Zeitschrift: Eclogae Geologicae Helvetiae

Herausgeber: Schweizerische Geologische Gesellschaft

Band: 7 (1901-1903)

Heft: 7

Artikel: Ile partie, Minéralogie et pétrographie

Autor: Sarasin, Ch.

DOI: https://doi.org/10.5169/seals-155944

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.09.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

IIº PARTIE - MINÉRALOGIE ET PÉTROGRAPHIE

Minéralogie.

M. le professeur H. BAUMHAUER ¹ a fait, comme recteur de l'Université de Fribourg, une conférence dans laquelle il a exposé l'histoire de la cristallographie et les principes qui servent actuellement de base à cette science. Il a montré en particulier les déductions sur la constitution des cristaux qu'on peut tirer des caractères géométriques et optiques de ceux-ci, de leur fissilité, de la forme des figures de corrosion qu'ils montrent lorsqu'on attaque l'une ou l'autre de leurs faces avec un acide, etc....

Le même ², en attaquant par l'acide fluorhydrique dilué des lamelles de clivage basales de **Lepidolithe**, a démontré que, comme pour la Zinnwaldite, il existe pour ce minéral deux variétés, qui se distinguent par la forme de leurs figures de corrosion et dont l'une a un grand angle des axes, tandis que l'autre en a un petit.

M. Baumhauer a d'autre part continué ses recherches sur les minéraux du Binnenthal. Il a étudié en particulier la Seligmannite, un nouveau minéral dont il a décrit à deux reprises divers cristaux provenant de la dolomie du Binnenthal. Dans une première note 3, il donne les caractères de cinq petits cristaux de Seligmannite, qui peuvent se résumer comme suit : ce minéral cristallise dans le système rhombique et présente une forme très voisine de celle de la Bournonite, avec le rapport des axes a : b : c = 0.92804 : 1 : 0.87568. L'auteur y a reconnu les faces suivantes : 3 pinacoïdes (100, 010, 001), 5 prismes (110, 210, 120, 130, 510), 2 domes (101, 011), 5 pyramides (111, 211, 112, 213, 431). Ces faces existent du reste toutes dans la Bournonite, sauf 510.

² H. BAUMHAUER. Ueber den Krystallbau des Lepidoliths. *Eclogæ*, vol. VII, p. 354. Voir aussi *C. R. de la Soc. helv.*, 1902, p. 100 et *Archives Genève*, t. XIV, p. 473.

³ H. BAUMHAUER. Ueber den Seligmannit, ein neues dem Bournonit homöomorphes Mineral, aus dem Dolomit des Binnenthales. Sitzungsber. der preuss. Akad. der Wiss., Berlin, 1901, p. 110-117.

¹ H. Baumhauer. Ueber den Ursprung und die gegenseitigen Beziehungen der Krystallformen. Rektoratsrede Universität Freiburg, Nov. 1901.

Plus tard M. BAUMHAUER ¹ a découvert et décrit un nouveau cristal de **Seligmannite** qui, malgré ses petites dimensions (³/₄ mm. sur ¹/₂ mm.), est remarquablement bien formé et riche en faces. L'auteur y a déterminé 40 faces différentes qui se répartissent comme suit : 3 pinacoïdes, 5 prismes, 1 macrodome, 5 brachydomes, 7 pyramides. Le cristal est mâclé suivant (110); les formes prédominantes sont (100), (010), (110), (101), (011), (111), (112). L'analogie entre ce cristal et la Bournonite est particulièrement évidente.

Enfin, lors de la réunion de la Société géologique suisse à Genève, M. BAUMHAUER ² a décrit une collection de minéraux provenant du Binnenthal qui a été acquise par le musée de Fribourg. Ce sont :

- 1° De gros cristaux de tourmaline noire récoltés entre Chervandone et le Fletschhorn.
- 2º Des tourmalines vert-clair et brunâtres en petits cristaux inclus dans la dolomie blanche du Lengenbach.
- 3º De belles titanites de l'Ofenhorn, vert-jaunâtre, et mâclées selon oP.
 - 4º Des cristaux de Fuchsite.
 - 5º Une quadruple mâcle d'Adulaire d'après la loi de Baveno.
 - 6º Des cristaux extraordinairement riches en faces de Calcite.
- 7º Un cristal de Barytocelestine dont le rapport des axes a : b : c = 0.8132 : 1 : 1.3123 se rapproche beaucoup de celui de la Baryte, étant intermédiaire entre celui-ci et celui de la Célestine.
 - 8º Différents Réalgars.
- 9° Une série de sulfarséniures parmi lesquels le Skleroklase, la Jordanite et la Binnite sont les plus fréquents, tandis que la Dufrenoysite et la Baumhauerite sont rares et que la Liveingite et la Seligmannite sont très rares.

Les Sulfarseniures divers inclus dans la dolomie du Binnenthal ont fait d'autre part l'objet de plusieurs études de la part de M. R.-H. Solly. Dans une première publication ³

¹ H. BAUMHAUER. Ueber einen neuen flächenreichen Krystall von Seligmannit. *Ibid*. XXVIII, p. 611-614, 5 juin 1902.

² H. Baumhauer. Mineralien aus dem Binnenthal. *Eclogæ*, vol. VII, p. 351-353. Voir aussi C. R. de la Soc. helv. des sc. nat., 1902 et Archives

Genève, t. XIV, p. 470.

³ R.-H. Solly. Bleisulfarsenite aus dem Binnenthal: 1 Jordanite, 2 Rathit. Zeitschr. f. Krystallogr., 35, p. 321-344, 1901. Voir aussi R.-H. Solly, Sulfarsenites of Lead from the Binnenthal, Part II: Rathite. Min. Magaz., 13, No 59, p. 77-85. Londres, 1901.

cet auteur s'est occupé plus spécialement de la Sartorite, de la Rathite et de la Jordanite. L'analyse de ces trois minéraux lui a donné:

							Pb.	S.	As.
Sartorite			•		•		43.63	25.51	30.46
Rathite	•	•		•		٠	51.85	23.72	23.86
Jordanite				•		•	68.72	18.31	12.39

En outre, un échantillon de Rathite renfermait des traces de fer et d'étain.

La Jordanite cristallise dans le système monoclinique avec le rapport des axes a : b : c = 0.4945 : 1 : 0.2655. L'auteur a déterminé 11 formes nouvelles qui, en s'ajoutant à celles déjà connues, portent à 137 le nombre total. Ces formes nouvelles sont : (340), (310), (510), (2.11.2), (292), (232), (1.17.1) (1.14.1), (1.13.1), (252), (432). La Jordanite montre 4 mâcles différentes : suivant (101) avec des lamelles multiples, suivant la face (301), suivant la face (101) et suivant la face (301). La couleur est gris de plomb, souvent rougeâtre, verdâtre ou jaunâtre. Le clivage est très net suivant (010), moins marqué suivant (101). La densité varie entre 6.38 et 6.42. Les cristaux sont souvent intimément liés à des cristaux de Blende et très riches en inclusions de pyrite.

La Rathite cristallise dans le système rhombique avec a:b:c=0.4782:1:0.5112, l'orientation des axes cristallographiques adoptée ici étant différente de celle admise précédemment par M. Baumhauer (a : b : c de Solly = a : c: b de Baumhauer). L'auteur a mesuré 25 cristaux provenant de la dolomie du Lengenbach et a déterminé 62 formes, dont 37 sont nouvelles; ce sont: (100), (001), (101), (3.80.0), (1.18.0), (1.11.0), (1.10.0), (170), (3.16.0), (1.3.0), (250),(370), (470), (210), (410), (710), (810), (071), (051), (072), (031), (083), (095), (043), (011), (056), (131), (252), (3.11.3), (373), (353), (111), (313), (515), (211), (122), (132). La Rathite présente deux lois de mâcle, l'une selon (074) en lamelles fines et nombreuses, l'autre selon (0.15.1) sous forme de petits prismes accolés au cristal principal. La couleur est gris de plomb ou d'acier; le clivage est très marqué selon (010), peu net suivant (100); la densité est de 5.41-5.42.

M. Solly 1 a décrit d'autre part un nouveau sulfarseniure

¹ R.-H. Solly. Sulfarsenites of Lead from the Binnenthal, Part III: Baumhauerite a new Mineral and Dufrenoysite. *Min. Magaz.*, 13, N° 60, 1902, p. 151-171. Voir aussi *Min. Soc. London*, C. R. de la séance du 28 nov. 1902.

de plomb, la Baumhauerite provenant de la dolomie du Lengenbach, dont il a pu mesurer d'assez grands cristaux. Il a étudié en même temps un individu de 8 grammes de Binnite et de beaux exemplaires de Dufrenoysite, couverts de petits cristaux de Seligmannite. Dix faces nouvelles ont été observées sur ce dernier minéral et le rapport des axes a été calculé à a : b : c = 0.92 332 : 1 : 0.87 338. M. Solly a enfin découvert un minéral probablement nouveau développé en petits cristaux sur un individu de Rathite du Lengenbach, qui ne possède ni axe ni plan de symétrie.

La série des sulfarseniures s'est enrichie encore d'un nouveau terme, la **Liveingite**, découvert dans le Binnenthal et décrit par MM. R.-H. Solly et H. Jackson¹. Ce minéral, représenté du reste seulement par deux cristaux, offre une analogie évidente avec la Rathite et la Sartorite; il est monoclinique avec $\beta = 89^{\circ} 45^{1/2}$; ses cristaux sont mâclés suivant (100). L'analyse a donné la formule 4 PbS. 3 As₂ S₃.

M. W.-J. Lewis ² a donné la description de nouveaux cristaux de Mispickel et de Pyrite du Binnenthal ainsi que de quelques exemplaires de quartz et de titanite de l'Ofenhorn.

Avec le Binnenthal le massif de l'Aar est une des régions classiques de la Suisse pour les minéralogistes. M. Joh. Kænigsberger 3 a entrepris une étude monographique de tous les gisements minéraux inclus dans la protogine de cette chaîne. Il observe tout d'abord que les variations minéralogiques et chimiques que montre la protogine dans sa composition réagissent sur la nature des minéraux constituants des gites qui y sont inclus.

La protogine normale, développée dans la vallée de Gœschenen et à Wicki, est formée de quartz, de feldspath potassique du type microcline, d'oligoclase plus ou moins altéré et de biotite souvent en partie chloritisée. Au sommet du Nünistock (Mittagstock de la carte) elle est peu décomposée mais très cataclastique avec de gros cristaux d'oligoclase-andésine; elle contient d'après les calculs de l'analyse chimique 35% de quartz, 26% de feldspath potassique (micro-

¹ Solly and Jackson. A new Mineral from the Binnenthal. Proced. Cambridge Philos. Soc., 1901, 11, 239.

² W.-J. Lewis. Minerals from the Binnenthal. Min. Soc. London, C. R. de la séance du 28 nov. 1902.

³ Joh. Kœnigsberger. Die Minerallagerstätten im Biotitprotogin des Aarmassifs. N. Jahrb. für Min. Geol. u. Pal. Beilageb., XIV. p. 43-119, 1901.

cline et orthose), 20 % d'oliglocase, 4 % d'albite, 4 % de Phengite et 11 % de biotite. Au Sandbalmstock elle est peu cataclastique mais décomposée par la pression et la température élevée avec formation de Zoïsite. Ces divers types de roche appartiennent tous à une même variété de protogine caractérisée par leur teneur relativement forte en chaux, et qui prend une grande extension depuis l'Oberalpstock jusqu'au delà du glacier du Rhône.

A l'intérieur de ce massif de protogine normale on peut distinguer une zone étroite dirigée du SW au NE de Wicki au Schattiger Wichel, dans laquelle la protogine est beaucoup moins riche en plagioclases et en particulier en oligoclase. L'albite y est relativement plus abondante, presque toujours associée aux feldspaths potassiques; parmi ceux-ci c'est tantôt l'orthose, tantôt le microcline qui prédomine.

Dans le voisinage des gites la protogine est toujours décomposée; les biotites passent à l'état de chlorite, les plagioclases se caolinisent et il se forme une série de minéraux secondaires : chlorite, caolin, Sillimanite, épidote, quartz. Ensuite la chlorite disparaît à son tour, les plagioclases sont complètement décomposés et de l'albite secondaire se forme, les feldspaths potassiques se troublent et le quartz seul reste intact. Enfin au contact immédiat des principaux filons le quartz même a disparu et il ne reste plus que les feldspaths potassiques autour desquels a cristallisé de l'adulaire secondaire.

Les gites minéraux se ramènent tous à un type assez uniforme. Ce sont des cavités lenticulaires très aplaties orientées perpendiculairement au plan de schistosité et parallèlement à la ligne d'intersection de ce plan avec l'horizontale; comme la schistosité est dans la règle à peu près verticale, ces cavités sont étalées dans un plan voisin de l'horizontale. L'on a affaire ici à des fissures se poursuivant souvent sur de très grandes longueurs, qui ont été agrandies localement et incrustées de minéraux cristallisés par les eaux d'infiltration. Chacun des gites débute vers la périphérie par une zone de quartz et de calcite avec de la fluorine (Quartzband).

Les gites étudiés par M. Kœnigsberger se répartissent de la façon suivante :

a) Un premier type très fréquent dans la protogine normale à biotite, en particulier dans les environs de Wasen et au N d'Urseren, est caractérisé par l'abondance de la calcite, par la coloration rouge de la fluorine, par la teinte

généralement foncée des quartz et par la rareté de la blende et des zéolithes qui n'apparaissent que dans les cavités les plus vastes.

Au pied du Vorder Feldschir s'alignent suivant une grande fissure horizontale plusieurs amas lenticulaires de minéraux qui peuvent atteindre 80 cm. de hauteur sur 200 m² de surface. A l'intérieur de la zone périphérique de quartz se développent de grands cristaux de quartz ayant jusqu'à 1 m. de longueur, sur lesquels sont fixées des fluorines en gros octaèdres aux arêtes émoussées et aux faces ternies. La galène forme de rares concrétions auxquelles s'associent des aiguilles de Cérussite. Tout l'intérieur de la poche est comblé par un sable chloriteux; enfin de petits cristaux de Stilbite se développent fréquemment sur les quartz, les calcites et les fluorines.

C'est au même type qu'appartient un gîte ouvert au milieu d'une paroi de protogine près du Tiefengletscher et d'autres, plus petits, qui s'ouvrent entre le Mittler Feldschir et le Nünistock. Dans le premier, les concrétions de galène, du reste rares, sont couvertes d'une incrustation de Laumontite et de Wulfenite; dans les seconds le sable qui remplit le milieu de l'ouverture est formé essentiellement par un mélange de chlorite rougeâtre du type de la leptochlorite et de chlorite verte; l'apatite y forme de très petits cristaux clairs avec (1010), (1121), (0001), (3141).

Au Galenstock on rencontre une variété de ce type, qui établit une transition aux gîtes qui existent à l'W de l'Aar et au S du Grimsel. Les quartz fumés contiennent ici de nombreux cristaux d'épidote; d'autre part, la roche ambiante décomposée renferme de petits échantillons d'anathase bleue et de Brookite jaune.

Une autre variété de ce même type, qui se rapproche cette fois des gîtes inclus dans le gneiss d'Urseren, se trouve dans la partie inférieure du Gœschenerthal et dans les Schællenen. La calcite, particulièrement abondante ici, se rencontre non seulement dans la zone périphérique de quartz, mais aussi dans l'intérieur, où elle enveloppe de ses grands cristaux rhomboédriques la fluorine. L'apatite est en quantité relativement grande. La grotte qui s'ouvre sur le flanc E du Sandbalmstock, ainsi que les gîtes mis au jour par les travaux du tunnel du Gothard et étudiés par M. Stapff appartiennent à cette variété. Dans le tunnel les quartz ne sont pas fumés, comme c'est généralement le cas dans les

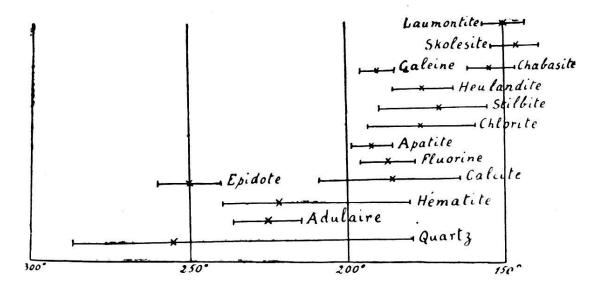
gîtes profonds; l'apophyllite y apparaît én petits cristaux bien formés.

Il faut classer dans une seconde catégorie les gîtes minéraux qui sont inclus dans la protogine au-dessus du glacier de l'Alpligen dans le Gœschenerthal, sur le flanc du Plattenstock, à la Riedmatt et au-dessus de la route du Grimsel près du point appelé Sommerloch. Ces gîtes se distinguent des précédents par la quantité beaucoup moindre de calcite et de sable chloriteux qu'ils renferment. La fluorine et les zéolithes sont très rares ici ou manquent complètement; l'élément essentiel est le quartz en grands cristaux fumés ou blancs; l'adulaire et l'apatite s'y rencontrent en petite quantité. A la Riedmatt l'épidote forme des zones concentriques d'inclusions dans les quartz et des incrustations sur ceux-ci.

Une troisième catégorie de filons comprend ceux dans lesquels la calcite, la chlorite rouge et la fluorine sont rares, tandis que l'adulaire et les zéolithes sont abondants, ainsi que l'épidote. L'hématite s'y trouve en général en petite quantité formant des rosettes sur les quartz; la pyrite s'y rencontre sous forme de petits hexaèdres; des gerbes de Stilbite s'y développent, soit sur les autres minéraux, soit sur la roche même. Des gîtes de cette nature se trouvent sur l'arête qui descend du Bächistock vers le Fellithal, dans le Fellithal supérieur, à la Fellilücke et dans le Rienthal. Des gîtes à caractères transitoires existent à la Haselgadenkehle, à la Gœscheneralp et à l'Aelpli dans le Fellithal.

Lorsque la protogine contient une certaine proportion d'amphibole le caractère des gîtes change; les zéolithes (stilbite, skolésite, chabasite, heulandite) sont très abondants; l'albite y forme en grand nombre de petits cristaux transparents; l'hématite, l'apatite et la chlorite verte y sont rares. Tel est le caractère en particulier des gîtes de l'arête du Schattiger Wichel et du versant occidental du Val Strim

supérieur.


Ce qui frappe dans tous les gîtes minéraux inclus dans la protogine du Gothard, c'est d'abord le fait que la roche ambiante n'est décomposée que dans le voisinage immédiat de la fissure, ensuite le fait que les minéraux y ont cristallisé dans un ordre bien déterminé : d'abord le quartz et l'adulaire, puis la calcite, puis les zéolithes. Il paraît donc vraisemblable que la cristallisation a eu pour cause le refroidissement du dissolvant et non son évaporation. D'autre part, les relations évidentes qui existent entre la nature de la roche et celle des gîtes inclus montrent que les éléments

de ceux-ci ont été empruntés presque entièrement à celle-là. Le dissolvant a été sans aucun doute l'eau chargée d'oxygène et d'acide carbonique. La chlorite des gîtes provient de la décomposition de la biotite; le quartz peut résulter en partie de la dissolution du quartz, en partie de la décomposition de la biotite et des feldspaths; la calcite s'est formée au dépens de l'oligoclase, ce qui explique sa rareté dans les gîtes inclus dans une protogine pauvre en feldspaths calciques.

Il est probable que l'oligoclase attaqué par l'eau chaude et l'acide carbonique se décompose en zoïsite, caolin, sillimanite, mica, albite et quartz, si la quantité d'eau est faible; si l'eau est au contraire abondante la zoïsite et les micas ne sont plus stables et il se forme, d'une part, de l'albite, de la calcite et du quartz, qui sont immédiatement dissous et entraînés, d'autre part du caolin et de la sillimanite. La présence de la fluorine dans les gîtes s'explique par la teneur appréciable en fluor de la protogine; quant à l'apatite, elle peut provenir ou bien de l'apatite primaire de la roche, ou bien de la biotite décomposée qui contient du phosphore et du fluor. L'hématite a dû se former au dépens de la biotite; l'adulaire résulte ou bien de la dissolution de l'orthose et du microcline, ou de la décomposition des plagioclases potassiques. Le plomb de la galène doit avoir été contenu dans les micas de la roche. Les zéolithes sont tous des zéolithes calciques et sont dûs probablement à la réaction d'une solution de carbonate d'alcalis sur des oliglocases frais à une température basse.

Quant au mode de formation des gîtes, l'auteur admet que, lors du plissement de la roche, l'eau d'imprégnation s'est accumulée dans certaines poches où, par le fait d'une pression intense, elle a acquis une température et une tension très élevée, qui lui ont permis d'attaquer la roche ambiante. L'effort orogénique une fois épuisé la température de l'eau s'est abaissée et la cristallisation a commencé entre 400° et 300° d'abord dans les parties étroites des fissures, parce que le refroidissement y était plus rapide; dans les parties élargies, la température s'abaissant plus lentement, les cristaux se sont formés plus lentement, mais plus parfaitement.

La solution de laquelle se sont cristallisés les minéraux filoniens devait contenir : CO₂, SiO₂, Al₂O₃, Fe₂O₃, FeO, MgO, CaO, Na₂O, K₂O. La paragénèse des minéraux cristallisés peut être figurée par le tableau suivant :

Du reste, la succession des minéraux filoniens dépend de la proportion dans laquelle les divers éléments sont contenus en solution dans l'eau; le quartz peut cristalliser dans l'eau entre 300° et 160°; si la cristallisation de l'adulaire est limitée ici, cela tient à la faible quantité de feldspath potassique primaire qui est attaqué. L'hématite et l'apatite ne cristallisent plus au-dessous de 180°; l'épidote ne paraît plus se former au-dessous de 200°; la chlorite est encore facilement soluble dans l'eau à 190°, elle se dépose entre 190° et 150°. Quant aux zéolithes ils cristallisent aux environs de 130°. La fluorine perd sa couleur rouge vers 175°, cette température correspond à la limite supérieure de la cristallisation. La calcite s'est formée entre 220° et 150°. La galène a cristallisé aux environs de 200°.

- M. G. Bœris¹ a décrit divers cristaux d'Anatase (Octaédrite) découverts par M. Giov. Jori près du petit lac Scipsius sur le versant S du Saint-Gothard, au-dessus d'Airolo. Les cristaux allongés selon (001) atteignent 2 mm.; ils ont une couleur jaune et un éclat comparable à celui du diamant. Les formes observées sont (111), (115), (117), (101), (107), (5.1.19), (001); (111) est fortement prédominant.
- M. C. Schmidt² a pu étudier un nouveau cristal de **Scheelite** provenant de l'arête N du Mutsch (Etzlithal). Ce cristal, fixé par une face de la pyramide, a une longueur de

¹ G. Bœris. Octaedrite del Scipsius. Atti. Soc. Ist. di sc. nat. di Milano, 1901, 40, p. 339-344.

² Ć. Schmidt. Ueber einen zweiten Scheelitkrystall aus dem Maderanerthal. Zeitschr. f. Krystal. u. Min., 1902, B. 36, p. 460.

3 cm. 5; il présente un clivage net suivant (111) et suivant (001). La forme dominante est (111), dont les arêtes sont tronquées par (101); les autres faces observées sont (102) et (131). Le rapport des axes est égal à 1 : 1.5356. L'analyse, faite par M. Hinden, a donné 19.45 CaO + 0.49 MoO₃ + $79.53 \,\mathrm{WoO_3}$, ce qui correspond à une combinaison de $99.32 \,^{0}/_{0}$ de CaWoO₄.

M. L. Brugnatelli a eu entre les mains divers minéraux provenant de la Valteline. Dans une première note il décrit des olivines titanifères qui forment des veines et des amas dans des blocs de roche serpentino-chloriteuse tombés du massif du Monte Braccia près de Sesia dans le Val Malenco. La découverte d'olivine titanifère dans les serpentines de Malenco, succédant à la découverte récente faite par M. Bæris du même minéral dans les Alpes piémontaises, semble indiquer qu'il est beaucoup plus répandu dans les Alpes qu'on ne le supposait.

Dans une seconde note, le même auteur ² a donné les caractères de plusieurs cristaux de beryll provenant de la pegmatite de Sondalo (Valteline). Ces échantillons appartiennent à la variété commune bleu-verdâtre et peu transparente; ils sont partiellement décomposés et renferment de ce fait des inclusions abondantes de mouscovite et de caolin. Dans l'intérieur des grands individus se voient de petits cristaux du même minéral absolument purs d'inclusions.

D'après plusieurs mesures la valeur moyenne de indices de réfraction a été calculée à $\omega = 1.5823$ et $\varepsilon = 1.5762$.

La même pegmatite de Sondalo renferme une assez grande quantité de **zirkon** rouge-brunâtre, en petits cristaux brillants allongés selon (001), qui sont inclus dans tous les éléments de la roche y compris l'apatite. Celle-ci est toujours très abondante et ses cristaux peuvent atteindre jusqu'à 2 cm. de longueur; c'est une apatite fluorée typique avec les indices $\omega = 1.6379$ et $\varepsilon = 1.6349$.

Point de fusion des minéraux. — Nous devons à M. A. Brun 3 une série d'expériences fort intéressantes sur le point

¹ L. Brugnatelli. Ueber einen Fundort von Titanolivin im Val Malenco (Veltlin). Zeitschr. f. Krustal, und Min., B. 36, p. 451, 1902.

⁽Veltlin). Zeitschr. f. Krystal. und Min., B. 36, p. 151, 1902.

² L. Brugnatelli. Beryll und andere Mineralien der Pegmatite von Sondalo im Veltlin. Zeitschr. f. Krystal. u. Min., B. 36, p. 97-101, 1902.

³ A. Brun. Etude sur le point de fusion des minéraux et sur les conséquences pétrographiques et synthétiques qui en résultent. Archives Genève, t. XIII, p. 352-375.

de fusion de certains minéraux. L'auteur a opéré suivant une méthode nouvelle qu'il décrit en détail et qui est basée sur les principes suivants : 1° il ne doit y avoir aucun contact direct entre le corps sur lequel on expérimente et le

four; 2º tout rayonnement extérieur doit être évité.

D'après les observations de M. Brun, les silicates basiques présentent un point de fusion très net, tandis que les silicates acides restent assez longtemps à l'état pâteux avant de couler. Si le point de fusion coïncide en général avec le point de destruction du réseau cristallin, cela n'est pas toujours le cas; ainsi, la trémolite, qui est détruite à 1090°, ne fond qu'à 1270°; les minéraux hydratés, ainsi que certains minéraux métamorphiques présentent la même particularité. La destruction du réseau cristallin se manifeste, tantôt par une opacité du cristal, tantôt par une fissuration, tantôt par une véritable pulvérisation.

M. Brun a pu déterminer pour soixante minéraux le point de fusion et le point de destruction du réseau cristallin, dont il donne la liste accompagnée de renseignements sur l'aspect de la masse fondue. Les résultats qu'il a obtenus peuvent servir soit à déterminer la température maximum d'une lave fondue d'après le point de fusion des minéraux de première consolidation qu'elle contient, soit à reconnaître l'ordre de consolidation des éléments constituants d'une même roche. A propos du second point il faut remarquer que les silicates basiques présentent une tendance marquée à cristalliser; les spinelles magnésiens, le zircon, le fer chromé se forment déjà à 2000°, tandis que le péridot et l'anorthite ne cristallisent qu'à une température plus basse et que l'augite ne se forme qu'à 1230°. On peut dire que l'immense majorité des minéraux des laves basiques cristallisent entre 1900° et 1200°.

Dans les laves acides la tendance beaucoup plus faible des éléments à cristalliser détermine la formation d'une proportion beaucoup plus importante de verre et de structure sphérolithique. Partant de l'opinion admise que les ponces et les liparites sont des dérivés de l'obsidienne, dont elles se distinguent par le départ partiel de l'eau primitivement incluse dans le verre et qu'il y a relation entre le départ de l'eau et la cristallisation des sphérolithes, M. Brun a exposé pendant sept jours à une température de 700° à 750° un fragment d'obsidienne et a réussi de cette façon à le transformer en liparite. En se basant sur cette expérience, il admet que le processus de formation des roches acides doit se faire en deux temps : a) création sous pression d'un verre

hydraté, colloïde, capable de supporter sans se décomposer une température de 830°; b) abaissement de la température et vers 800° réaction mutuelle des silicates acides contenant le groupe SiO₂H et de l'hydrate KOH. Si le magma d'obsidienne est soumis à une température supérieure à 830° il se transforme en ponce; s'il se refroidit lentement entre 830° et 750 il y a départ d'eau, cristallisation d'autant plus accusée que l'abaissement de température est plus prolongé et formation de liparite; si enfin le refroidissement est brusque, le magma se solidifie sous forme d'obsidienne.

Les mêmes principes permettent d'expliquer la présence d'inclusions liquides avec corps en solution dans les quartz des granits, l'apparence de deuxième consolidation des quartz qui moulent les cristaux de feldspath, et la présence dans les roches acides de micas fluorés. Ils concordent du reste avec les expériences de MM. Friedel et Sarasin et de M. Hautefeuille sur la cristallisation du quartz et de l'orthose.

Pétrographie.

Massifs centraux. — Nous devons à M. A. Baltzer 1 une courte notice concernant la géologie du massif de l'Aar. La première partie de cette étude est consacrée au dynamométamorphisme des formations sédimentaires et spécialement des calcaires. L'auteur a pu suivre la transformation par la compression du calcaire noir suprajurassique normal en une sorte de brèche, dont les éléments ont pris une teinte grise ou rougeâtre par l'oxydation des parties bitumineuses qu'ils contenaient et sont devenus finement cristallins; le ciment de cette brèche est représenté par un réseau de veines argileuses rouges ou vertes, étirées, striées par friction et montrant tous les signes d'une pression intense. Ensuite la roche passe à la brèche à coloration intense de Grindelwald, de Seitenwängen, etc....

Lorsque le Malm est plus ou moins marneux et schisteux à l'état primaire, comme c'est le cas pour le niveau de Birmensdorf et souvent aussi pour le Tithonique, il se transforme par dynamométamorphisme en un marbre schisteux, coloré alternativement en jaune et en rouge et coupé par des plans tapissés de séricite tel qu'on peut en voir un bel exemple dans l'Urbachthal. Ce marbre est caractérisé par

¹ A. Baltzer. Nachlese zur Geologie des Aarmassivs. Mittheil. der naturf. Gesells. Bern, année 1901, p. 67-72.

l'abondance des mâcles à lamelles contournées; il présente en outre un plissottement microscopique intense de toutes ses parties.

Le calcaire pur et compact peut, lorsqu'il est soumis à la pression, simplement modifier sa couleur, qui passe au gris ou au rose et finalement au blanc, et en même temps prendre une structure cristalline d'abord fine, puis de plus en plus grossière. Des exemples de marmorisation de cette sorte existent dans les parois de l'Eiger, au Dossenhorn, au Laubstock, au Plattenkopf. L'auteur réfute ici les arguments de ceux qui veulent voir dans la marmorisation des calcaires un effet de l'action des eaux d'infiltration.

Dans le même travail M. Baltzer décrit la zone de roches aplitiques qui borde la protogine du massif de l'Aar au

Mieselen (glacier de Lauteraar).

Ces roches ont à peu près la même composition minéralogique que la protogine, dont elles se distinguent par une teneur plus faible en biotite et surtout par leur grain beaucoup plus fin. On peut les considérer comme des roches éruptives, subséquemment dynamométamorphisées; leur contact avec le gneiss est nettement filonien, comme Escher et Studer l'ont du reste déjà reconnu.

M. R. Helbling ¹ a consacré son travail de thèse à l'étude des gîtes métallifères du Mont Chemin (Valais) et de l'extrémité NE du massif du Mont Blanc. Les roches cristallines du Mont Chemin, tout à fait analogues à celles du Mont Catogne dont elles sont le prolongement, forment sur le versant oriental de la vallée de la Dranse une zone large encore de 6 kilomètres, qui de là se rétrécit rapidement vers l'E et finit par disparaître sous les alluvions du Rhône.

On y distingue du NW au SE:

- 1º Une zone de gneiss séricitique et chloriteux plongeant de 60° à 80° vers le SE.
 - 2º Un banc de protogine qui recouvre les schistes.
- 3º Une nouvelle zone de gneiss séricitique reposant sur la protogine et traversée par de nombreux filons de quartz-porphyres, d'aplites et de granite-porphyres.

La protogine est énergiquement métamorphisée mécaniquement et chimiquement; elle ne contient plus ni biotite, ni mica à éclat métallique (phengite d'après M. Schmidt) et est

¹ R. Helbling. Die Erzlagerstätten des Mont Chemin bei Martigny. Inaug. Diss., Basel, 1902.

par contre très riche en séricite et en chlorite, qui, localement, lui donne une teinte générale foncée. Le quartz y est relativement peu abondant; les plagioclases sont presque complètement caolinisés; les cataclases sont très développées;

l'épidote et la calcite sont abondants.

Vers le sommet du Mont Chemin la bande de protogine est divisée en deux par une zone de schistes cristallins dans lesquels s'intercalent des filons de quartz-porphyre, d'aplite et de protogine. L'on a évidemment affaire ici à des apophyses dérivant d'un noyau de protogine qui existe en profondeur. La route qui mène de Chemin à Vence fournit une fort belle

coupe à travers ce complexe.

Les gneiss de la zone NW sont finement grenus et très schisteux; ils se composent essentiellement de lits de chlorite et de séricite séparés par de minces couches de quartz et de feldspath caolinisé. L'injection téléfilonienne, étudiée par M. Duparc pour le massif du Mont Blanc, y est fort bien caractérisée. C'est du milieu de ces gneiss que pointe près du signal de Surfrête un banc de microgranulite toute semblable à celle du massif du Mont Blanc, qui renferme de nombreuses inclusions de schistes et qui forme avec le gneiss tantôt un contact franc, tantôt une transition graduelle.

Près de son contact avec la protogine, le gneiss est comme imprégné par un réseau de filons et de lentilles microgranulitique, qui paraissent être des apophyses de la roche granitique et se distinguent de la microgranulite de Surfrête seulement par leur grain plus fin et leur décomposition plus avancée. En même temps le gneiss s'enrichit en quartz et devient plus grossier; par place il perd peu à peu sa structure schisteuse et passe graduellement à la protogine. C'est dans cette zone de contact que se trouvent les gisements de fer et de marbre du Couloir Collaud et de chez Large.

Les gneiss de la zone SE sont moins schisteux et plus riches en quartz; ils sont traversés parallèlement à leur schistosité par d'innombrables filons de quartz-porphyre, dont l'un atteint presque 100 m. d'épaisseur, tandis que d'autres sont réduits à quelques centimètres. Ces porphyres, rendus parfois schisteux par la pression, sont des roches grises, compactes, avec de gros grains de quartz et de nombreuses paillettes de mica; leur structure est tantôt granophyrique, tantôt microgranitique, tantôt microfelsitique. Outre les filons de quartz-porphyre la zone gneissique SE contient des filons d'aplite et de granite-porphyre et des lentilles de roches amphiboliques. Ces dernières prennent un

développement particulier près de la galerie de la Monnaie; elles sont constituées par un mélange hypidiomorphe de feldspath et d'amphibole, dans lequel c'est tantôt l'un tantôt l'autre qui prédomine; le feldspath est toujours très décomposé, tandis que l'amphibole est fraîche. Ces amphibolites peuvent être analoguées absolument avec les formations correspondantes des massifs du Mont Blanc et du Gothard.

Les gisements de fer du Mont Chemin se groupent autour de trois centres principaux situés dans la zone de contact des schistes de la bordure NW avec la protogine; ce sont les gisements du Couloir Collaud, de chez Large et des Planches, qui ont tous trois été exploités à plusieurs reprises.

Dans le Couloir Collaud, près d'une ancienne galerie située à 1186 m., M. Helbling a relevé de l'W à l'E la coupe suivante, les couches plongeant de 80° au SE:

- 1º Gneiss séricitique.
- 2º Roche amphibolique compacte, pauvre en minerai (1 m.).
 - 3º Roche amphibolique schisteuse (0^m5).
- 4º Roche amphibolique compacte, traversée par un réseau de veines d'épidote, de stilpnomélane, de quartz et de calcite, très riche en magnétite en amas lenticulaires (1^m5).
 - 5º Gneiss séricitique.

Un peu plus bas un banc de marbre s'intercale dans les amphibolites et prend la place du minerai de fer; puis, à l'altitude de 1059 m., apparaît un second banc de marbre et d'amphibolite à magnétite, dans lequel le calcaire marmoréen épais de 1^m5 est intercalé entre deux zones amphiboliques et ferrifères.

Au-dessus de la galerie de 1186 m., le banc d'amphibolite augmente d'épaisseur, puis il s'y intercale des bandes de marbre qui, prenant toujours plus d'importance, finissent par le remplacer complètement. Il y a donc dans tout le Couloir Collaud une liaison intime entre les marbres et les amphibolites ferrifères.

L'ancienne mine de fer de chez Large se trouve dans le prolongement du Couloir Collaud au-dessus du village de Chemin et montre une disposition analogue. On peut reconnaître ici quatre bancs de marbre et trois zones d'amphibolite ferrifère, mais les affleurements très limités ne permettent pas de déterminer les relations entre calcaires et amphibolites. Quant à la mine des Planches, située plus au NE, on y a exploité entre 1842 et 1855 un banc d'amphibolite ferrifère de 3 à 4 m. d'épaisseur sur 30 à 40 m. de

longueur.

Les gneiss de la bordure SE contiennent à l'W de Vence une lentille de 40 à 60 cm. d'épaisseur d'une roche composée essentiellement d'augite, d'épidote et de hornblende et contenant une quantité importante de blende et de magnétite, qui a été exploitée également. Les schistes gneissiques sont eux-mèmes imprégnés par places de magnétite.

Le marbre des mines de fer est holocristallin, à grain moyen, schisteux; il renferme toujours du quartz, qui forme par places des amas lenticulaires; dans ses parties latérales il contient des lits minces de hornblende, d'idocrase et d'épidote qui, devenant toujours plus nombreux vers l'extérieur,

établissent un passage graduel à l'amphibolite.

Les amphibolites magnétitiques sont des roches vert-foncé, à grain fin, contenant de 24 à 26 % de fer et formées essentiellement de hornblende (glaucophane) avec de l'épidote, du stilpnomélane, de l'apatite, de la magnétite et de la pyrite. Dans certaines parties la magnétite devient tout à fait pré-

pondérante et forme jusqu'au 70 % de la roche.

L'auteur a fait une étude spéciale du stilpnomélane qui existe soit dans l'amphibolite compacte sous forme de fibrilles, soit dans les nombreuses cavités de la roche sous forme de prismes et de lamelles. Ce minéral, qui ne montre jamais de formes cristallographiques, possède un clivage très net suivant un plan; son poids spécifique est de 2.7 à 2.8; il est brun et à peine translucide en sections très minces; son pléochroïsme est très marqué et ses propriétés optiques rappellent celles de la biotite. L'analyse faite par M. Hinden a donné: SiO₂ 45.80 %, Al₂O₃ 8.59 %, Fe₂O₃ 10.42 %, FeO 19.30 %, MgO 4.19 %, CaO 0.60 %, Na₂O 0.42 %, K₂O 2.38 %, H₂O 9.10 %.

Quant à l'origine des marbres et des amphibolites du Mont Chemin, l'hypothèse la plus probable est celle d'après laquelle ces formations feraient partie intégrante de la série cristallophyllienne dans laquelle elles sont incluses. La minéralisation peut être dûe à l'intrusion d'un magma éruptif, mais il n'est pas possible d'établir une liaison évidente entre

elle et la venue de la protogine.

Outre les mines de fer, le Mont Chemin est connu aussi par ses mines de plomb. Sur le versant oriental de la Tête des Econduits entre Chemin et les Planches, dans la zone des schistes injectés qui sépare les deux bancs de protogine, s'intercalent parallèlement à la schistosité de grandes lentilles de quartz, qui contiennent des veines assez importantes de galène et en quantité plus faible de la blende et de la malachite. D'autre part, l'ancienne mine des Trapistes dans la vallée de la Dranse appartient à la zone gneissique SE; l'on a affaire ici à un filon de quartz, digité, qui traverse un gneiss séricitique parallèlement à la schistosité et qui contient de la galène associée à de la baryte. Un filon tout semblable se retrouve dans le prolongement exact de la mine sur le flanc N du Catogne; du reste l'analogie de ces gîtes avec ceux du Goppenstein dans le Lötschenthal et de Steinberg dans la vallée de Lauterbrunnen est évidente.

Dans la série cristallophyllienne des Aiguilles Rouges s'intercalent des traînées parallèles et discontinues d'amphibolites et d'éclogites qui sont surtout bien développées autour du lac Cornu, entre la Flégère et Planpraz, au Col de Bérard et dans le voisinage du lac Noir. Ces roches basiques, incluses dans des micaschistes granulitisés, sont recoupées par places par des filons de granulite. C'est de l'ensemble de ces roches granulitiques et amphiboliques que M. E. Joukowsky 1 a fait une étude très intéressante. Il a décrit successivement les spécimens suivants:

1º Une granulite à grain fin sans élément noir. Cette roche est formée essentiellement de quartz, d'orthose en grandes plages microperthitiques et d'albite avec très peu d'oliglocase et de mouscovite et comme minéraux accessoires du zircon et du grenat. Elle présente la composition suivante : SiO₂ 70.26 ⁰/₀, Al₂O₃ 16.33, CaO 3.75, K₂O 4.18, Na₂O 5.95 avec des traces de fer et de magnésie.

2º Une granulite très riche en quartz avec une structure granulitique plus franche que la précédente.

3º Une granulite à amphibole. L'orthose est moins abondante que dans les types précédents et les plagioclases sont compris entre l'oliglocase et l'andésine; l'amphibole (hornblende commune) est irrégulièrement répartie et fréquemment corrodée. La composition chimique est la suivante : SiO₂ 66.98 ⁰/₀, Al₂O₃ 14.92, Fe₂O₃ 4.28, CaO 3.33, MgO 1.58, K₂O 3.87, Na₉O 6.12.

4º Une roche amphibolique et micacée. Cette roche formée de quartz en grandes plages de dernière consolidation, d'or-

¹ E. Joukowsky. Sur les éclogites des Aiguilles Rouges. Archives, t. XIV, p. 151-171 et 261-281.

those prédominant sur les plagioclases, d'albite et d'oliglocase, renferme de grands cristaux de hornblende et comme minéraux accessoires de la magnétite et du zircon. La teneur en silice est de 52.28 %, la chaux prédomine sur la magnésie et la soude est beaucoup plus abondante que la potasse.

- 5° Une amphibolite foncée. Le quartz forme des plages intrusives ou des filonets recoupant les autres minéraux; les feldspaths, très décomposés, paraissent être compris entre l'oligoclase et l'andésine. L'amphibole (hornblende commune) est très abondante. La Seybertite et le chrysotile sont richement représentés; la magnétite et le leucoxène constituent les éléments accessoires. L'analyse chimique a donné : SiO₂ 46.09 ⁰/₀, Al₂O₃ 17.86, Fe₂O₃ 0.77, FeO 13.66, CaO 7.97, MgO 6.95, K₀O 0.68, Na₉O 4.71.
- 6º Un micaschiste à biotite rouge intercalé entre deux zones amphiboliques. La biotite n'a jamais de contours; le quartz forme de grandes plages et des traînées de plages plus petites; l'orthose, qui est associée au quartz, prédomine sur les plagioclases (albite-oligoclase). Les minéraux accessoires sont le grenat, la magnétite et le rutile. La composition chimique est la suivante : SiO₂ 56.84, Al₂O₃, 22.16, Fe₂O₃ 1.58, FeO, 4.44, CaO 3.08, MgO 3.47, K₂O 3.44, Na₂O 2.46.
- 7° Une éclogite constituée par une masse pyroxénique empâtant de gros cristaux de grenat. Le quartz forme des filonets ou des grains disséminés dans le pyroxène; le fèldspath est peu abondant et localisé autour des grenats; le pyroxène paraît avoir été corrodé par le quartz et est constellé de points d'ouralitisation; il doit rentrer dans le groupe du diopside quoiqu'il contienne un peu d'alumine (5 %). L'amphibole, moins abondante que le pyroxène, forme deux variétés, dont l'une paraît dériver du pyroxène, l'autre du grenat. Le grenat participe à la fois du grossulaire, du pyrope et de l'almandine; il forme de gros grains entourés par une zone d'amphibole, de quartz et de feldspath.
- 8º Une éclogite riche en amphibole, relativement pauvre en pyroxène et en grenat. Le quartz forme des enchevêtrements pegmatoïdes avec le pyroxène; le feldspath se rencontre en nombreux petits cristaux décomposés et indéterminables; le grenat est partiellement décomposé en un aggrégat d'amphibole et de feldspath et le pyroxène est partiellement transformé en amphibole; on peut donc admettre

que la masse était primitivement formée de grenat et de pyroxène, qui ont tous deux été décomposés en partie par suite probablement de l'intrusion de la granulite.

9° Une roche formée essentiellement d'amphibole et de

grenat.

10° Une roche constituée par de grands cristaux de hornblende d'ouralitisation entourant des associations de hornblende, de feldspath et de quartz et traversée par des filons blancs de quartz et de feldspath.

11° Une roche amphibolique contenant peu de grenat et de pyroxène et coupée par de nombreux filons de quartz et de feldspath, qu'on peut considérer comme une éclogite ouralitisée.

12° Un micaschiste voisin du N° 6, mais avec des biotites plus grandes, qui se trouvait en contact avec l'amphibolite granatifère.

En examinant plus particulièrement les types basiques de cette série, on est frappé d'abord du fait que, malgré la basicité de la roche, les feldspaths sont toujours compris entre l'andésine et l'oligoclase; or, comme ces feldspaths se trouvent fort souvent associés au quartz dans des filonets coupant la roche, il est justifié de les attribuer avec le quartz à un apport secondaire. D'autre part, tandis que les éclogites traversées par des filons exclusivement quartzeux n'ont pas subi de transformation, on constate un passage du pyroxène à l'amphibole dans toutes les éclogites affectées par une intrusion feldspathique. Dans le but d'éclaircir la question des relations qui pourraient exister entre la venue du feldspath et la formation de l'amphibole, M. Joukowsky a entrepris un patient triage du grenat, du pyroxène et de l'amphibole contenus dans une éclogite et a analysé séparément ces trois minéraux, ce qui lui a donné:

								Grenat.	Pyroxène.	Amphibole.
SiO_2 .	2.00	100					•	37.37	51.28	42.14
Al_2O_3	100	•	•	•	•	•	•	21.52	5.00	6.44
$\text{Fe}_{2}\text{O}_{3}$	•	٠	•	•	•	•	•		2.95	14.93
FeO.	100	•	•	٠	•		٠	28.32	9.58	13.31
CaO.	•	•	•	٠	•	•	•	7.85	19.17	11.88
MgO.	٠	•	•	•	•	•	•	5.37	11.93	10.05
$\mathbf{K_2O}$.	٠	•	٠	•	•	•	•	-	-	0.34
Na ₂ O.		•	٠	•	٠	•	•	-		1.33
P. au 1	Η.	•	•	٠	•	•	•	-	0.49	0.80
								100.43	100.40	101.20

Ainsi l'amphibole se distingue du pyroxène par la présence d'alcalis et par sa teneur plus forte en alumine. Ce fait vient appuyer l'hypothèse d'une ouralitisation provoquée par l'intrusion d'un magma feldspathique, qui est encore confirmée d'autre part par la présence dans le voisinage de la granulite de couches de passage ayant l'aspect de pegmatites à grands cristaux d'amphibole.

Alpes méridionales. — M. Chr. Tarnuzzer 1 a étudié spécialement au point de vue technique le gisement d'asbest de l'Alp Quadrato près de Poschiavo (Grisons). L'asbest, associé à des roches serpentineuses, est inclus dans un complexe de gneiss, de schistes micacés, chloriteux et talqueux qui, audessous du Col de Canciano, s'intercale entre deux bandes de Trias. Les serpentines, qui atteignent une épaisseur de 500 à 700 m., s'étendent depuis l'Alp Quadrato vers l'E dans le massif compris entre le Val Quadrato et le Val Canciano et jusque vers Lanzada et le Val Malenco en Italie.

La serpentine et l'asbest ont fait l'objet d'une étude pétrographique de la part de M. Bodmer-Beder 1. La serpentine présente des variations importantes; l'une de ses variétés, qui provient de l'exploitation N° 5 de l'Alp Quadrato, est une roche gris-verdâtre, de structure primitivement grenue, qui renferme de nombreuses intercalations d'asbest. Les minéraux primaires essentiels devaient être la bronzite, l'olivine et le diopside, mais la roche a été transformée en grande partie en une masse finement lamelleuse ou fibreuse, cataclastique par places, de serpentine-antigorite dérivée du pyroxène, de serpentine-chrysotile dérivée de l'olivine, de hornblende secondaire, de bastite, de pyroxène monoclinique secondaire dérivé probablement du pyroxène primaire et de magnétite.

L'asbest, intercalé dans la serpentine en lits tantôt minces, tantôt épais de 10 à 12 cm., a un éclat argenté ou bien une teinte qui varie du jaune-verdâtre au gris-brunâtre. Il forme des fibres qui peuvent avoir jusqu'à 60 cm. de longueur et est constitué essentiellement par un mélange de chrysotile et de bastite en cristaux orientés parallèlement; la trémolite en petites aiguilles y est peu abondante; du reste les quantités relatives de ces trois éléments varient suivant les régions de la roche serpentineuse.

¹ Chr. Tarnuzzer. Die Asbestlager der Alp Quadrata bei Poschiavo. Zeitschr. f. prakt. Geol., 1902, p. 217-223.

² A. Bodmer-Beder. Der Malencoserpentin und seine Asbeste auf Alp Quadrato bei Poschiavo. Centralbl. f. Min. Geol. u. Pal., 1902, p. 488-492.

Aérolithes.

Le 30 novembre 1901, un aérolithe est tombé à Châtillens, dans la vallée de la Broye, et trois fragments en ont été retrouvés presque immédiatement par M. Décosterd, forestier cantonal. D'après les renseignements récoltés par M. M. Lugeon¹, nous savons que cet aérolithe, du poids total de 705 grammes, est un sporadosidère; sa densité est de 3.20; les grains métalliques y sont nettement visibles à l'œil nu. Ce météorite a d'abord été aperçu à l'Etivaz, puis au-

Ce météorite a d'abord été aperçu à l'Etivaz, puis audessus d'Ollon et dans la vallée de l'Eau froide, avec une direction EW, puis, arrivé au-dessus de Châtillens, il a éclaté une première fois; sa direction était ici S-N; il a continué sa marche vers Moudon où de nouveaux éclatements se produisirent vers Payerne et vers Avenches.

M. E. Cohen a fait un nouvel examen du météorite de Rafrüti (Emmenthal). N'ayant pas pu me procurer la publication de M. Cohen, je me contente de la citer ici.

IIIe PARTIE — GÉOLOGIE DYNAMIQUE

Actions et agents externes.

Sources et eaux d'infiltration.

Chacun sait que les venues d'eau excossivement abondantes dans le tronçon S du tunnel du Simplon ont constitué une des grosses difficultés de l'entreprise. M. H. Schardt ³, qui a longuement étudié la question, a résumé ses observations dans une note communiquée à la Société vaudoise des sciences naturelles et plus spécialement dans un rapport adressé à la direction de l'entreprise ⁴.

¹ M. Lugeon. L'aérolithe de Châtillens. Bull. Soc. vaud. des sc. nat., t. XXXVIII. C. R. de la séance du 4 déc. 1901. Voir aussi Le Globe, organe de la Soc. géogr. de Genève, Bulletin, t. XLI, p. 36-38.

E. COHEN. Das Meteoreisen von Rafrüti im Emmenthal. Mittheil. des

naturw. Vereins f. Neupommern und Rügen, 34, 1902.

³ H. Schardt. Résultats géologiques obtenus par le percement du tunnel du Simplon. Bull. Soc. vaud. des sc. nat., t. XXXVI. C. R. de la séance du 19 fév. 1902.

⁴ H. Schardt. Rapport sur les venues d'eau rencontrées dans le tunnel du Simplon du côté d'Iselle. Imprimerie Corbaz, Lausanne, 1902.