufstellen: Rutil, Titanit-Zoisit-Granat, Klinozoisit-Amphibole-Chlorit-Albit-Karbonat. Unter dem Mikroskop ist das Gestein texturell durch die vollständig richtungslose Anordnung der Komponenten gekennzeichnet. Die Struktur ist granoblastisch, hin und wieder blastogabbroid. Sowohl der ganze

Gesteinshabitus als auch die scheinbar proterogenen, grünen Hornblenden sprechen zur Genüge dafür, dass die Zoisit-glaukophanite nur eine höher metamorphe, natronreichere Facies der Zoisitalbitamphibolite darstellen (vgl. weiter unten pag. 183 u. ff.).

Die Analyse des Zoisitglaukophanites von Vingt-Huit hatte folgendes Ergebnis:

co Ligenino.		
	Analysenwerte	Molekularprozente
SiO ₂	47,10	56,19
TiO ₂	1,50	
$Al_2\tilde{O_3}$		14,01
Fe_2O_3		<u> </u>
FeO		8,17
MgO	2,67	4,63
CaO	10,60	13,12
Na_2O	2,56	2,82
K_2O	1,43	1,06
H_2^-O	1,75	· -
$C\bar{O}_2 \ldots \ldots$		
	100,83	100,00
Werte nach Osan	n-Grubenmann	Projektionswerte
S = 56,19	n = 7,26	$\mathbf{a} = 3.9$
A = 3,88	m = 8,11	c = 10,2
C = 10,13	k = 0.95	f = 15,9
$\mathbf{F} = 15,79$	M = 2,99	$\overline{\mathcal{Z} = 30.0}$
	T = 0,00	2 = 30.0

Von der Annahme ausgehend, dass das Karbonat grösstenteils schon vor der Metamorphose des Gesteins in demselben, vielleicht als Zersetzungsprodukt von CaO-Silikaten, anwesend war, habe ich von der Abrechnung einer dem CO2 äquivalenten CaO-Menge Abstand genommen. Der relativ hohe Wert für M könnte vermuten lassen, dass in den Hornblenden das Aktinolithmolekül vielleicht vorhanden ist. Ziehen wir aber den bedeutend hohen CO2-Gehalt mit in Betracht (Kalzit), so müssen wir vielmehr eine sehr CaO-arme Hornblende voraussetzen. Aus demselben Grunde ist auch anzunehmen, dass in der Hornblende ein bedeutender Tonerdegehalt steckt, da wir bei obenerwähnter Abrechnung eine beträchtliche Tonerdeübersättigung der Analysen erhalten würden. Diese würde im Vorhandensein Tschermak'scher Moleküle ihre Erklärung finden. Ähnliche Verhältnisse werden wir bei den naheverwandten Zoisitalbitamphiboliten antreffen. Nach der Systematik von Grubenmann (loc. cit. pag. 212) gehören die Zoisitglaukophanite in die IV. Gruppe (Eclogite und Amphibolite) und können somit füglich der Familie der Glaukophanite zugerechnet werden.

2. Granatglaukophanite.

Diese lasse ich auf die Zoisitglaukophanite folgen, da sie lokal das Zoisitglaukophanitvorkommen von Vingt-Huit begleiten. Sie sind daselbst als wenig mächtige und nur wenig beständige Bildung zwischen die Zoisitglaukophanite und Serizitglaukophanite eingeschaltet und können als Randfazies der Serizitglaukophanite aufgefasst werden.

Der typische Granatglaukophanit zeigt in einem grösstenteils massig gefügten, feinfilzig bis dicht erscheinenden, dunkelindigofarbenen Untergrund von Glaukophan bis 3 mm grosse "Einsprenglinge" von rotem Granat. Glaukophan und Granat nehmen somit den Hauptanteil an der Zusammensetzung der typischen Granatglaukophanite. Pyrit in kleinen Würfeln oder in unregelmässigen Fetzen ist da und dort eingesprengt. Das Mikroskop fügt dazu noch als weitere Über- und Nebengemengteile: wenig Albit und Karbonat, spärlich Epidot, Chlorit, Apatit und Leukoxen.

Der Glaukophan bildet über 70-80% des gesamten Gesteins. Seine Individuen sind richtungslos miteinander verwachsen, gelegentlich aber auch annähernd parallel orientiert. Die optischen Eigenschaften entsprechen denen des gewöhnlichen Glaukophans mit $c\gamma = 6-7^{\circ}$ ca. im spitzen $\not\prec \beta$ und einem grossen Axenwinkel von 2 E = 60-70°. Umwandlungserscheinungen in Chlorit sind wenig verbreitet. Der Granat findet sich in wohlbegrenzten Rhombendodekaedern unregelmässig im Glaukophangewebe zerstreut. Kleinste, rosa durchscheinende Kriställchen sind deutlich zu grösseren Porphyroblasten vereinigt, wobei man die Umrisse der einzelnen Kriställchen noch deutlich erkennen kann. Der Granat nimmt hin und wieder parasitäre Penninschüppchen, sowie Leukoxenstaub auf, öfters umwächst er auch den Glaukophan. Der spärliche Epidot ist ein schwach pleochroitischer Pistazit. Der Albit zeigt ausser in vereinzelten, das Gestein aplitartig durchziehenden Albitadern keine Zwillingslamellierung. Sein Auftreten ist nur ganz akzessorisch. Das Karbonat weist nur wenig Drucklamellen auf; wegen seiner leichten Angreifbarkeit durch verdünnte HCl dürfte es sich aber trotzdem um Kalzit handeln. Makroskopisch beobachtet man im Gestein mitunter grobkörnige Kalzitanreicherungen, die oft an sekundäre Infiltrationen erinnern. Der Apatit als getreuer Begleiter des Glaukophans fehlt auch diesen Gesteinen nicht. Mehrere Körnchen sind gewöhnlich nesterartig vereinigt. Der Pyrit zeigt im Dünnschliff öfters feine Ränder von Magnetit. Gewöhnlich aber ist er weitgehend limonitisiert. Die Titanitsubstanz kommt fast ausschliesslich in Form fetzen- bis schlierenartiger, getrübter *Leukoxen*haufwerke vor. Geringe, staubartige Reste des ehemaligen *Ilmenites* lassen sich darin immer nachweisen.

Texturell kommt unter dem Mikroskop durch die stellenweise Parallelorientierung der Glaukophanprismen eine wenig ausgeprägte Kristallisationsschieferung zustande. Diese vermag aber die makroskopisch massig erscheinende Textur nicht zu verwischen. Die Struktur ist porphyroblastisch bei feingranoblastischem Grundgewebe.

Diese Normalzusammensetzung der Granatglaukophanite kann schon in ein und demselben Handstück eine starke Abänderung erfahren. Bei Ersatz des Granates durch Serizit gehen sie in die Serizitglaukophanite über, durch Aufnahme von Albit und Epidot leiten sie zu grantführenden Glaukophanalbitschiefern über. Andererseits können durch Chloritisierung des Glaukophans chlorit- und albitführende Granatglaukophanite zur Entwicklung gelangen. Ein Gestein dieser Art lernte ich aus einem Geschiebe kennen, das der linken Seitenmoräne des Glacier du Mt. Durand entstammt. Das grobschieferige Gestein ist makroskopisch von dem eben behandelten normalen Granatglaukophanit durch einen mehr graublauen Farbenton unterschieden. Grösser wird der Unterschied erst im Dünnschliff. Blassrötliche, zerstreut oder lagenweise angeordnete Granat- und Pyritkriställchen liegen in einer bläulichgrünen "Grundmasse" von vorwiegend Glaukophan und dessen Umwandlungsprodukten: blaugrüne Hornblende und Chlorit. Daneben treten ferner auf: Albit, Apatit, ganz vereinzelt Epidot mit Orthitkern, Biotit und Serizit und schliesslich Titanerzreste mit Titanomorphiträndern und parallel der Schieferung ausgezogene Leukoxenschnüre.

Wo die Glaukophanprismen dicht aneinanderlagern, kann höchstens Chloritisierung Platz greifen, wo die Glaukophane aber in den Albit hineinspiessen, stellt sich überall blaugrüne Hornblende in feinsten Nadeln ein.

Der Granat ist im Kontakt mit Glaukophan streng idioblastisch; öfters aber ist er von Biotit-Chloritaggregaten umhüllt, die auf Kosten des Granates wachsen. Geht die Aufzehrung des Granates durch Biotit und Chlorit mehr oder weniger konzentrisch vor sich, so findet man schliesslich nur mehr einen geringen, korrodierten Granatrest, umgeben von einem Saum tiefgrüner bis braungrüner Biotitschüppchen, daran schliesst sich nach aussen eine Chloritzone und schliesslich kleine Albitkörnchen als äusserste Zone, die öfters noch die Umrissformen des ehemaligen Granates zeigen. Der Albitkranz ist nur selten gut sichtbar. Als Ursache darf eine zwischen Glaukophan und Granat wirksame Reaktion angesehen werden. Später bei den Granatalbitamphiboliten (vgl. pag. 166 u. 167) werden wir erneut Gelegenheit haben, auf derartige Granatumwandlungen einzugehen.

Diese beiden Umwandlungsphänomene, sowohl die Albit-Hornblende-Chloritbildung aus Glaukophan als auch die Albit-Chlorit-Biotitbildung z. T. aus Granat, zeichnen uns den Weg vor, auf dem wir von den Granatglaukophaniten zu den granatführenden Glaukophanalbitschiefern und von diesen zu den Granatalbitamphiboliten und schliesslich zu den Chloritalbitamphiboliten und Epidotchloritschiefern gelangen können.

Die Analyse des Granatglaukophanites von Vingt-Huit ergab folgende Resultate:

	Analysenwerte	Molekularprozente
SOi ₂	49,30	57,37
TiO_2	and the second s	_
$Al_2\tilde{O}_3 \dots \dots$	14,89	9,95
Fe_2O_3	2,88	<u> </u>
FeO		$13,04^{1}$)
CaO		5,98
MgO	5,25	8,95
Na ₂ O	4,18	4,59
$\mathbf{K_2}$ Ö	0,16	0,12
$H_2^{-}O$	2,10	
$C\tilde{O}_2 \ldots \ldots$	1,38	
	99,60	100,00
Werte nach Osan	n-Grubenmann	Projektionswerte
S = 57.37	n = 9.7	a = 4.3
A = 4,71	m = 9.67	c = 4.8
C = 5,25	k = 0.93	f = 20.9
$\mathbf{F} = 22,72$	M = 0.73	$\overline{\Sigma} = 20.0$
\$6 	T = 0.0	$\Sigma=30,0$

Das analysierte Gestein, dessen Pulver vor dem Gebläse zu einem schwarzgrünen, dichten und schwach magnetischen Glase schmilzt (hoher Eisengehalt!) zeigt ein Verhältnis von Na₂O: Al₂O₃, das demjenigen des analysierten Eisengastaldites ziemlich ähnlich ist. Tatsächlich steht das analysierte Gestein auch in allernächster Nähe des Serizitglaukophanites an, aus dem das Material des "Eisengastaldites von Vingt-Huit" stammt (vgl. weiter unten pag. 176 u. ff.). — Nach der Systematik

 $^{^{1})}$ Zieht man in Betracht, dass das Fe $_{2}\mathrm{O}_{3}$ im Glaukophan als isomorpher Vertreter des Al $_{2}\mathrm{O}_{3}$ auftritt, so sollte dementsprechend das Fe $_{2}\mathrm{O}_{3}$ nicht zum FeO, sondern zum Al $_{2}\mathrm{O}_{3}$ zugerechnet werden.

von Grubenmann kann der Granatglaukophanit als Bindeglied zwischen der Gruppe IV (Eclogite und Amphibolite) und der Gruppe VII (Chloromelanitgesteine) aufgefasst werden; er steht aber der ersteren Gruppe näher.

3. Serizitglaukophanite.

Im Glaukophanitprofil von Vingt-Huit (ungefähr beim "H" von Vingt-Huit) folgen auf die Granatglaukophanite die mehrere Meter Mächtigkeit erlangenden Serizitglaukophanite. Es sind dunkelblaue, massige bis verworren flaserige Gesteine, die sich fast nur aus Glaukophan und Serizit aufbauen. Dabei kann aber der Serizit bis auf verschwindend kleine Mengen zurücktreten, so dass Gesteine entstehen, die den Namen Glaukophanfels verdienen. Der stets, wenn auch oft nur akzessorisch, anwesende Serizitgehalt veranlasst mich aber, sowohl die serizitreichen als auch die serizitarmen Typen unter der Bezeichnung Serizitglaukophanit zusammenzufassen. Ausser den genannten Vorkommen von Vingt-Huit bilden Serizitglaukophanite lagenartige, kaum 1 m mächtige Einschaltungen in den Phylliten von Lancey und Boussine.

In einem Mitteltypus dieser Gesteine erscheint der Serizitgehalt in hellgrünen, silberglänzenden Putzen angereichert, die im dunkelblauen Glaukophangewebe oft ziemlich regelmässig zerstreut sind. Makroskopisch werden ausserdem noch würflige Pyritkristalle und Limonitpseudomorphosen nach solchen angetroffen. Unter dem Mikroskop bereichert sich diese monotone Gesteinszusammensetzung noch durch das Hinzutreten von wenig Chlorit, Epidot, Karbonat und ansehnlichen Mengen von Titanmineralien.

Die Glaukophanprismen, die zu grosser Feinheit herabsinken können, sind zu einem stellenweise ausschliesslich nur aus Glaukophan bestehenden Gewebe verfilzt. Diese Verfilzung feinster Glaukophannädelchen verschafft dem Gestein einen weichen Seidenglanz. In der gegenseitigen Orientierung der einzelnen Individuen kann ab und zu eine strenge Parallelität konstatiert werden. Der Glaukophan zeigt den gewöhnlichen Pleochroismus:

Die Auslöschung cy schwankt um 5° ca. Der Axenwinkel ist gross, die Axenlage parallelsymmetrisch. Der Glaukophan stellt sich chemisch als ein Eisengastaldit dar (vgl. pag. 178)

Die Serizitputzen geben sich unter dem Mikroskop als ein wirres Haufwerk kleiner, farbloser Serizitschüppchen zu erkennen. Sie sind häufig begleitet oder verwachsen mit Chlorit, der immer dem positiven Klinochlor angehört. Der Epidot ist nur sehr spärlich, gewöhnlich führt er einen graublauen, nieder doppelbrechenden Orthitkern. Die Titanmineralien sind wieder allverbreitet, sei es, dass sie uns in Form von winzigen Rutilnädelchen und Titanitkörnchen als Einschlüsse im Glaukophan entgegentreten, oder sei es, dass sie als Titanomorphitkränze oder als Leukoxenhaufwerke vorhanden sind. Wohlausgebildeter selbständiger Titanit ist selten. Der Purit ist öfters durch Limonitpseudomorphosen vollständig ersetzt. Der spärlich lamellierte Kalzit ist ganz unregelmässig im Gestein verteilt. Teilweise ist er sekundär infiltriert. Die Textur ist undeutlich kristallisationsschieferig bis wellenförmig gefältelt. Die Struktur ist feingranoblastisch bis schwach lepidoblastisch. In pyritreichen Partien kann durch die porphyroblastische Ausbildung des Pyrites eine heteroblastische Struktur hervorgerufen werden.

Der Serizitglaukophanit von Vingt-Huit wurde mit folgen dem Resultat analysiert (Nr. VIII):

	Analysenwerte	Molekularprozente
SiO ₂	53,00	61,87
TiO_2		
Al_2O_3		9,24
Fe_2O_3		
FeO		a 11,11
CaO	2,03	2,43
MgO	5,45	9,12
Na_2O		4,91
$\mathbf{K_2}$ Ö	1,87	1,32
$\mathbf{H}_{2}^{T}\mathbf{O}$	1,35	
$C\bar{O}_2 \ldots \ldots$	1,73	
	100,98	100,00
Werte nach Osa	nn-Grubenmann	Projektionswerte
S = 61,87	n = 7.9	a = 6.5
A = 6.23	m = 10,0	c = 2,5
C = 2,43	k = 0.99	f = 21,0
F = 20,23	M = 0.00	$\overline{\varSigma=30,0}$
	$\mathbf{T} = 0.58$	$\angle = 50,0$

Das Gesteinspulver schmilzt, wie dasjenige des Granatglaukophanites von Vingt-Huit, zu einem dichten, schwarzen bis schwarzgrünen, magnetischen Glase. Auch sonst zeigen die Analysenwerte eine ziemliche Annäherung an den Granatglaukophanit von Vingt-Huit (vgl. pag. 141). Grössere Unterschiede machen sich nur in den Werten für S, C. und n bemerkbar. Die Ursache dieser Differenzen muss grösstenteils (abgesehen vom höheren TiO₂-Wert der Serizitglaukophanite) im Ersatz des Granates durch Serizit gesucht werden, S wird so höher, n niederer. Der schwache Tonerdeüberschuss ist beim Zusammenauftreten von gastalditischem (Al₂O₂-reichen) Glaukophan und Serizit wohl begreiflich.

Das Gestein muss nach seiner chemischen Zusammensetzung zur VII. Gruppe (Chloromelanitgesteine) der Grubenmann'schen Klassifikation gestellt werden.

Abweichend von diesen normalen Serizitglaukophaniten zeichnen sich die Serizitglaukophanite von Lancey und von der Alpe de Boussine durch eine bedeutende Karbonatführung aus. Neben farblosem, durch verdünnte HCl leicht löslichem Karbonat, also Kalzit, beobachtet man darin auch bräunliche, durch verdünnte HCl nicht oder nur wenig angreifbare Karbonate der Ankerit-Breunerit-Sideritreihe. Zugleich mit den Karbonaten tritt häufig auch Pistazit in den Mineralbestand ein. In diesem Falle wird auch der Glaukophan Fe₂O₃reicher; seine Axenfarben werden intensiver und sein Axenwinkel geht bis in die Nähe von 0° herunter. Makroskopisch prägt sich dies in einem tiefdunkelblauen bis fast schwarzen Farbenton des Glaukophanes aus. — Der, wenn auch nur akzessorisch, so doch immer vorhandene Albit macht gegen die Phyllite hin einem zunehmenden Gehalt an undulösem Quarz Platz. Parallel damit wird der Chlorit penninartig, während er im typischen Glaukophanit eher dem Klinochlor zuneigt. wähnenswert sind noch die muskovitischen Glimmer. übrigen Komponenten sind dieselben wie in den Serizitglaukophaniten.

Die *Textur* erscheint als typische Kristallisationsschieferung. Die *Struktur* ist lepidoblastisch bis schwach poikiloblastisch.

Der Karbonatanreicherung scheinen innerhalb der Reihe der karbonatreichen Serizitglaukophanite des obern Val de Bagnes gewisse Grenzen gesetzt zu sein. Der Glaukophangehalt herrscht über die Karbonate stets weit vor, was auch in der durchwegs blauen bis blaugrauen Gesteinsfarbe zur Geltung gelangt. Demgegenüber beschreiben Grubenmann und Woyno Glaukophangesteine, die wegen ihres übergrossen Karbonatreichtums der Gruppe der Kalksilikatgesteine eingegliedert werden müssen. Derart karbonatreiche Gesteine scheinen auf den mittleren Teil des Val de Bagnes beschränkt zu sein.

4. Pistazitglaukophanite.

Diese Gesteine stammen aus dem Gebiet der Dranceschlucht vom Pte. Chermontane. Hier fand ich sie auf beiden Talseiten ob der Schlucht in engem Verband mit Crossit-Pistazitglaukophaniten und entsprechenden Epidositen, sowie mit Glaukophan- bzw. Crossitalbitschiefern. Sowohl makroskopisch als auch mikroskopisch entsprechen sie ziemlich den Glaukophanepidotgesteinen Grubenmann's und Woyno's.

Der typische Pistazitglaukophanit ist ein massiges Gestein, das nur hin und wieder eine schwache Andeutung von grober Schieferung zeigt. Die blaugrüne Gesamtfarbe des Gesteins weicht in vereinzelten, linsenartigen, oft auch ganz unregelmässigen Partien einer mehr grünen Gesteinsfarbe. Diese Partien entsprechen Anreicherungen von Epidot und tragen den Charakter von Glaukophanepidositen. Im allgemeinen aber zeigt das Gestein ob der Schlucht von Pte. Chermontane gegenüber den von Woyno beschriebenen Typen eine viel innigere Durchmischung der einzelnen Gesteinskomponenten. Eine lagenartige Trennung von Glaukophan und Epidot, wie z. B. im Gestein von der Brücke von Brussoney, kommt meist nicht zur Ausbildung.

Der makroskopisch wahrnehmbare Mineralbestand besteht aus reichlich Glaukophan, untermischt mit schwankenden Mengen von Pistazit, dazu gesellen sich zerstreute Albitkörner und wenig zahlreiche Serizitschüppchen. Der Chlorit erreicht nur selten makroskopische Grösse. Von ganz unregelmässigem Auftreten ist der Quarz, der sich teils linsen-, teils schlierenartig ansammelt. Ein schwaches Aufbrausen des Gesteins beim Betupfen mit verdünnter Salzsäure verrät die stete Gegenwart von Karbonaten.

Das mikroskopische Bild des Pistazitglaukophanites zeigt in den meisten Fällen das Vorherrschen des Pistazites. Seine mittlere Menge wurde nach der Methode von Rosival zu 45% ca. bestimmt. Grössere Körner erreichen Dimensionen bis zu 2 mm. Die Begrenzung ist im allgemeinen eine ziemlich schlechte. Während kleinere Individuen ab und zu noch einzelne Formen der Orthodomenzone erkennen lassen, zeigen die grösseren eher lappige Umrisse und bei zunehmender Verwachsung mit andern Komponenten eine schwache Andeutung von Siebstruktur. Charakteristisch ist für alle Individuen ein ausgesprochenes Tendieren nach der b-Axe. Die Spaltung nach (001) ist sehr vollkommen, während diejenige nach (010) sich nur in wenigen, gröberen Querrissen bemerkbar macht.

Zwillinge nach (100) sind nur bei den grösseren Epidotindividuen ausgebildet. Der Schalenbau des Pistazites ist stets sehr gut entwickelt. Schon an dieser Stelle sei auf die merkwürdige, regelmässige Assoziation der eisenreichen Pistazite mit dunkelgefärbten Glaukophanen hingewiesen (vgl. pag. 150). Kataklastische Einwirkung ruft in den grossen Epidotindividuen wandernde Auslöschung, Biegung und Zerbrechung hervor. Unter den wenigen Einschlüssen ist Glaukophan am häufigsten vertreten. Der Glaukophan bildet tiefgefärbte Prismen von sehr schwankender Grösse. Er reichert sich nesterweise an oder zieht in langen Zügen zwischen den Epidotkörnchen hindurch. Sein Pleochroismus ist:

Die Doppelbrechung wurde zu 0,021 ca. bestimmt, die Auslöschungsschiefe nach den prismatischen Spaltrissen zu 12° ca. Prüft man annähernd geradeauslöschende Schnitte nach (100) auf den Charakter der Hauptzone, so zeigen sie, wenn auch oft nur schwer erkennbar c in der Längsrichtung liegend. Randlich oder im Zentrum, seltener in unregelmässigen Schlieren, findet man ab und zu auch isotrope Partien oder auch solche mit negativem Zonencharakter. Die isotropen Partien erweisen sich im konvergenten Licht als negativ einaxig, während der Grossteil der Glaukophanschnitte mit Chz + einen geringen Axenwinkel mit parallelsymmetrischer Axenlage zeigt. handelt sich somit um homoaxe Verwachsungen von Glaukophan mit kleinem Axenwinkel mit einem einaxigen, blauen Natronamphibol, den ich jetzt und im folgenden infolge seines Übergangscharakters zum normalsymmetrischen Crossit als Glaukophancrossit bezeichne.

Grössere Glaukophansäulchen sind von tröpfchenförmigem Quarz durchsiebt, ebenso sind auch Erzpartikel und Rutilsäulchen in ihm eingewachsen. Die sonst so häufige Chloritisierung des Glaukophans bleibt bei den typischen Pistazitglaukophaniten auf die ersten Anfänge beschränkt. — Der auftretende Chlorit erscheint gewöhnlich in ziemlich homogenen Blättchen und unterscheidet sich dadurch von dem sekundären Glaukophanchlorit. Die optischen Eigenschaften sprechen für Klinochlor. Er ist häufiger mit Epidot als mit Glaukophan verwachsen. Der Serizit ist teils mit Chlorit verwachsen, teils liegt er regellos in dem die freigebliebenen Interstitien ausfüllenden Albit eingebettet. Bisweilen beobachtet man kleine Biotitschüppchen mit ihm verwachsen. Quarz ist nur akzessorisch

vorhanden. Grössere Quarzadern sind sekretionären Ursprungs. Unter den Titanmineralien kommt Titanit an die erste Stelle zu stehen. Im Chlorit liegend zeigt er fast ohne Ausnahme die spitzrhombische Kristallform; nur wo er in feinen Körnchen im Albit liegt, neigt er zur Insekteneierform. Zwillinge nach (001), ab und zu in unregelmässiger Verwachsung, sind sowohl bei grösseren Individuen als auch bei den kleinen spindelförmigen Kriställchen entwickelt. Während letztere oft getrübt und mit Leukoxenhaufwerken vergesellschaftet sind, zeichnen sich die grösseren Titanite oft durch grosse Reinheit aus. Die Axendispersion wurde bestimmt zu folgenden Werten:

Ta: 2 E = 39°20′ Na: 2 E = 42°15′ Li: 2 E = 45°10′

Der geringe Axenwinkel ist charakteristisch und soll nach Hintze¹) öfters auf dem nur geringen bis fehlenden Eisengehalt beruhen. Mit der Grösse seines Axenwinkels steht dieser Titanit noch am nächsten dem Titanit aus dem Zillertal (loc. cit. pag. 1613). Der Rutil in honiggelben Kriställchen ist meistenteils an die Gegenwart von Titanerzfetzen gebunden. In farblosen Nädelchen kommt Rutil im Albit und Quarz vor. Magnetit ist in kleinen Oktaederchen wohl erhalten. Grössere Limonitputzen scheinen aus der Zersetzung von Pyrit hervorgegangen zu sein. Karbonate in limonitisch getrübten Xenoblasten fehlen nie ganz. Mit Apatit, der abgerundete, seltener prismatische Körner bildet, ist der Bestand der Übergemengteile erschöpft.

Das Strukturbild ändert unter dem Mikroskop sehr rasch je nach der Verteilung der einzelnen Komponenten. In den Partien, die einer normalen Zusammensetzung entsprechen, also Pistazit und Glaukophan als hauptsächlichste Gesteinsbildner enthalten, ist die Struktur deutlich granoblastisch, bei ziemlich unregelmässigem Korn. Wo Serizit, Chlorit und Albit zahlreicher werden, kommt eine mehr poikiloblastische lepidoblastische Struktur zur Ausbildung. Die Textur ist gewöhnlich massig, seltener schieferig.

Als kristalloblastische Reihe ergibt sich: Erze, Rutil, Titanit-Epidot, Glaukophan-Serizit, Chlorit-Karbonat, Albit, Quarz.

Nehmen Glaukophancrossit und Crossit derart zu, dass sie weit über den Glaukophan vorherrschen, so gehen aus

¹⁾ A. Hintze, Handbuch der Mineralogie, Bd. II, pag. 1613.

den gewöhnlichen Pistazitglaukophaniten die crossitführenden Pistazitglaukophanite hervor. Diese sind mit den schon erwähnten Pistazitglaukophaniten im Terrain stets eng verknüpft. Ungefähr beim "a" von Pte. Chermontane trifft man einen mehrere Meter mächtigen Zug von Glaukophaniten, der in NE-Fortstreichen auch auf der rechten Talseite annähernd in gleicher Höhe ob der Dranceschlucht auf eine kurze Erstreckung hin verfolgt werden kann. Diese Glaukophanitvorkommen setzen sich hauptsächlich aus den schon oben beschriebenen Pistazitglaukophaniten, aus Pistazitcrossitglaukophaniten und entsprechenden Epidositen zusammen. Sie bilden gerne im Terrain vorspringende Felsen, die für die Zähigkeit und Widerstandsfestigkeit dieser Gesteine ein beredtes Zeugnis ablegen. In ihrer typischsten Ausbildung erscheinen sie auf dem linken Ufer der Drance. Ihr Mineralbestand stimmt im grossen und ganzen mit demjenigen der Pistazitglaukophanite überein.

Der Glaukophancrossit und der Crossit¹) zeigen im grossen und ganzen dieselbe Ausbildungsform wie der Glaukophan der Pistazitglaukophanite. In Querschnitten sind die prismatischen Umrisse sehr gut erhalten und zeigen zuweilen eine seitliche Abstumpfung nach (010). Die Spaltbarkeit nach (110), sowie eine grobe Querklüftung sind ausgeprägt. Der Pleochroismus des Crossites bewegt sich durchwegs in tiefen, blauen und violetten Tönen entsprechend dem Absorptionsschema:

Zentral, seltener randlich, sind die Absorptionsfarben häufig etwas tiefer. Die Intensitätsunterschiede gehen gewöhnlich fleckenhaft ineinander über, gelegentlich trifft man aber auch in Längsschnitten prismatisch geformte, in Querschnitten rhombenförmige, tiefergefärbte Kerne. Beobachtet man die betreffenden Schnitte im polarisierten Licht, so treten an Stelle der Farbenunterschiede deutlich wahrnehmbare Differenzen in der Doppelbrechung. Die verschiedenen Elastizitätsunterschiede wurden nach der Farbenskala von Michel Lévy-Lacroix bestimmt und die gefundenen approximativen Werte in der weiter unten folgenden Tabelle zusammengestellt. Aus diesen

¹) Sämtliche blauen Natronamphibole, bei denen b der Vertikalen am nächsten steht und deren Axenebene normalsymmetrisch liegt, bei vollständig schwankender Grösse des Axenwinkels, fasse ich zur Crossitreihe zusammen.

Werten ergibt sich mit Deutlichkeit die geringere Doppelbrechung der tiefer gefärbten Partien des Crossites. Parallel damit geht nun auch eine Änderung der Auslöschungsschiefe und des Axenwinkels. Die Auslöschungsschiefe zu den prismatischen Spaltrissen ergibt im Mittel 15° ca., steigt aber in einzelnen dunkleren Kernen bis 20° ca. Ähnlich verhält sich der Axenwinkel. Gelingt es, Schnitte \(\perp \) zur spitzen Bisektrix zu finden, so erweist sich die hellere Mineralpartie als deutlich einaxig. Schiebt man nun die dunklere Partie langsam über die Kondensorlinse hinweg, so öffnet sich kontinuierlich, seltener ruckweise, das Axenkreuz in normalsymmetrischer Richtung. Leider blieben die Axenbalken durchwegs stark verschwommen, so dass der maximal erreichte Wert nur schätzungsweise zu 40° ca. bestimmt werden konnte. Untersucht man Schnitte nach (100) im parallelen Licht auf ihre Doppelbrechung, so erscheint die randlich gelegene hellere Glaukophancrossitpartie nahezu isotrop, die dunklere Crossitpartie hingegen mit ganz geringer Doppelbrechung. Es ist dies der einzige Fall, wo die Doppelbrechung des dunkleren Crossites über diejenige des mitverwachsenen Glaukophancrossites erhöht ist. Der optische Charakter des Crossites ist stets negativ, der Charakter der Hauptzone je nach der Schnittlage bald positiv, bald negativ. Dies dient als Unterscheidungsmerkmal gegenüber Glaukophan, der in allen Vertikalschnitten positiven Zonencharakter besitzt. Die optischen Verhältnisse sind in der folgenden Tabelle zusammengefasst:

Glaukophancrossit	$\mathbf{Crossit}$
Chm —	Chm
Chz —	$ ext{Chz} \;\; \pm \;\;$
$c\beta = 15^{\circ} \text{ ca.}$	$c\beta = 20^{\circ} ca.$
$\gamma - \alpha = 0.016$ ca.	$\gamma - a = 0.015$ ca.
$\gamma - \beta = 0,000$ ca.	$\gamma - \beta = 0.001$ ca.
eta - a = 0.016 ca. 2 E = 0°	$\beta - \alpha = 0.014$ ca.
$2 E = 0^{\circ}$	2 E bis 40° ca. (meist aber
	nur wenige Grade).

Die grösseren Individuen der blauen Amphibole führen meistens Einschlüsse in Form zentral gehäufter, undulöser Quarztröpfchen. Auch eingelagerte Rutilsäulchen sind nicht selten. Umwandlungserscheinungen bestehen in der Hauptsache in beginnender Chloritisierung, viel seltener in der Hornblendisierung. Ausser feinen parasitären Penninschüppchen dringen auch kleinste Kalzitfetzchen in den sich umwandelnden Crossit ein. Gleichzeitig scheiden sich winzige Titanitkörnchen aus, die dem ursprünglichen TiO₂-Gehalt der Amphi-

bole entsprechen. Wo der Amphibol im Pistazit eingeschlossen ist, kann nie Umwandlung konstatiert werden. Der umschliessende Pistazit scheint somit für den Amphibol konservierend zu wirken. Diese Erscheinung beweist auch, dass die Chloritisierung und wahrscheinlich auch die Hornblendisierung erst nachträglich begonnene Umwandlungsprozesse darstellen. — Die Amphibolprismen sind gelegentlich auseinandergerissen und die Risse mit Chlorit wieder ausgefüllt. Die Assoziation von eisenreichen Natronamphibolen mit eisenreichem Epidot¹) ist für diese Gesteine sehr auffällig. Ich schliesse daraus auf wichtige paragenetische Beziehungen zwischen Crossit und Pistazit, besonders hinsichtlich des Fe₂O₃-Gehaltes.

Der Glaukophan tritt vikariierend für Crossit auf. Er bildet meist eine schmale Randzone um den Crossit, kann aber hin und wieder auch selbständig auftreten. Sein Axenwinkel ist stets nur sehr gering.

In der Ausbildung der übrigen Komponenten sowie hinsichtlich der Textur und Struktur gilt das bei den Pistazitglaukophaniten Gesagte.

In den crossitführenden Pistazitglaukophaniten kann sich der Epidotgehalt auf Kosten des Crossitgehaltes lokal derart anreichern, dass eigentliche *Crossitepidosite* mit annähernd massiger Textur entstehen.

Ihre epidotreichsten Grenzformen erreichen die Crossitepidosite in zähen, splitterigen Gesteinstypen, die mitunter einen fast reinen, grünen *Epidotfels* darstellen, meist aber durch lagen- bis schlierenartige Beimischung von milchigem Quarz, z. T. auch von Chlorit, ein unruhiges Aussehen erhalten. Die Pistazitindividuen erreichen darin öfters eine Länge von 2 und mehr Zentimetern.

Durch vermehrtes Auftreten des Chlorites und Albites gehen aus den Glaukophaniten die Glaukophanalbitschiefer hervor.

V. Die Glaukophanalbitschiefer.

Diese Bezeichnung gebraucht Grubenmann für Gesteine, die sich in der Hauptsache aus Glaukophan, Epidot, Albit, Chlorit und Serizit zusammensetzen. Der starke Albitgehalt

¹⁾ Nach einer mündlichen Mitteilung von Herrn Prof. BROUWER, Delft, sind auch die von ihm untersuchten crossitführenden kristallinen Schiefer von Transvaal und Niederländisch-Ostindien stets sehr pistazitreich.

ist dabei von wesentlicher Bedeutung¹). Wie alle Vertreter der Casannaschiefer im Val de Bagnes, zeigen auch die Glaukophanalbitschiefer eine grosse Neigung zur Bildung von Übergangsformen nach jeder Richtung. Überdies können sie auch, wenigstens teilweise, als auf dem Wege der Umwandlung aus Glaukophaniten hervorgegangene Gesteine aufgefasst werden. Die reiche Zahl der auftretenden Typen verlangt eine Gliederung der Glaukophanalbitschiefer in Untergruppen. Diese Gliederung erfolgt nach dem jeweiligen Auftreten charakteristischer Haupt- bzw. Übergemengteile und führt zur Aufstellung folgender Untergruppen:

- 1. Chlorit-Glaukophanalbitschiefer.
- 2. Granat-Glaukophanalbitschiefer.
- 3. Karbonat- und apatitreiche Glaukophanalbitschiefer.

1. Die Chlorit-Glaukophanalbitschiefer.

Diese stehen hinsichtlich ihrer Verbreitung an erster Stelle. Ihre zahlreichsten Vorkommen liegen im Gebiet zwischen Torrembey und Vingt-Huit. Hier findet man sie in schmalen, selten mehrere Meter erreichenden, linsenförmigen Einschaltungen in den Serizitalbitgneisen. Gegen das Innere solcher Linsen kann oft eine Anreicherung des Glaukophanes auf Kosten von Albit und Chlorit konstatiert werden und nicht selten wird der innerste Kern von Glaukophaniten eingenommen.

Der äussere Habitus der Chlorit-Glaukophanalbitschiefer ist wegen der stark schwankenden Mengenverhältnisse von Glaukophan und Chlorit kein genau umgrenztes, vielmehr umfassen diese Gesteine eine reiche Zahl von Typen, die im wesentlichen den Charakter von Übergangsformen von Glaukophaniten zu Epidotchloritschiefern tragen können. In den glaukophanreichsten Typen sind die Glaukophannadeln zu gegenseitig parallel gelagerten Büscheln vereinigt, die dem Haupt- und Längsbruch des Gesteins einen blauvioletten Seidenglanz verleihen. Dazwischen sind auf dem Hauptbruch

¹) Gesteine von diesem Charakter pflegt Woyno in teilweiser Übereinstimmung mit mehreren italienischen Autoren, wie Novarese, Franchi, Artini und Melzi usw., "Glaukophanprasinite" zu bezeichnen. Die von Kalkowsky erstmals für Grünschiefergesteine eingeführte Bezeichnung "Prasinit" scheint hier aber keineswegs am Platze, da die normalen "Glaukophanprasinite" (von $\gamma\lambda\alpha\nu\kappa\dot{\nu}_S=$ blau und $\pi\rho\dot{\alpha}\sigma\nu\rho\sigma_S=$ grün) nicht nur blaugrüne, sondern bei ihrer typischsten Ausbildung auch intensiv blaue Gesteine umfassen. Der Name Prasinit wird in der neueren Literatur immer mehr verlassen.

meist nur fettglänzende, tiefgrüne Chloritaggregate, muskovitische und serizitische Glimmer sowie vereinzelte Karbonate sichtbar. Letztere können aber auch vollständig fehlen. Auf dem Querbruch beobachtet man rundliche, helle Körnchen von Albit, die quasi in einem Grundgewebe von Glaukophan, Chlorit und wenig Serizit eingebettet liegen. Epidot ist makroskopisch nicht erkennbar, wohl aber Pyrit in kleinen hexaedrischen Kriställchen. Diese glaukophanreichen Typen besitzen eine ausgesprochene Lineartextur oder eine gute Schieferung. Mit Abnahme des Glaukophangehaltes nehmen Chlorit und Albit entsprechend zu, was eine schwache Änderung der Gesteinsfarbe nach blaugrün hervorruft. Die einzelnen Albitkörner werden nach und nach grösser und zugleich wandert der Glaukophan immer mehr in den Albit ein, so dass schliesslich ein Mosaik von bläulichem Albit mit einem zwischenliegenden blaugrünen Glaukophan-Chloritgewebe zustande kommt. Immerhin kommt dieses Mosaik hier selten so deutlich zur Ausbildung wie in den typischen Epidotchloritschiefern. Die makroskopische Textur dieser Gesteine ist grob- bis feinschieferig, flaserig und ab und zu scheinbar massig. Dass die stetige Abnahme des Glaukophangehalts schliesslich zu glaukophanfreien Epidotchloritschiefern führen muss, liegt auf der Hand. Auf diese Weise lässt sich in der Natur eine ganze Übergangsreihe von Glaukophaniten über Glaukophanalbitschiefer zu Epidotchloritschiefer verfolgen. Ja selbst an ein und demselben Vorkommen können bisweilen alle diese Übergänge in geschlossener Reihenfolge studiert werden.

Im Dünnschliff sind als wesentlichste Hauptgemengteile Albit, Glaukophan, Epidot und Chlorit vorhanden. Als konstante Nebengemengteile sind Apatit, Erze und Titanmineralien zugegen, während Serizit, Biotit, Karbonate und Quarz als Übergemengteile aufgefasst werden müssen.

Der Albit ist von sehr verschiedenartiger Ausbildung. In den glaukophanreichen Gesteinstypen sind die Albit-Partien aus zahlreichen Einzelkörnchen zusammengesetzt, Nimmt der Albitgehalt zu, so entwickeln sich die Albitkörner zu grösseren Xenoblasten. Ihr Albitcharakter ergibt sich oft aus schmalen, kurzen Albitlamellen mit maximalen Auslöschungsschiefen von 15°—19° oder auch aus der in allen Schnitten niederen Lichtbrechung gegenüber Quarz. Randlich wachsen die Nachbarmineralien bis tief in den Albit hinein und rufen auf diese Weise eine zerhackte, xenoblastische Umgrenzung hervor. Zugleich durchspicken den Albit zahlreiche Einschlüsse entweder in wirrer Anordnung oder in gebogenen und gefältelten Zügen.

Die makroskopisch sichtbaren Glaukophanbüschel bilden unter dem Mikroskop flantschenartige Anreicherungen von satt aneinanderstossenden Glaukophanprismen, die mitunter vollkommen parallel orientiert sind. Darum zeigen grössere Glaukophankomplexe gewöhnlich dieselben Absorptionsfarben. Die optischen Eigenschaften differieren stark. Ein normaler, homogen gefärbter Glaukophan mit einem Auslöschungswinkel von $c\gamma = 4-6^{\circ}$ und einem Axenwinkel von ca. 60°-70° scheint viel seltener zu sein als fleckige Varietäten, die mit zunehmender Intensität der Flecken die Auslöschungsschiefe auf 15° ca. und mehr erhöhen, den Axenwinkel aber bedeutend verkleinern. Einen dunklen Kern von einaxigem Glaukophancrossit oder zweiaxigem Crossit trifft man nur in wenigen Glaukophanalbitschiefern und dann nur sehr vereinzelt. Die Farbenänderungen gehen in ein und demselben Individuum meist fleckenartig, mitunter aber auch zonenweise vor sich. In dem letzteren Falle wird gewissermassen eine isomorphe Schichtung angedeutet. An Einschlüssen in dem Glaukophan sind zu nennen: Erzpartikelchen, parallel c eingelagerte Rutilnädelchen und vereinzelte Titanitkörnchen. Seltener sind rundliche Quarztröpfchen. Chloritisierung und Hornblendisierung sind in den glaukophanreichen Gesteinstypen sehr wenig verbreitet, nehmen hingegen in den glau-kophanarmen und chloritreicheren Typen naturgemäss einen breiteren Raum ein, da der Grossteil des Chlorites aus dem Glaukophan hervorgegangen ist. Die Chloritisierung geht aber nicht pseudomorphosenartig vor sich, wie wir dies hauptsächlich in den Epidotalbitgneisen gesehen haben. Es bilden sich vielmehr mehr oder weniger zusammenhängende Chloritaggregate, die oft nur noch blassblaue, im Chlorit verschwimmende Glaukophanreste enthalten. Von der ursprünglichen Form des Glaukophanes ist hingegen keine Spur erhalten geblieben. Der Glaukophanchlorit ist stets Klinochlor. Die in ihm eingeschlossenen Titanitkörnchen sind von dem CaOund TiO₂-Gehalt des Glaukophans abzuleiten. Wenn auch nicht in so ausgedehnter Weise, so doch fast nie fehlend und besonders an die Nähe von Albit gebunden tritt die Hornblendisierung des Glaukophanes auf. Die neugebildete Hornblende ist bald eine von dem Glaukophan scharf abgetrennte Randhornblende, bald auch grünt der Glaukophan langsam aus. Die in dem Albit eingeschlossenen Glaukophane lösen sich bei der Umwandlung öfters in zahlreiche feinste Nädelchen auf, die bald dem Glaukophan, bald auch bereits blaugrüner Hornblende entsprechen, sich kreuz und quer überlagern und

so eine Netzstruktur im kleinen erzeugen. Das gegenseitige Verhältnis der blaugrünen Hornblende zu den beiden Glaukophanvarietäten ergibt sich aus der nachfolgenden Zusammenstellung:

Pleochroismus	Doppelbrechung	Auslöschungs- winkel	Axen- winkel
Glaukophan, dunkle Varietät: $ \begin{array}{ccc} c & > \mathfrak{b} & > \mathfrak{a} \\ & \text{dunkelblau} & \text{violett} & \text{hellgelb} \end{array} $	$\gamma - \beta = 0.0009$,	$\left.\begin{array}{l} c\gamma = 15^{\circ} ca. \end{array}\right.$	unterhalb 30°
c > b > a	$ \gamma - a = 0.025, \\ \gamma - \beta = 0.003, \\ \beta - a = 0.022, $	$e\gamma = 6^{\circ}$ ca.	30-700
$\begin{array}{c} \text{blaugrüne Hornblende:} \\ c > b = a \\ \text{blaugrün sattgrün gelbgrün} \end{array} $	$ \begin{vmatrix} \gamma - a = 0.020 & , \\ \gamma - \beta = 0.003 & , \\ \beta - a = 0.017 & , \end{vmatrix} $	$\left. ight\}$ C γ $=$ 20 0 ca.	gross

Die durchwegs höhere Doppelbrechung der helleren Glaukophanvarietät führe ich auch hier auf eine Abnahme des Fe₂O₃-Gehaltes bzw. des Riebeckitmoleküles zurück, eine Eigenschaft, die ich als primär, d. h. bei der Auskristallisation des Glaukophanes entstanden erachte. Es darf jedoch nicht unerwähnt bleiben, dass eine Erhöhung der Doppelbrechung alpiner Hornblenden wiederholt auf Eisenaustritt aus denselben zurückgeführt werden konnte¹). Für die blaugrüne Hornblende hingegen könnte wegen der steten Nachbarschaft von Albit eine Tonerdezufuhr aus dem Albit geltend gemacht werden. Auf jeden Fall aber werden die optischen Eigenschaften der blaugrünen Hornblende, besonders aber der blaue Ton nach c, bedingt durch ein Vorherrschen des Glaukophanmoleküles gegenüber dem Aktinolithmolekül, worauf besonders das Verhältnis $(\beta - \alpha) > (\gamma - \beta)$ hinweist (loc. cit. HEZNER, pag. 180). Epidotmineralien sind in diesen Gesteinen stets zahlreich vertreten. In der Regel handelt es sich um isomorphe Verwachsungen von Pistazit und Klinozoisit, wobei der Eisengehalt gewöhnlich von innen nach aussen abnimmt. Rekurrenzzonen werden nur an den grössten Individuen wahrgenommen. Im Albit eingebettet bildet der Epidot die schönsten Beispiele für Siebstruktur. Findet er sich hingegen im Chlorit, so neigt er nicht nur zu stengeliger, in der Makrodomenzone gut begrenzter Ausbildung, sondern erreicht auch eine be-

¹⁾ L. Hezner, Petrographische Untersuchung der kristallinen Schiefer auf der Südseite des St. Gotthard (Tremolaserie), N. Z. f. M. 1909, pag. 180.

deutende, oft porphyroblastenartige Grösse. In gut geschieferten Gesteinstypen suchen sich seine Individuen mit ihrer Längsausehnung in die Texturebene einzustellen. Wo dies noch nicht ganz erreicht ist, greifen die Chloritzüge in bogenförmigem Verlaufe um sie herum, die einzelnen Stengel aber tragen dann die Merkmale der Kataklase. Diese offenbart sich bald in undulöser Auslöschung und vereinzelten Zerrungsrissen, bald auch in geknickten und entzweigebrochenen Stengeln. Aus dem gebogenen Verlaufe von Einschlussreihen ist ersichtlich, dass rotierende Teilbewegungen stattgefunden haben, die während der Ausscheidung des Epidots wirksam waren. Meist aber sind ihm die Einschlüsse, wie kleine Glaukophanprismen, Rutil, Titanit und Serizit ganz regellos eingewachsen. Der Chlorit besitzt in der Hauptsache die Eigenschaften des Klinochlors. Mitunter steigt die Auslöschungsschiefe cy bis auf 4° ca., wobei die einzelnen, zueinander um maximal 8° geneigten Zwillingslamellen deutlich zur Beobachtung gelangen. Pennin ist höchst selten zugegen und dann nur auf ganz schmale Blättchen beschränkt. Die Verteilung des Chlorites entspricht der Verteilung des ursprünglichen Glaukophanes. Dementsprechend begegnet man Glaukophanansammlungen mit randartig sich anschmiegenden Chloritpartien bis zu selbständigen Chloritflantschen mit eingeschlossenen Glaukophanresten. Für die grösseren, einschlussarmen Chloritblätter muss hingegen grösstenteils eine gleichzeitige Ausscheidung mit dem Glaukophan angenommen werden. Der Serizit erreicht an Menge nie den Chlorit. Wo er nur spärlich auftritt, liegen seine schlecht begrenzten Blättchen fast ausnahmslos im Albit. Ein meist nur sporadischer Gast ist der Biotit. In kleinsten, gelb zu oliv bis braun chroitischen Schüppchen begleitet er den Serizit und Chlorit und sucht in erster Linie die Nähe von Pistazit und Glaukophan. Karbonat ist sowohl als Kalzit als auch als Ankerit zugegen. Quarz in stets undulösen, rundlichen Körnern macht nur unbedeutende Mengen aus.

Unter den Nebengemengteilen stehen die Titanmineralien an erster Stelle. *Titanit* ist in grösseren idioblastischen Individuen durch Sammelkristallisation aus den den Chlorit begleitenden Titanitkörnchen entstanden. Grössere leukoxenartige Partien der Titanitsubstanz sind von zahlreichen Glaukophanprismen oft derart durchwachsen, dass der Titanit nur mehr eine Art Zwischenklemmungsmasse darstellt. Er zeigt einen schwachen Pleochroismus nach rötlichbraun, ab und zu auch Druckzwillingsbildung. In der leukoxenartigen Ausbildungsform ist er gerne von gelbbraunem *Rutil* in Körn-

chen oder kurz gedrungenen Säulchen haufenweise erfüllt. Mehrere Säulchen sind bisweilen drusenartig miteinander verwachsen. An der Verwachsungsstelle beobachtet man häufig noch einen geringen Rest des ehemaligen Mutterminerales, des Ilmenites. Das ganze aber ist von Titanomorphit umhüllt, ähnlich wie dies auch Schalch¹) beschreibt. Diese Art der Gruppierung der verschiedenen Titanminerale führt uns zum Schluss, dass aus dem ursprünglichen Ilmenit zunächst Rutil entstand, worauf sich dann durch CaO-Zufuhr die Titanitsubstanz bilden konnte. Dafür spricht auch der Umstand, dass in den in dem Leukoxen eingeschlossenen Glaukophanprismen meist nur Rutil, nie aber oder dann nur ausnahmsweise Rutil neben wenig Titanit als Einschlüsse vorkommen.

Grössere Rutilsäulchen lassen eine nur schwache Absorption O > E wahrnehmen. Als "Tonschiefernädelchen" finden wir den Rutil im Glimmer eingeschlossen. Der Apatit zeigt die gewöhnliche Körnerform. Unter den Erzen ist Pyrit in kleinen Kriställchen neben Titanerzfetzen noch am verbreitetsten. Magnetit ist in der Hauptsache nur auf schmale Säume um Pyrit beschränkt. In selbständigen Oktaedern lernen wir ihn erst in den glaukophanarmen bis -freien Gesteinen kennen.

Das mikroskopische *Texturbild* ist sehr wechselnd. Bei grossem Glaukophanreichtum entwickelt sich stets eine ausgeprägte Kristallisationsschieferung. Diese wird durch den allmählich sich immer stärker ausprägenden wellenförmigen Verlauf der Glaukophan- und Chloritglimmerlagen mehr und mehr flaserig. Andeutungen von helizitischer Fältelung kommen ab und zu dadurch zustande, dass die Mineralien der voralbitischen Phase (im Sinne Sanders) grössere Albitkörner in wellenförmigen Einschlussreihen durchziehen. Die *Struktur*ist in der Mehrzahl der Fälle lepidoblastisch-poikiloblastisch.

Die kristalloblastische Reihe ist die folgende: Rutil, -Glaukophan als Einschluss im Titanit, Titanit, Serizit-Epidot, Glaukophan-Chlorit, Biotit-Albit, Karbonat, Quarz.

Durch Aufnahme von Glaukophancrossit und Crossit in den Mineralbestand entstehen die *crossitführenden Chlorit-Glaukophanalbitschiefer*, die in ihrem Auftreten ganz an die Nähe der crossitführenden Pistazitglaukophanite geknüpft sind.

¹) F. Schalch, Die Amphibolite von Blatt Peterstal-Reichenbach usw. Mitteil. d. Grossh. Bad. Geol. Landesanstalt, Bd. III, Heft 2, 1895, pag. 235-und 236.

2. Granat-Glaukophanalbitschiefer.

Diese graugrünen bis graublaugrünen Gesteine werden auf beiden Dranceufern von Vingt-Huit bis gegen die Brücke hin angetroffen, die nördlich der Moränenwälle des Breneygletschers über die Drance führt. Ihr äusserer Habitus ist vollkommen verschiedenartig von den ihnen verwandten Chlorit-Glaukophanalbitschiefern. Im Handstück sind es grobschieferige, meist rostig anwitternde Gesteine, die in einem innig verfilzten Grundgewebe von Chlorit, Serizit und Glaukophan und wenigen salischen Komponenten zahlreich eingestreute, braun- bis blutrote Granatkörner und -Rhombendodekaeder erkennen lassen. Mitunter ist der Granat auch nesterartig angereichert. Ein nie fehlender Karbonatgehalt kann mittels verdünnter HCl stets nachgewiesen werden. Eine regelmässige Verteilung des Glaukophangehaltes, wie z. B. in den Chlorit-Glaukophanalbitschiefern wird nicht erreicht, ebensowenig ein Albitmosaik.

Unter dem Mikroskop treffen wir den Mineralbestand der Chlorit-Glaukophanalbitschiefer bereichert durch das Neuauftreten des Granates, ebenso sind auch Quarz und Serizit etwas zahlreicher vorhanden. Der Glaukophan ist im allgemeinen ziemlich schlecht begrenzt, nur in den quarzführenden Gesteinspartien ist er mehr oder weniger autoblastisch. Seine Grösse variiert zwischen einer Länge von 1-2 mm bis zu mikroskopischer Feinheit. Ebenso schwankend sind auch seine Mengenverhältnisse. Seine Umwandlung in blaugrüne Hornblende tritt in einzelnen Gesteinen stark zurück, in andern hingegen führt der Glaukophan im Kontakt mit Albit wieder eine Randhornblende. Sehr ausgesprochen ist seine Chloriti-In den guarzreicheren Partien ist der Chlorit, in diesem Falle negativer Pennin, merkwirdigerweise von limonitischen Karbonatsetzen begleitet, so dass wohl umgrenzte Karbonat-Limonit-Penninpseudomorphosen nach Glaukophan entstehen, öfters noch mit geringen Überresten von unzersetztem Glaukophan. Ausser diesen Umwandlungsarten beobachtet man vereinzelt auch die Neubildung eines gelb zu tiefoliv bis braun pleochroitischen Biotites. Der Granat bildet bald 1-2 mm grosse Rhombendodekaeder von blutroter Farbe oder aber mehr rotbraun gefärbte bis 5 und mehr Millimeter grosse Körner von meist unregelmässiger Gestalt. Ersteres ist in den biotitführenden, dunkleren, letzteres in den quarzführenden, helleren Gesteinstypen der Fall. Der Unterschied der beiden Ausbildungsformen des Granates ist

im Dünnschliff sehr ausgesprochen. Die makroskopisch blutrot gefärbten Granatrhombendodekaeder sind unter dem Mikroskop mit blassrötlichgelber Farbe durchscheinend. Die Randzone ist gewöhnlich farblos. Die Einschlüsse sind Serizit und Leukoxen. Bei Zuhilfenahme des Rot I. Ordnung lassen sich mitunter sehr schwach ausgeprägte optische Anomalien in oktaedrischen Feldern erkennen, was vielleicht auf Beimischung des Grossularmoleküles zurückzuführen ist. Es ist dies der einzige mir bekannte Fall von optischer Anomalie im Granat der Casannaschiefer des Val de Bagnes. Vor dem Lötrohr ist dieser Granat nur an den Kanten und sehr schwer schmelzbar, was als Folge seiner Eisenarmut angesehen werden kann. Die zweite Ausbildungsform des Granates ist im Dünnschliff nahezu farblos und mehr xenoblastisch, sei es, dass der Granat pseudopodienartig in die ihn begleitenden Quarzkörner hineingreift oder sei es, dass er von undulösen Quarzkörnchen erfüllt wird. Ist der farblose Granat idioblastisch entwickelt, so beobachtet man häufig in seinem Innern schmale ∞0-förmige Pigmentzonen, die auf ursprüngliche Anwachszonen hindeuten. Der Durchmesser des pigmentumsäumten Granatkernes beträgt ca. 0,3-0,4 mm bei einem Totaldurchmesser des Granates von 0,6-0,7 mm. Das Pigment wird durch feinsten Erzstaub gebildet, dem sich hin und wieder Rutilmikrolithen beigesellen. Glaukophan als Einschluss im Granat, wie wir dies bei den Granatglaukophaniten zu beobachten Gelegenheit hatten, fehlt hier völlig. Der Granat zeigt fast immer zwei senkrecht zueinander verlaufende Rissysteme, die an die Pyroxenspaltbarkeit erinnern. Mit der Zunahme des Albites tritt der Granat mehr und mehr zurück. Die Ausbildung der übrigen Komponenten: muskovitische Glimmer oft wechsellagernd mit penninartigem Chlorit, Epidotmineralen (Pistazit, Klinozoisit und Orthit), Albit, Quarz, Karbonate, Apatit, Turmalinreste, Titanomorphit und Limonit, bieten gegenüber denjenigen der Chloritglaukophanalbitschiefer nichts neues.

Die makroskopische *Textur* ist schwach kristallisationsschiefrig bis fast richtungslos massig. Die *Struktur* ist typisch porphyroblastisch, mit meist lepidoblastischem Grundgewebe. Kataklase ist in der Regel auf die undulös auslöschenden Quarzkörnchen beschränkt.

Die kristalloblastische Reihe stimmt mit derjenigen der Chlorit-Glaukophanalbitschiefer überein, nur nimmt der Granat die erste Stelle ein.

Die chemische Analyse eines Granatglaukophanalbitschiefers von Vingt-Huit, der im Verbande mit Zoisitglaukophanit vorkommt, ergab folgendes Resultat:

	Analysenwerte	Molekularprozente
SiO_2	. 48,80	59,33
TiO_2		-
$Al_2\tilde{O}_3 \dots \dots$		10,35
Fe_2O_3		**************************************
FeO		10,57
MnO		<u> </u>
CaO	. 6,05	7,45
MgO	. 4,14	7,14
$\widetilde{Na_2O}$		3,43
$\mathbf{K_2O} \dots \dots$		1,73
$ \text{H}_{3}^{2}\text{O} \dots \dots \\ \text{CO}_{2} \dots \dots $. \ 5.94	_
002		
	100,68	100,00
Werte nach (Osann-Grubenmann	Projektionswerte
S = 59,33	n = 6,65	a = 5,1
A = 5,16	m = 8.86	c = 5,4
C = 5.19	k = 0.97	f = 19.5
F = 19,97	$M = 2,26 \\ T = 0,0$	$\Sigma = 30,0$
	,-	

Die chemische Verwandtschaft mit den Zoisitalbitamphiboliten (vgl. pag. 161) und Zoisitglaukophaniten (vgl. pag. 133 u. ff.) ist unverkennbar. Der Wert für S hat entsprechend dem bedeutenden TiO₂-Gehalt (Titanit und Leukoxen) zugenommen. A ist auf Kosten von C bedeutend gewachsen; der Glaukophan zeigt darum die normale Intensität der Färbung. CaO hat ab-, FeO hingegen entsprechend zugenommen. Der Wert für n ist infolge des Auftretens von Serizit neben Chlorit relativ nieder.

In der Systematik Grubenmanns muss das Gestein an die Grenze zwischen die IV. Gruppe (Eclogite und Amphibolite) und die VII. Gruppe (Chloromelanitgesteine) gestellt werden. Das Verhältnis C > A stellt es der IV. Gruppe ein wenig näher.

3. Karbonat- und apatitreiche Glaukophanalbitschiefer.

Die im Verband mit den karbonatführenden Glaukophaniten von Vingt-Huit auftretenden Glaukophanalbitschiefer sind von eisenschüssigen Karbonaten oft ziemlich regelmässig durchtränkt. Die Karbonate sind durchwegs stark zerfetzt und bilden makroskopisch rostbraune Körnchen und Lagen. Unzersetzt erscheinende, hellbraun gefärbte Körnchen mit glänzenden Spaltflächen sind sehr selten und werden von verd. HCl nicht sichtlich angegriffen. Im Dünnschliff erweist sich das Karbonat als meist xeno-, seltener autoblastisch be-

grenzt und nur ausnahmsweise verzwillingt, aber stets erfüllt von rotgelb durchscheinenden oder opaken Ferriten, so dass Ferritpseudomorphosen nach Karbonat entstehen. Gewöhnlich aber sind die Ferrite nur längs den Spaltrissen ausgebreitet. Der *Glaukophan* zeigt gewöhnlich einen guten Schalenbau. Der übrige Mineralbestand ist mit demjenigen der Glaukophanalbitschiefer identisch.

A patitreiche Glaukophanalbitschiefer traf ich als lokale Randfazies von Glaukophanalbitschiefern, die auf einer Höhe von 2230 m ca. südlich ob Torrembey anstehen. Der Apatit herrscht hier unter den hellen Gemengteilen bei weitem vor. Er sammelt sich meist in mehrere Zentimeter breiten und langen unregelmässigen Nestern an, die schlierenartig in das Gesteinsgewebe hineingreifen und auch dieses teilweise erfüllen. Die Apatitnester bestehen zu ca. 80% aus Apatit. Die chemische Prüfung ergab, dass es sich um Chlorapatit handelt (Ca₅(PO₄)₃. Cl). Unter dem Mikroskop bildet der Apatit aus rundlichen Individuen zusammengesetzte Körneraggregate. Gewöhnlich ist er durch Einlagerung feinster Rutilsäulchen und Erzteilen bestäubt. Quarz gesellt sich dem Apatit gerne bei, während der Glaukophan die Apatitnester vollständig meidet. Der Glaukophan zeigt einen mittleren bis sehr kleinen Axenwinkel. Daneben treten rostiger Epidot und Albit auf. Letzterer erscheint häufig in Form des Serizit-Albites (vgl. pag. 105 u. ff.) Klinochlor und Serizit, der bald an Albit gebunden ist, bald auch den Apatit begleitet, können als Übergemengteile aufgefasst werden. Hellrötlicher Titanit, honiggelber Rutil mit Titanomorphit sind die spärlichen Nebengemengteile.

Die *Textur* ist ungleichmässig massig bis flaserig-schieferig, die *Struktur* granoblastisch bis poikiloblastisch.

Der Apatitreichtum des vorliegenden Gesteins kann mit primärem Endokontakt in ursächlichen Zusammenhang gebracht werden.

VI. Albitamphibolite.

Unter diesem Sammelnamen vereinige ich eine Anzahl von Gesteinen, die sich in der Hauptsache aus der Kombination Amphibol, Epidot bzw. Zoisit und Albit aufbauen. Innerhalb dieser Dreierkombination können sowohl in der Natur der einzelnen Hauptkomponenten als auch in deren gegenseitigen Mengenverhältnissen bedeutende Schwankungen auftreten. Der Amphibol ist in erster Linie durch bräunliche und blassgrüne bis blaugrüne Hornblendevarietäten vertreten. Glaukophan

übernimmt ganz die Rolle eines Nebengemengteiles. Nach dem jeweiligen Mineralbestand unterscheide ich:

- 1. Zoisitalbitamphibolite.
- 2. Granatalbitamphibolite.
- 3. Chloritalbitamphibolite.

1. Die Zoisitalbitamphibolite.

Während sich einerseits die typischen Zoisitamphibolite im allgemeinen durch die Anwesenheit eines Plagioklases mit bedeutendem Anorthitgehalt charakterisieren und anderseits die Albitamphibolite als einzig auftretenden Feldspat Albit neben Hornblende und eisenhaltigem Epidot führen, beschreibe ich im folgenden eine Gesteinsgruppe, deren Mineralbestand zwischen den Zoisit- und Albitamphiboliten eine Mittelstellung einnimmt, als Zoisitalbitamphibolite. Von den typischen Zoisit-amphiboliten unterscheidet sie das vollständige Fehlen eines basischeren Plagioklases als Albit, eine Eigenschaft, die sie aber mit den Albitamphiboliten gemeinsam haben. Dafür verbindet sie aber mit den Zoisitamphiboliten der grosse Reichtum an Zoisit und Klinozoisit, was sie in Gegensatz bringt zu den Albitamphiboliten.

Die Vorkommen dieser Gesteine sind sehr beschränkt. Ich kenne sie nur von zwei Punkten anstehend. Der eine Fundort liegt ca. 100 m südlich den untersten Alphütten von Vingt-Huit zwischen dem Wege nach Chanrion und der Drance. Die Zoisitalbitamphibolite bilden daselbst eine ca. 10 m mächtige, den dortigen Phylliten unvermittelt, aber konkordant eingeschaltete Einlagerung, die gegen den rechten Talhang hin schnell unter Gehängeschutt und Bergsturzmaterial verschwindet. Das zweite Vorkommen liegt linksuferig im Verbande mit den Zoisitglaukophaniten, die vom überhängenden Fels beim zweiten "t" von Vingt-Huit auf das linke Dranceufer hinüberstreichen.

Es sind graugrün gesprenkelte, mittel bis grobkörnige Gesteine von vollkommen massiger Textur und mehr oder weniger ausgeprägter blastophitischer bis blastogabbroider Reliktstruktur, so dass man auf den ersten Blick an ein nur schwach metamorphes Eruptivgestein denken möchte.

Als Hauptgemengteile ergeben sich unter dem Mikroskop Hornblendemineralien neben Zoisit und Klinozoisit in verschiedenen Mengenverhältnissen sowie wenig zahlreicher Albit. Die Übergemengteile sind: Karbonate, Chlorit, Serizit und Quarz. Als einziger Nebengemengteil tritt Titanit auf. Die Hornblenden nehmen den weitaus grössten Anteil am Gesteinsgewebe. Sie können bis Dreiviertel der Schlifffläche einnehmen. Nach Farbe und Pleochroismus können verschiedene miteinander verwachsene Hornblendevarietäten unterschieden werden, die gewöhnlich zu zweien ein Gesamtindividuum aufbauen. Die verschiedenen Varietäten sind:

Braune Relikthornblende Blassgrüne Hornblende Blassblaue Hornblende
c tiefbraun c graugrün b. bläulichgrün c schwach blassbläulich
b gelbbraun b hellgelbgrün b schwach blassviolett
a schwach schmutziggrün a farblos b. blassgelblich a farblos

$$c>b>a$$
 $c=b>a$ $c=b>a$ $c>b>a$ $c=b>a$ $c>b>a$ $c>b>a$ $c>b>a$ $c=b>a$ $c=a$ $c=a$

Quantitativ kommt in erster Linie die blassgrüne Hornblende in Betracht. Ihre in einzelnen Handstücken bis 5 mm im Durchmesser erreichenden, kurzprismatischen bis fast isometrischen Individuen sind makroskopisch tiefgrün gefärbt und lassen breite, glänzende Spaltflächen wahrnehmen. Unter dem Mikroskop sind sie nur mit blassgrünen Farben durchscheinend. Dies möchte uns vielleicht veranlassen, in ihnen uralitische Hornblenden zu erblicken. Das Vorhandensein von kernartig in ihnen eingeschlossenen Relikten einer braunen Hornblende sowie das vollständige Fehlen von Pyroxenmineralien im Schliff schliessen jedoch die Uralitnatur dieser Hornblende aus. Die Gestalt der blassgrünen Hornblende ist breit und verrät nur untergeordnet ein Tendieren nach der c-Axe. Die Umgrenzung ist fast durchwegs xenoblastisch. Eine vermutlich parallel zur Basis verlaufende Querklüftung ist gut ausgeprägt. Zwillinge nach (100), deren optische c-Richtungen ca. 30° zueinander geneigt sind, werden mitunter angetroffen. Die Auslöschungsschiefe cy ist 15° ca. im stumpfen Winkel β , gemessen in Schnitten \perp zur optischen Normalen. Die Hornblende zeigt Erscheinungen intensiver Druckwirkung. Gelegentlich wandert die undulöse Auslöschung \(_{\text{c}} \) über die Hornblende hinweg oder sie ist | c in zahlreiche, gegenseitig wenig verschobene Nadeln aufgelöst. Auf Querschnitten gehen dann die wandernden Schatten vom Zentrum aus, und die einzelnen Spaltrhomben sind gegenseitig ausgerenkt als eine Folge von Torsionsbewegungen innerhalb der betreffenden Individuen. Über die chemische Beschaffenheit dieser Hornblende gibt uns die Gesteinsanalyse einigermassen Aufschluss (vgl. Diskussion des Analysenergebnisses pag. 166). Sie ist vermutlich sehr CaO-arm und charakterisiert sich durch das

Auftreten tonerdereicher Tschermak'scher Moleküle neben den gewöhnlichen Metasilikaten, sowie durch ihren Alkaligehalt. Sie dürfte darum der gemeinen grünen Hornblende sehr nahestehen. Wie sich aus dem Dünnschliff ergibt, ist sie das Umwandlungsprodukt einer primären, braunen Hornblende, die nur mehr in vereinzelten, geringen Relikten vorhanden ist. Die Relikthornblende zeigt alle Übergangsstadien von noch gut erhaltenen Resten mit dem oben angeführten intensiven braunen Pleochroismus bis zu Resten, die nur noch erzbestäubte Partien innerhalb der blassgrünen Hornblende darstellen. In der Regel macht sich die Ausgrünung zuerst bei den Absorptionsfarben nach b bemerkbar, darauf auch in denen nach c. Das Absorptionsverhältnis c > b > a bleibt jedoch lange weiterbestehen. Die Auslöschungsschiefe cy ist immer unterhalb 15°, konnte aber infolge der wenig zahlreichen und meist sehr unfrischen Reste nicht genauer ermittelt werden. Ebenso ist auch die Doppelbrechung scheinbar niedriger, die Lichtbrechung hingegen deutlich höher als bei der blassgrünen Hornblende. An der Primogenitur der braunen Hornblende lässt sich nicht zweifeln. Bisweilen geht die blassgrüne Hornblende (besonders in den Zoisitalbitamphiboliten, die den Übergang zu den Zoisitglaukophaniten vermitteln) in eine schwach blassbläuliche Hornblende über. Der Übergang vollzieht sich durch das allmähliche Auftreten eines blaugrünen Farbentones nach c. Eine nach b blassviolette Nuance tritt erst später auf. Die blassgrünen Töne machen nach und nach den blassblauen bzw. blassvioletten immer mehr Platz, während gleichzeitig die Doppelbrechung steigt ($\gamma - \alpha = 0.025$ ca.), die Auslöschungsschiefe hingegen abnimmt ($c_{\gamma} = 10^{\circ} - 15^{\circ}$). Diese Hornblende entspricht bereits einem Anfangsstadium der Bildung des gastalditischen Glaukophanes, wie er uns in den Zoisitglaukophaniten vollends entgegentritt. Ziehen wir zum Vergleich die bei den Zoisitglaukophaniten angeführten Ergebnisse hinzu, so ergeben sich die folgenden Übergangsreihen:

1. Bei den Zoisitalbitamphiboliten. 2. Bei den Zoisitglaukophaniten.

Ausgangsprodukt: Braune Relikthornblende Blassgrüne Hornblende (Kern) (Kern)

Endprodukt: Blassgrüne Hornblende Gastalditischer Glaukophan

bis Blassbläuliche Hornblende.

Wir gehen wohl nicht fehl, wenn wir daraus den Schluss ziehen, dass auch dem gastalditischen Glaukophan der Zoisitglaukophanite eine braune Hornblende zugrunde lag. Diese Auffassung wird noch gestützt durch den Vergleich der Analysenresultate des Zoisitalbitamphibolites und des Zoisitglaukophanites von Vingt-Huit (vgl. pag. 138 sowie Analysentabelle Nr. III und IV). Die beiden Analysen unterscheiden sich im wesentlichen nur durch den etwas geringeren Natrongehalt des Zoisitalbitamphibolites.

Chloritisierung der Hornblenden wurde nur ausnahmsweise beobachtet, dagegen entwickeln die blassen Hornblenden im Kontakt mit Albit feinnadelige, intensiv grüne Randhornblenden von ziemlich niedererer Doppelbrechung. Ihre Bildung entspricht ohne Zweifel einer späteren Epoche der Gesteinsbildung. Zoisit und Klinozoisit verhalten sich ganz wie in den Zoisitglaukophaniten. Der Zoisit ist hingegen nicht so zahlreich vertreten. Fassen wir Zoisit und Klinozoisit teilweise als Produkte der Saussuritisierung auf, so müssen wir aus ihrer Menge auf einen sehr basischen Primärplagioklas schliessen. Der Albit macht nur einen sehr geringen Teil des Gesteines aus. Muskovitblättchen sind ihm oft zahlreich eingewachsen, aber auch sonst zwischen die anderen Komponenten eingestreut. Kalzit fehlt diesen Gesteinen nie ganz und kann ab und zu auf Kosten des Zoisites an Verbreitung gewinnen. Zwillingslamellierung ist verbreitet. Quarz ist nur sehr spärlich vorhanden. Der Chlorit ist ein eisenarmer, schwach pleochroitischer Klinochlor mit $(\gamma - \alpha) = 0.006$ ca. und $c_{\gamma} = 3^{\circ}$. Eine direkte Entstehung des Klinochlors aus Hornblende, wie in den übrigen Casannaschiefern, ist nirgends wahrzunehmen. Das Kalziumtitanosilikat ist vorwiegend in Form von trüben Leukoxenhaufwerken ausgeschieden. gehen diese Aggregate gewöhnlich in grössere Titanitkörner über. In Gestalt feinster Spindeln und Körnchen begleitet der Titanit die blassen Hornblenden.

Auch unter dem Mikroskop ist hin und wieder eine verwischte Gabbro- bzw. Ophitstruktur noch sichtbar. Sie kann als xenoblastisch-granoblastisch bezeichnet werden. Die Textur ist auch mikroskopisch richtungslos massig.

Der makroskopische und mikroskopische Habitus dieser Gesteine verlangt ihre Einreihung zwischen die Zoisit- und Albitamphibolite Grubenmanns, sie sind somit an die Grenze zwischen die Meso- und Epizone Grubenmanns, nämlich zwischen die 2. und 3. Ordnung der IV. Gruppe (Eclogite und Amphibolite) zu stellen (vgl. Grubenmann, loc. cit. pag. 201 u. ff.)

Gesteine von dieser Zusammensetzung waren bis jetzt aus dem Val de Bagnes gänzlich unbekannt. Sie nehmen gegenüber den andern basischen Casannaschiefern eine Sonderstellung ein sowohl hinsichtlich ihrer Zusammensetzung als auch hinsichtlich der Relikte primärer Hornblende. Da sie mit den Zoisitglaukophaniten in direkter Beziehung stehen, dürfen sie als deren Primärgesteine angesehen werden. Dies kann hingegen nicht für die übrigen Glaukophanite angenommen werden; denn dazu ist der Eisengehalt der Zoisitalbitamphibolite, der ja nur die Entstehung eisenarmer, blassgefärbter Gemengteile erlaubte und nie zur Ausscheidung von Eisenerzen führen konnte, viel zu gering. Auch der sonst allen andern ophiolithischen Casannaschiefern des Val de Bagnes eigene Apatitgehalt fehlt diesen Gesteinen wie auch den Zoisitglaukophaniten sozusagen ganz.

Über den Chemismus dieser Gesteine gibt uns die Analyse des mittelkörnigen, karbonatarmen Zoisitalbitamphibolites von Vingt-Huit (südlich der Alphütten von Vingt-Huit) Aufschluss Dieses Gestein führt noch relativ zahlreiche Relikte der primären braunen Hornblende.

	Analysenwerte	Molekularprozente
SiO_2	. 48,80	55,34
TiO_2		
$\mathrm{Al_2O_3} \ldots \ldots$		12,20
$\mathrm{Fe_2O_3}$		
FeO		8,17
MgO	6,44	10,68
CaO	. 8,68	10,36
Na ₂ O		2,18
$\mathbf{K_2O} \dots \dots$		1,07
$H_2^{\prime}O$		<u> </u>
$C\tilde{O}_2 \ldots \ldots$	94	
	100,79	100,00
Werte nach Osa	nn-Grubenmann	Projektionswerte
S = 55,35	n = 6,71	a = 3.0
A = 3.25	m = 9.31	c = 8,3
C = 8,95	k = 0.90	f = 18,7
F = 20,26	M = 1,41	7 20.0
20 00 mls.	T = 0.0	$\mathit{\Sigma} = 30,\!0$

Die grosse Ähnlichkeit der vorliegenden Analysenwerte mit denjenigen des Zoisitglaukophanites von Vingt-Huit ist in die Augen fallend. Die CaO-Differenz beträgt nur 0,47 Gew. %, die CO₂-Differenz allerdings 2,27 Gew. %. Karbonate sind hier also nicht so reichlich wie in den Zoisitglaukophaniten. Dies unterstützt die Auffassung, dass das Karbonat sich grösstenteils auf Kosten der Kalksilikate durch CO₂-Zufuhr gebildet hat. Es wurde deswegen auch hier wie bei der Analysenberechnung des Zoisitglaukophanites (vgl. pag. 138 und 204) die gesamte CaO-Menge mit in Rechnung gezogen. Der höhere

Wert für MgO erklärt sich aus der lokalen Anreicherung des Chloritminerales. Der nach Absättigung von A und C für F noch übrigbleibende Rest von 17,75 SiO2 zeigt mit Deutlichkeit, dass unter den gefärbten Gemengteilen Metasilikate die bedeutendste Rolle spielen. Dies stimmt mit den beobachteten Verhältnissen auch insofern überein, als wir im Dünnschliffe als verbreitetste Gemengteile Hornblenden antreffen. vollständigen Absättigung von F (20,26) ergibt sich ein Fehlbetrag von 2,51 SiO₂. Trotz dem vollständigen Fehlen von Erzen machen uns immerhin das Vorhandensein von Karbonaten sowie die Annahme Tschermak'scher Moleküle RII, RIII, Si, O, die wenig SiO2 aber viel Al2O2 verbrauchen, den Fehlbetrag an SiO₂ leicht verständlich. Der CaO-Gehalt der Hornblende ist aus dem schon bei dem Zoisitglaukophanit erörterten Grunde als gering anzunehmen. Ziehen wir ferner in Betracht, dass bei einer Verrechung des genannten Na₂O- bzw. K₂O-Gehaltes auf Albit bzw. Muskovit diese beiden zu 11,5 % ca. bzw. 8,5 % ca. im Gestein vorhanden sein müssten - Werte, die die tatsächlichen Verhältnisse weit überschreiten — so muss notwendigerweise ein Teil der Alkalien in der Hornblende untergebracht werden.

Wie der Zoisitglaukophanit so ist auch der Zoisitalbitamphibolit systematisch in die IV. Gruppe Grubenmanns (Eclogite und Amphibolite) zu stellen.

2. Die Granatalbitamphibolite.

Die Granatalbitamphibolite sind ziemlich selten. In granatreicher Ausbildung können sie ungefähr beim "r" von Pte. Chermontane gesammelt werden.

Es sind zumeist dunkelgrüne, grobschieferige Gesteine, die dem unbewaffneten Auge ein fein verfilztes Grundgewebe mit zahlreich eingestreuten, winzigen Magnetitkriställchen, Pyrit und rötlichem Granat darbieten. Die beiden letzteren treten gewöhnlich gemeinsam auf.

Unter dem Mikroskop ergibt sich folgender Mineralbestand: Albit, Chlorit (Epidot), blaugrüne Hornblende und Granat sind die Hauptgesteinsbildner, Glaukophan und Biotit sind als Übergemengteile, Apatit, Magnetit und Titanminerale als Nebengemengteile vertreten. Der blassrötliche Granat bildet nur ausnahmsweise gut begrenzte Rhombendodekaeder, die aber nie die Grösse von Porphyroblasten erreichen. Oft nehmen die Hornblende-Chloritaggregate da, wo sie an den Granat grenzen, feine Biotitschüppchen auf als Zeichen einer beginnenden Umwandlung des Granates. Weit häufiger ist die Umwand-

lung des Granates schon so weit vorgeschritten, dass nur mehr ein geringer Granatrest übrig bleibt mit nach aussen aufeinanderfolgenden Zonen von Biotit, Chlorit und schliesslich Albit. Auf diese Umwandlungserscheinungen habe ich bereits bei den Granatglaukophaniten hingewiesen. Der übrige Mineralbestand ist mit demjenigen der Chloritalbitamphibolite vollkommen identisch; das einzige Unterscheidungsmerkmal ist somit der Granatgehalt. Mit der Umwandlung des Granates findet darum ein rascher Übergang in die granatfreien Chloritalbitamphibolite statt.

Sowohl nach ihrer mineralischen Zusammensetzung als auch nach ihren strukturellen und texturellen Eigenschaften sind sie als ein Übergangsglied in der Reihe Granatglaukophanit-Granatglaukophanalbitschiefer-Granatalbitamphibolit-Chloritalbitamphibolit-Epidotchloritschiefer aufzufassen. Ihr ganzer Charakter verweist sie zwischen die Kelyphitamphibolite Hezners und die Albitamphibolite Grubenmanns. Nach Hezner¹) ist der Granat in den Übergangsgliedern zu den Kelyphitamphiboliten reichlich, anderseits trifft man nach Grubenmann (loc. cit. pag. 205) den Granat in den typischen Epi-Amphiboliten nur vereinzelt. Die von mir Granatalbitamphibolite genannten Gesteine sind somit ganz an die Basis der Epizone Grubenmanns zu stellen.

3. Die Chloritalbitamphibolite.

Diese gehen aus den Granatalbitamphiboliten durch vollständige Verdrängung des Granates durch Chlorit hervor und lassen sich gleichfalls von den Glaukophanalbitschiefern durch den allmählichen Ersatz ihres Glaukophanes durch Hornblende und Chlorit herleiten.

Ihren Hauptfundort bilden einzelne, teilweise verrutschte Felsköpfe, die dem linksseitigen Glaukophanitvorkommen der Schlucht von Pte. Chermontane nördlich vorgelagert sind. Auch im Gebiet der Alpe de Boussine werden einzelne Linsen derselben aufgefunden. Diese Gesteine gleichen je nach ihrem Hornblende-Albitgehalt bald mehr den Chlorit-Glaukophanalbitschiefern, bald mehr den Epidotchloritschiefern. Die Abtrennung geschieht erst mikroskopisch, da ihr Hornblendereichtum sich dem unbewaffneten Auge in keiner Weise verrät.

Unter dem Mikroskop zeigt es sich, dass ihre Gemengteile nach Art und Mengenverhältnis ziemlich mit denen der

¹) L. Hezner, Ein Beitrag zur Kenntnis der Eclogite und Amphibolite usw. Diss., Wien 1903.

Granatalbitamphibolite übereinstimmen. Blaugrüne Hornblende, Chlorit, Albit als Hauptgemengteile, Granat- und Glaukophanreste, Biotit und spärlicher Serizit als Übergemengteile begleitet von Apatit, Magnetit, Pyrit, und Titanmineralien als den Nebengemengteilen.

Die Hornblende ist intensiv blaugrün gefärbt und zeigt zumeist deutlich die Tendenz nach prismatischer Ausbildung. Die Länge ihrer Individuen schwankt zwischen 0,05 und 0,1 mm. Sie ist genau dieselbe, die wir schon öfters als Randhornblende des Glaukophanes kennen gelernt haben. Der Pleochroismus ist

Die Auslöschungsschiefe ist c $\gamma = 20^{\circ}$ ca., die Doppelbrechung $\gamma - \alpha = 0.020$ ca. Für die allmähliche Ersetzung des Glaukophanes durch die blaugrüne Hornblende sprechen zahlreiche Beobachtungen. In den Übergangsgesteinen zwischen den Glaukophangesteinen und den Amphiboliten beobachtet man alle möglichen Zwischenformen von hellem Glaukophan und blaugrüner Hornblende oft an ein und demselben Individuum. Glaukophanreste sind da und dort noch anzutreffen, selbst nach scheinbar vollständigem Ersatz des Glaukophanes sind im Pistazit noch völlig unzersetzte Glaukophanxenoblasten eingeschlossen. Bemerkenswert ist auch die Verteilung der blaugrünen Hornblende im Dünnschliff. Sie ist meist dieselbe wie in den Chlorit-Glaukophanalbitschiefern. Wie dort sind es bei reichlichem Hornblendegehalt linsen- und schwadenartige Anreicherungen von Hornblende, untermischt mit Chlorit und Biotit, die in schwachen Wellungen den Schliff durchziehen. Die Parallelordnung der einzelnen Hornblendeindividuen ist nicht mehr so genau eingehalten wie beim Glaukophan, aber doch noch ziemlich ausgesprochen. Dabei tritt der merkwürdige Fall ein, dass solche Hornblendeansammlungen an der Berührungsstelle mit Albit oft noch gut erhaltenen Glaukophan führen. Auch im Albit schwimmen dann vereinzelte Glaukophanprismen, die alle einen sehr schmalen Hornblendesaum aufweisen. Der Albit ist vollkommen xenoblastisch und von den übrigen Gemengteilen poikiloblastisch durchwachsen. Zwillingslamellen sind sehr selten. Der Chlorit überwiegt an Menge die Hornblende oder kommt ihr doch wenigstens gleich. Seine Schüppchen sind gewöhnlich klein und tragen oft ganz den Charakter von Hornblendechlorit. Vereinzelt bemerkt man schon eine deutliche Sammelkristallisation zu grösseren Blättchen. Der Pleochroismus ist intensiv von grün zu gelbgrün. Es sind verschiedene Glieder der Chloritreihe vertreten, die bald dem positiven Pennin, bald dem Klinochlor näherstehen. Den Chlorit begleiten kleinste, kaum 0,05 mm messende *Biotit*schüppchen mit dem Pleochroismus

$$c = b$$
 > a tiefgrün bis braungrün hellgelb.

Ihre Menge nimmt gleichzeitig mit Hornblende und Chlorit zu. Muskovitischer bis serizitischer Glimmer begleitet wiederum den Albit. Der Pistazit erlangt mitunter die Ausbildung von 1-2 mm langen Idioblasten, die infolge der Kleinheit der andern Komponenten einsprenglingsartig hervortreten. Ziemlich scharf absetzende Rekurrenzzonen führen oft bis zum Granatreste sind nicht selten. Klinozoisit. Kleine Biotitchloritanhäufungen, umgeben von einer hellen Albitzone deuten gelegentlich auf ein ursprüngliches Vorhandensein von Granat. Apatit zeigt die gewöhnliche Körnerform. Titanit ist in reichlichen Rhombenkriställchen dem Chlorit als Entmischungsprodukt eingewachsen. In ihm eingeschlossene Rutilsäulchen oder Titanerzreste erweisen seine Herkunft aus Titaneisen. Grössere Titanitidioblasten zeigen schwache Absorptionsunterschiede und Druckverzwillingung. Leukoxen in Haufwerken oder als Titanomorphit ist seltener. Magnetit bildet meist oktaedrische Porphyroblasten von 0,5—1 mm Grösse.

Die Struktur ist poikiloblastisch-lepidoblastisch, bei reichlicherem Auftreten von Epidot und Magnetit schwach porphyroblastisch. Die Textur erscheint unter dem Mikroskop nur selten richtungslos; meist wird der schon makroskopisch erlangte Eindruck von der Schieferigkeit des Gesteines unter dem Mikroskop noch erhöht durch die wellen- und lagenartige Anordnung von Chlorit und Hornblende.

Die kristalloblastische Reihe ist: Magnetit, Rutil, Titanit-Glaukophan-Hornblende-Epidot-Chlorit, Biotit, Serizit-Albit.

Die Analyse eines glaukophanjührenden Chloritalbitamphibolites von Boussine ergab folgendes Resultat:

	Analysenwerte	Molekularprozente
SiO ₂	50,00	62,89
TiO_2	4,10	<u> </u>
$\mathrm{Al_2}\tilde{\mathrm{O}_3}\ldots\ldots$	13,67	11,13
$\mathrm{Fe_2O_3}$	4,08	
FeO		4,88
CaO	5,20	5,32
MgO		9,60
Na ₂ O		5,78
$\mathbf{K_2}\mathbf{\bar{O}}\dots\dots\dots$	1,16	0,40
$H_2^{-}O$		
	99,59	100,00

S = 60,24	n=8,7	a = 6.3
A = 6.43	m = 8.3	c = 2,7
C = 2.82	k = 0.92	f = 21.0
F = 21,26	$\mathbf{M}=3.59$	$\overline{\mathcal{\Sigma}=30,0}$
	T = 0.0	2 - 30,0

Der hohe Na₂O-Gehalt ist eine Folge des Nebeneinanderauftretens von Albit, blaugrüner Hornblende und Glaukophan. Die letzteren beiden sind überdies durch alle möglichen Übergangsstufen miteinander verbunden. Die 4,10% TiO₂ erweisen zur Genüge die wichtige Stellung der Titanminerale in diesen Gesteinen. Das Verhältnis A>C versetzt das Gestein in die VII. Gruppe (Chloromelanitgesteine) der Systematik Grubenmanns.

Nimmt in den Albitamphiboliten der Chlorit auf Kosten der blaugrünen Hornblende immer mehr zu, so entwickeln sich Übergangstypen zu der folgenden Gesteinsgruppe.

VII. Chloritschiefer.

Unter dem Sammelnamen Chloritschiefer fasse ich grüne, mehr oder weniger schieferige Gesteine zusammen, in denen Chloritmineralien die Hornblenden der Amphibolite ganz oder doch bis zu einem solchen Grade vertreten, dass der Amphibol zu einem nur sporadischen Übergemengteil herabsinkt. Petrographisch lassen sie sich in die 2 folgenden Unterabteilungen gliedern:

- 1. Epidotchloritschiefer.
- 2. Albitchloritschiefer und eigentliche Chloritschiefer.

1. Die Epidotchloritschiefer.

Sie umfassen den Grossteil aller ophiolithischen Einlagerungen der Casannaschiefer. Ihre Verbreitung im obern Val de Bagnes ist so gross und so allgemein, dass es sich erübrigt, die vielen Vorkommen einzeln anzuführen. Ihre zahlreichsten Vorkommen liegen im Gebiet von Torrembey.

In den sie begleitenden Albitgneisen und Phylliten bilden die Epidochloritschiefer Einlagerungen, die bald zu mehrere Meter mächtigen Linsen anschwellen, bald aber auch als schmale, oft sogar nur wenige Zentimeter dicke grüne Bänder das Nebengestein konkordant durchziehen.

Ihre Ausbildung ist sehr mannigfaltig, sowohl was ihre mineralische Zusammensetzung als auch was ihr texturelles und strukturelles Gefüge und damit ihr makroskopisches Aussehen anbelangt. Ihr ganzer Typenreichtum lässt sich mineralogisch folgendermassen gruppieren:

- a) Karbonatarme, eigentliche Epidotchloritschiefer;
- b) Karbonatreiche, epidotarme Epidotchloritschiefer;
- c) Granat- und serizitführende Epidotchloritschiefer.

Der Mineralbestand besteht aus Albit, Chlorit und Epidot und eventuell Karbonat als Hauptgemengteile in verschiedenen Mischungsverhältnissen; wenig Hornblende und Glaukophan, Granat, Serizit, Biotit, Pyrit und Hämatit als Akzessorien sowie Titanit und Magnetit als nie fehlende, Apatit und Zirkon als seltenere Nebengemengteile.

Der Albit ist teils in rundlichen oder gebuchteten Körnern, teils in gestreckten Linsen entwickelt. Dicktafelige Ausbildung ist selten und ganz auf die chloritreichen aber epidot- und karbonatarmen Typen beschränkt. Die grösseren Körner besitzen in der Regel deutliche Spaltrisse und eine gut ausgeprägte albitische Zwillingsstreifung. Symmetrisch auslöschende Individuen, die also der Zone \perp (010) angehören, hatten folgende Auslöschungsschiefen:

$$\begin{bmatrix} 14^{0} \\ 14^{0} \end{bmatrix}$$
 14° $\begin{bmatrix} 14^{0} \\ 16^{0} \end{bmatrix}$ 15° $\begin{bmatrix} 15^{0} \\ 16^{0} \end{bmatrix}$ 15,5° $\begin{bmatrix} 17^{0} \\ 16^{0} \end{bmatrix}$ 16,5°

Schnitte \perp zur negativen Bisektrix ergaben im Mittel 15°. Schnitte \perp zur positiven Bisektrix ergaben im Mittel 18°. Gegenüber Quarz zeigt der Feldspat das Lichtbrechungsverhältnis: α , β , $\gamma < \omega$. Danach handelt es sich um einen Albit von der annähernden Zusammensetzung Ab 95 An 5. Katablactischer Finnsischer Finnsischer

von der annähernden Zusammensetzung Ab 95 An 5. Kataklastische Einwirkungen zeigt der Albit nie; denn Bruchdeformation ist bei ihm immer durch Formdeformation ersetzt. Der Chlorit ist neben Albit der wichtigste Gemengteil der Epidotchloritschiefer. In den noch wenig hornblendeführenden Gesteinstypen ist er durch seine Feinschuppigkeit charakterisiert, in den hornblendefreien hingegen ist er zu blätterigen oder fächerförmigen Aggregaten vereint. Es liegen verschiedene Glieder der Chloritgruppe vor. In der Hauptsache handelt es sich um einen viriditartigen, intensiv grüngefärbten Chlorit mit den Absorptionsfarben:

$$c=\mathfrak{b}>\mathfrak{a}$$
 sattgrün mit graubläulichem Ton gelbgrün.

Die Auslöschung schwankt zwischen 2° und 5°. Der Axenwinkel ist klein. Die Interferenzfarben sind anormal braungrün infolge der starken Eigenfarbe des Chlorites. Alle diese Eigenschaften sprechen am ehesten für Klinochlor. Tief-

graugrün, fast isotrop erscheinende Chlorite mit nur schwach ausgeprägtem, positivem Charakter, die somit dem positiven Pennin angehören dürften, leiten zu anormal rotviolett interferierenden Chloriten über, wie sie in einzelnen epidotarmen Gesteinstypen zu alleiniger Geltung gelangen. Mit der Zunahme des Blaues ihrer Interferenzfarben wird ihr optischer Charakter immer ausgesprochener. Unzweifelhaft handelt es sich dabei um negativen Pennin. In den typischen, indigoblau polarisierenden Blättchen mit a = b > c traf ich den negativen Pennin nur in den noch zu besprechenden Pennin-Karbonatpseudomorphosen nach Glaukophan. Der Pistazit ist seltener in kleineren Körnchen als vielmehr in guten Idioblasten ausgebildet. Die letzteren sind immer nach der b-Axe gestreckt, schwach abgeflacht nach (001). An Formen können hauptsächlich (001), (100) und (101) erkannt werden, die aber durch Häufung von Querprismen meist etwas verwischt sind. Zwillinge nach (100) sind bei grösseren Epidotindividuen häufig. Die Randzonen des Epidotes werden öfters von Klinozoisit eingenommen, während im Kern sich gelegentlich ein Rest von graublauem bis rostbraunem Orthit (Epidotorthit im Sinne Goldschmidts) vorfindet. Das makroskopisch oft gelblichbraune Karbonat ist in rundlichen Körnern zugegen. Autoblasten sind recht selten. Feinste Flüssigkeits- und Gaseinschlüsse, letztere mit tanzenden Libellen, veranlassen eine mikroskopische Trübung. Die makroskopisch gelbbraune Farbe wird durch Ausscheidung des Eisengehaltes in Form von rot durchscheinenden Eisenoxyden verursacht. Das Karbonat steht dem Ankerit nahe. Bei seiner Zersetzung¹) dürfte sich teilweise Kalzit bilden, worauf die mit zunehmender Limonitisierung der Karbonate auch zunehmende Angreifbarkeit durch verdünnte HCl hinweist. Daneben tritt der Kalzit auch selbständig auf. Er ist immer durch buchtige und lappige Umgrenzung gekennzeichnet. Häufig macht er auch den Eindruck sekundärer Infiltration. Die spärliche blaugrüne Hornblende und die noch spärlicheren Glaukophanreste sind die gleichen wie in den Amphiboliten. Der helle Glimmer ist bald serizitisch

¹⁾ Die Zersetzung eisenhaltiger Karbonate in Kalzit und Ferrite fand ich auch bei meinen gelegentlichen Besuchen der Topfsteinmine von Bonatchesse bestätigt. Topfsteinblöcke, die in ihren innern Partien einen unzersetzten Breunerit führten, zeigten an ihrer, der Verwitterung ausgesetzten Oberfläche nur mehr limonitischen mit verd. HCl aufbrausenden Kalzit. Die Tatsache, dass die genannten Blöcke nachweislich nur ca. 8 Jahre der Oberflächenverwitterung ausgesetzt waren, zeigt die grosse-Geschwindigkeit des Zersetzungsprozesses.

bald muskovitisch. In der muskovitischen Ausbildung zeigt er in gewissen Gesteinstypen eine deutliche Absorption:

$$c = b$$
 > a hellgrünlich hellgrünlich-farblos.

Er ist somit von fuchsitischem Charakter. Der makroskopisch nur selten auffindbare, metallisch glänzende Hämatit ist im Dünnschliff in roten Täfelchen von sechsseitiger Umgrenzung vorhanden. Pyrit in bald von Limonit umsäumten, bald von Magnetit umwachsenen Würfelchen macht mehr und mehr dem Magnetit Platz. Seine Ausbildung ist zumeist vollkommen idioblastisch. Selten zeigt er Einschlüsse von Epidot oder Zwillinge nach dem Spinellgesetz Verwachsung mit ihm. fehlen nicht ganz. Als Titanomagnetit weist er ein zerfressenes Aussehen auf, ohne aber seine oktaedrische Kristallform ganz zu verlieren. Er ist dann in der Regel von Rutil oder Titanit begleitet. Ilmenit kommt nur als Kern im Titanomorphit vor. Titanit in Insekteneierform oder in grösseren Kriställchen ist ein charakteristischer und reichlicher Übergemengteil. Mitunter ist er mit Epidot verwachsen. Rutil in gelbbraunen, oft knieförmig verzwillingten Kriställchen ist weit weniger häufig. Sehr hoch lichtbrechende, öfters deutlich quadratische Kriställchen weise ich dem Zirkon zu. Apatit ist spärlich und meist ohne Kristallformen.

Die strukturellen und texturellen Eigenschaften sind für die verschiedenen Gruppen der Epidotchloritschiefer verschieden.

Die karbonatarmen, eigentlichen Epidotchloritschiefer besitzen in ihrer typischen Ausbildung eine an die Ovardite erinnernde Ocellarstruktur. Die Textur ist verworren-schieferig bis schwach kristallisationsschieferig.

Die karbonatreichen, epidotarmen Epidotchloritschiefer zeigen infolge der gleichmässigen Durchtränkung des Gesteins mit Ankerit eine granoblastische Struktur bei ziemlich massiger Textur.

Die granat- und serizitführenden Epidotchloritschiefer sind lepidoblastisch-granoblastisch struiert. Chlorit und Serizit tragen viel zur Ausbildung einer guten Schieferung bei.

Ein ankeritreicher Epidotchloritschiefer aus dem Gebiete von Torrembey wurde mit folgendem Resultat analysiert:

	Analysenwerte	Molekularprozente
SiO,	. 41,10	62,89
TiO_2	. 3,20	<u>-</u>
Al_2O_3	. 13,32	11,13
Fe_2O_3	. 3,04	
FeO	. 6,55	4,88
CaO	. 9,40	5,32
MgO	. 6,65	9,60
Na_2O	. 4,21	5,78
K_2O	. 0,44	0,40
H_2O	. 2,55	_
$ ext{CO}_2$. 9,28	
	99,74	100,00
Werte nach	${\bf Osann\text{-}Grubenmann}$	Projektionswerte
S = 62,89	n = 9,35	$\mathbf{a} = 7,1$
A = 6.18	m = 9,75	c = 5.8
C = 4.95	k = 0.98	f = 17,1
F = 14,85	$\mathbf{M} = 0.37$	$\mathcal{Z}=30.0$
	T = 0.0	$\mathbf{Z} = 50,0$

Die grosse CO₂-Menge zwingt uns zur Annahme, dass die Karbonatbeimengung nicht in der Zersetzung primärer Gemengteile, sondern höchstwahrscheinlich im tuffoiden Charakter des Gesteins ihren Grund hat. Da das Karbonat die chemischen Eigenschaften des Ankerites zeigt (schwere Angreifbarkeit durch verdünnte HCl, bedeutender Eisengehalt), so wurde die CO₂-Menge auf einen Normalankerit (2 CaO MgO FeO 3 CO₂) ausgerechnet und ein Gehalt von 20,57 % Ankerit gefunden. Dies stimmt mit der aus dem Dünnschliff geschätzten Karbonatmenge gut überein. Nach Abrechnung der den 9,28 % CO2 äquivalenten 5,54% CaO, 3,63% FeO und 2,01% MgO ergaben sich die oben angegebenen Molekularprozente. Die noch restierenden 5,32 Molekularprozente CaO sind grösstenteils mit TiO2 im Titanit und nur zu einem geringen Teil im Epidot und Chlorit vorhanden (dies natürlich nur, wenn wir von der Möglichkeit absehen, dass der im Gestein anwesende Ankerit vielleicht mehr CaO enthält, als dem Normalankerit ent-Der bedeutende Na₂O-Gehalt findet im grossen Albitreichtum und in der akzessorischen Beimengung feinster Glaukophannädelchen seine Erklärung.

Systematisch stellt sich das Gestein an die Grenze zwischen Gruppe IV (Eclogite und Amphibolite) und Gruppe VII (Chloromelanitgesteine) von Grubenmann.

2. Albitchloritschiefer und eigentliche Chloritschiefer.

Diese gehen durch nahezu vollständiges Verschwinden des Epidotes aus den Epidotchloritschiefern hervor. Reichert sich der Chlorit bedeutend an, so tritt zunächst der Epidot aus dem Mineralbestand aus, das ihn teilweise ersetzende Karbonat tritt zusehends zurück und der Albit erfährt eine bedeutende Kornvergrösserung. Auf diese Weise resultieren schliesslich Gesteine von schieferigem Bruch, die in einer glänzend grünen, chloritischen Grundmasse, bis 0,5 cm messende, meist isometrische, porphyroblastenartige Körner von Albit sowie vereinzelte Pyritwürfelchen erkennen lassen. Im Albit sind gelegentlich limonitische Karbonate eingewachsen. Gesteine von dieser Zusammensetzung verdienen den Namen Albitchloritschiefer.

Unter dem Mikroskop zerfallen die Albitkörner häufig in einzelne, innig verzahnte Körner, die gegen den Chlorit hin gewöhnlich scharf absetzen. Der Chlorit ist ein negativer Pennin und verursacht durch seine vorwiegend parallele Anordnung die Schieferigkeit des Gesteins. Im Druckschatten der grossen Albitindividuen ist er oft mit kleinen Albitkörnchen verwachsen. Das Karbonat ist von opaken bis rotbraunen Ferriten erfüllt, die sich gern längs den Spaltrissen der Karbonatkörner anhäufen. Ilmenitreste mit Leukoxenrändern durchziehen parallel der Schieferung das Gesteinsgefüge. Den Leukoxen verdrängen hin und wieder spärliche Klinozoisitkörnchen.

Die makroskopisch porphyroblastische *Struktur* ist unter dem Mikroskop eher granoblastisch-lepidoblastisch. Die *Textur* ist schwach kristallisationsschieferig.

Von diesen Albitchloritschiefern findet nun durch stete Albitabnahme ein langsamer Übergang zu den *Chloritschiefern* hin statt. Diese bestehen grösstenteils aus Chlorit mit nur ganz vereinzelten Albitkörnern, Magnetitilmenitresten und Titanomorphit. Untergeordnet kommen darin auch dünne Adern von wasserhellem Quarz vor.

Die Struktur ist vollkommen lepidoblastisch, die Textur kristallisationsschieferig.

C. Ueber die blauen Natronamphibole der Casannaschiefer.

Aus der vorangehenden petrographischen Beschreibung ergibt sich die Anwesenheit mehrerer Mischungsglieder von Natronhornblenden in den Casannaschiefern des obern Val de Bagnes. So trifft man sowohl Glieder der Reihe Glaukophan-Crossit, als auch Glieder der Reihe Glaukophan-blaugrüne bis grüne Hornblende sowie der Reihe braune Hornblendegrüne Hornblende-gastalditischer Glaukophan.

Im folgenden sollen nun der Chemismus des Glaukophans von Vingt-Huit sowie die gegenseitigen Beziehungen der