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“Try, try again”, is popular advice. It is good advice. The insect, the mouse, and the man
follow it; but if one follows it with more success than the others it is because he varies his
problem more intelligently. This strategy for solving mathematical problems was
recommended to us by George Pólya [10, p. 209]. In this article we will take Pólya’s suggestion
and discuss two variations of a combinatorial problem on finite sets. These variations were
found by Koolen, Laurent, and Schrijver [9], and reveal a surprising connection with
geometry. At present however, the problem is still unresolved. Perhaps you can find another
variation that will lead to its solution.

The problem we are interested in is a generalization of Fisher’s inequality to multisets. We
shall see that such a generalization is closely related to sets in Rn in which the taxicab
or Manhattan) distance between any two distinct points is the same. On the other hand, it
will become clear to us in the third section that the problem can also be reformulated in
terms of pairwise touching simplices. In fact, we shall see that our problem is equivalent to
determining the maximum number of translated copies of a regular n-dimensional simplex
that can be placed in Rn such that any two distinct ones touch but do not overlap. Fig. 1

In seinen Arbeiten zur statistischen Versuchsplanung entdeckte R.A. Fisher im Jahr

1940 die folgende überraschende Ungleichung: Sind F1, Fm verschiedene
Teilmengen der Zahlenmenge {1, n} mit der Eigenschaft, dass jede Menge Fj genau

r Elemente und jeder Durchschnitt Fj n Fk j k) genau Elemente mit 0
r besitzt, so gilt m n. Im nachfolgenden Beitrag wird die Fishersche Ungleichung

dahingehendverallgemeinert,dass in den zugrunde liegendenMengenElemente
mehrfach auftreten dürfen. Mit Hilfe dieses Ergebnisses gewinnt der Autor Erkenntnisse

zu Fragestellungen aus der kombinatorischen Geometrie, z.B. der Frage nach der
maximalen Anzahl paarweise sich berührender n-dimensionaler Simplices im Rn.
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shows a possible configuration of three 2-dimensional simplices equilateral triangles) in
the plane.

Fig. 1 Touching equilateral triangles

Can you imagine how many translated copies of a regular tetrahedron can be placed in R3

such any two distinct ones touch?

A generalization of Fisher’s inequality

Let us begin by recalling Fisher’s inequality.

Theorem 1 Fisher). If F1, Fm are m distinct subsets of {1, n} and there exist
integersr and with 0 r such that the size of each Fi equals r and the intersection
of any two distinct sets Fi and Fj contains exactly elements, then m n.

The first ideas for this inequality were found by R.A. Fisher [7] in 1940. Fisher was a

statistician, who used a similar inequality in his theory for designing statistical experiments

to collect data. R.C. Bose [4] extended the ideas of Fisher in 1949 and proved the

nk

inequality as stated in Theorem 1. Bose’s proof is short and elegant; it makes ingenious
use of linear algebra. Since then the linear algebra method has been refined and applied
to many problems in combinatorics. An extensive collection of examples can be found in
an unpublished book by Babai and Frankl [3] and in [1]. We give Bose’s proof in the next
paragraph.

First remark that the inequality is trivial if r because m 1 in that case. If, on the

other hand, r > we can use linear algebra in the following way: Let A ai j be the
n × m incidence matrix given by ai j 1 if i Fj, and aij 0 if i Fj. Put M A A,
where A denotes the transpose of A. Now note that mi j 1 aki akj and hence mi j is

equal to the size of the intersection of Fi with Fj Therefore, the m×m matrix M satisfies:

M .J + r - I, 1)

where J is the matrix with all entries equal to one. It suffices to prove that M has rank m.
Indeed, rank M rank A A rank A n, as A has n rows. We first show that M is

positive definite, that is, the inner product x, Mx > 0 for all x 0. From equation 1) it
follows that

x, Mx x,.Jx + x, r - Ix
x1 + + xm)2 + r - x2

1 + + x2m
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so that x, Mx > 0 for all x 0, as r > To complete the proof remark that every
positive definite matrix is invertible, as Mx 0 for some x 0 implies x, Mx 0.

Thus M is invertible, and hence it has rank m.

We wish to replace set with multisets in Fisher’s theorem. Intuitively a multiset is a set

with possibly repeated elements. More formally, a multiset on {1, n} is a function

µ : {1, n} N.{0},where µ(k) is regarded as thenumber of repetitions of k. We will
use the notation F {1µ(1), nµ(n)}. The size of F is given by |F| k µ(k), and
the intersection of F with another multiset G {1.(1), n.(n)} is defined by F n G

{1.(1), n.(n)}, where k) min{µ(k), k)} for all k.

Inspired by Fisher’s inequality we can now ask for the maximum number of distinct
multisets F1, Fm on {1, n} for which there exist integers r and with 0 r
such that each Fi has size r and the intersection of any two distinct multisets Fi and

Fj has size We denote this number by n). The following example shows that n)
can be larger than n: F1 {12,20,31, 41}, F2 {10,22,31, 41}, F3 {11,21,32, 40},
F4 {11, 21, 30, 42}, and F5 {10, 20,32,42 }. It is easy to verify that r 4 and 2
in this example. Thus, our problem is to determine the values of n).

How many points at the same distance?

As announced in the introduction our problem can be reformulated in terms of sets in Rn

in which the points are all at the same distance from each other. To do this we need to
use the taxicab Manhattan) distance instead of the usual Euclidean distance. Thus, the
distance between two points x and y in Rn is given by

d(x, y)
k

|xk - yk|.

From this formula it is easy to see why this distance is called the taxicab or Manhattan
distance, as it resembles the distance that a taxicab has to travel in the rectilinear streets of
Manhattan. A more common name in mathematics for the taxicab distance is 1-distance
and this is the name we shall be using here.

So we wish to study sets in Rn in which the 1-distance between any two distinct points is
the same. Such sets are called 1-equilateral sets. A simple example in Rn is the set

{(±1, 0, 0), 0,±1,0, 0), 0, 0,±1)},

with 2n points that are all at 1-distance 2 from each other.

To obtain the exact variation of our problem we need to put one additional constraint on
the 1-equilateral sets. Indeed, we shall also require that the 1-equilateral set S in Rn has

the property that k sk is the same for all s S. For instance, the set S given by

S {(2,0,1, 1), 0, 2, 1, 1), 1, 1, 2, 0), 1, 1, 0,2), 2, 2,0,0)}

is an 1-equilateral set in which the 1-distance between any two distinct points is 4 and

k sk 4 for all s S. Let us denote the maximum size of such 1-equilateral sets in Rn

by h(n). It turns out that the numbers h(n) and n) are closely related; as matter of fact:
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Theorem 2. For all n 1, h(n) and n) are equal.

Proof. To show that n) h(n); we let F {F1, Fm} be a collection of m
distinct multisets on {1, n} such that |Fi| r for all i, and |Fi n Fj| for all
i j For each i write Fi {1µi 1), nµi n)} and define the vector si Rn by
si µi 1), µi n)). Put S {s1, sm} and remark that |S| m, as F has size m.
Note also that k sik k µi k) |Fi| r for each i Moreover,

d(si s j

k
|sik - s j

k |

sik + s j

k
k - 2min{sik s j

k }

k
µi k) +

k

µj k) - 2

k
min{µi k), µj k)}

|Fi| + |Fj|- 2|Fi n Fj |
2r -2.

for each i j. This implies that S is an 1-equilateral set in Rn of size m and k sk is the
same for all s S. Therefore, n) h(n) for all n 1.

To prove the opposite inequality; we assume that the equilateral set is contained in the
integer lattice Zn. It is known that we may do this without loss of generality. In fact, this
was proved by Koolen, Laurent, and Schrijver [9] by using so called cut metrics [6]. So

let S be an 1-equilateral set in Zn with h(n) elements, and suppose that k sk r for
all s S. By translating S we may also assume that each element of S has nonnegative
integer coordinates. For each s S we define a multiset Fs {1s1, nsn}. Clearly, the
multisets Fs are distinct, and |Fs| k sk r for all s S. Let D denote the distance
between points in S and remark that

|Fs n Ft|
k

min{sk tk} 1/2
k

sk + tk - |sk - tk |) 2r - D)/2

for all s t in S. Hence, n) h(n) for all n 1, which completes the proof of
Theorem 2.

There are some known results for h(n). To begin, Koolen, Laurent, and Schrijver [9] have

proved that h(n) n for 1 n 3, h(4) 5, and h(n) n +1 for n 4. Alternatively,
if n 4 and n is even, we can derive the lower bound, n + 1, from the following 1-

equilateral set in Rn:
s1 a,0,1,1, 1, 1)
s2 0, a,1,1, 1, 1)
s3 1, 1, a,0, 1, 1)
s4 1, 1, 0, a, 1, 1)

sn-1 1, 1, 1, 1, a, 0)
sn 1, 1, 1, 1, 0, a)

sn+1 0, 0, 2, 2, 2, 2),



Variations of a combinatorial problem on finite sets 63

n 5 n 6 n 8 n 12

4,0,1,1, 2) 4, 0,1,1,1, 1) 2, 0, 1, 1, 2, 0,1,1) 2,0,1,1, 2,0,1,1,2, 0, 1, 1)
0,4,1,1, 2) 0, 4,1,1,1, 1) 0, 2, 1, 1, 0, 2,1,1) 0,2,1,1, 0,2,1,1,0, 2, 1, 1)
1,1,4,0, 2) 1, 1,4,0,1, 1) 1, 1, 2, 0, 1, 1,2,0) 1,1,2,0, 1,1,2,0,1,1,2, 0)
1,1,0,4, 2) 1, 1,0,4,1, 1) 1, 1, 0, 2, 1, 1, 0,2) 1,1,0,2, 1,1,0,2,1,1,0, 2)
2,2,0,0, 4) 1, 1,1,1,4, 0) 0, 0, 0, 0, 2, 2, 2,2) 0,0,0,0, 0,0,2,2,2,2,2, 2)
0, 0,2,2, 4) 1, 1,1,1,0, 4) 0,0, 2, 2, 2, 2, 0,0) 0,0,0,2, 2,2,0,0,2,2,2, 0)
2, 2,2,2, 0) 2, 2,2,2,0, 0) 0,0, 2, 2, 0, 0, 2,2) 0,0,2,0, 2,2,0,2,0,0,2, 2)

2, 2,0,0,2, 2) 0,2, 0, 2, 2, 0, 2, 0) 0,0,2,2, 0,2,2,0,2,0,0,2)
0, 0,2,2,2, 2) 0,2, 2, 0, 2, 0, 0, 2) 0,0,2,2, 2,0,2,2,0,2,0,0)

0,2,0,0, 2,2,2,2,2,0,0,0)
0,2,0,2, 2,0,2,0,0,0,2,2)
0,2,2,0, 2,0,0,0,2,2,0,2)
0,2,2,2, 0,0,0,2,2,0,2,0)

Table 1 Equilateral sets

where a n- 2 and k sk 2n- 4. For odd n it is not so easy to write down an explicit
example of size n + 1. Other interesting examples are listed in Table 1.

These examples were found with the help of a computer, and indicate that the lower bound
for h(n) can be improved. Indeed, the first examples show that h(5) 7 and h(6) 9.

Even though the examples seem to have a lot of structure no better general lower bound
for h(n) is known at present than n + 1.

An upper bound for h(n) has been obtained by Alon and Pudlák [2]. They proved that
the maximum size of an 1-equilateral set in Rn without the restriction on the sums of the
coordinates) is at most cn log n for all n > 1. Closely related to this result is a conjecture of
Kusner [8] which says that the maximum size of an 1-equilateral set in Rn is 2n. We have

already seen, at the beginning of this section, the obvious example of an 1-equilateral set

in Rn that attains the upper bound of 2n. In fact, this is the only example known of size

2n. At present Kusner’s conjecture is proved for n 1,2 and 3 in [5], and for n 4 in
[9]. In connection with these results it also worth mentioning that it can be shown that the
size of every 1-equilateral set in Rn does not exceed h(2n - 1) + 1 [9]. Therefore it is

interesting to investigate if h(n) is linear in n.

Pairwise touching regular simplices

The second variation of our problem concerns regular simplices. Regular simplices are

generalizations of equilateral triangles in the plane and regular tetrahedrons in 3-dimensional

space, to general n-dimensional spaces. A number of them are depicted in Fig. 2.

For our problem we wish to place translated copies of a regular n-dimensional simplex
in Rn such that any two distinct ones touch but do not overlap. Fig. 1 shows a possible
configuration of three translated copies of a regular 2-dimensional simplex in R2 that are

pairwise touching. Theproblem is to determinehowmany regular n-dimensional simplices
we can place in Rn in this way. Let us denote this number by t n). You might well wonder
how t n) could be related to n). Surprisingly, t n-1) and n) are equalfor all n 1. A
convenientway to prove this equality is to first show the following result and subsequently
to apply Theorem 2.
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n 0 n 1 n 2 n 3

Fig. 2 Regular simplices

Theorem 3. For all n 1, t(n - 1) and h(n) are equal.

As it is difficult to visualize regular simplices in dimension four or more, it is useful to
give a formal definition of a regular n-dimensional simplex. This definition is quite
complicated, but, as we shall see, very practical for proving things. To begin we introduce the

following notion. A set L in RN is called an affine subspace if it is a translation of a linear
subspace V in RN It is said to be n-dimensional if V has dimension n. For instance, any
straight line in the plane is a 1-dimensional affine subspace. Now, consider n + 1 points
a0, a1, an in RN, where N n. If a0,a1, an are not contained in an n - 1)-
dimensional affine subspace in RN then the convex hull of a0,a1, an given by

i
.iai : .i 0 for all i, and

i
.i 1

is called an n-dimensional simplex. It is said to be regular if the standard Euclidean
distance between every pair of points in {a0, a1, an} is the same.

A simple way to construct a regular n-dimensional simplex is to take the convex hull of
the n + 1 standard basis vectors in Rn+1 given by

n x Rn+1

: xk 0 forall k, and

k

xk 1

Fig. 3 illustrates the construction of 2. The simplex n is called the standard regular
n-dimensional simplex in Rn+1. Equipped with the formal definition of a regular simplex
we can now prove Theorem 3.

Proof. To see that t n - 1) h(n) we let S be an 1-equilateral set in Rn such that

k sk r for all s S. If D is the distance between the elements of S, then for every
distinct s t in S we have that

D
k

|sk - tk|
k

2max{sk tk}- sk - tk -2r + 2
k

max{sk tk },

and hence k max{sk tk} 2r + D)/2 for all s t. Now, define for each s S the set

as by

as x Rn
: xk sk for all k, and

k

xk 2r + D)/2
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x2

x3

x1

Fig. 3 Standard regular 2-dimensional simplex

Note that as is a regular n - 1)-dimensional simplex in the affine subspace {x Rn :
k xk 2r+D)/2} Fig. 4 A)).Moreover, the simplicesas and at are translates of each

other, and they touch each other at the point s t with coordinates s t)k max{sk tk }
for 1 k n, whenever s t. Thus, {as : s S} is a collection of pairwise touching
translates of a regular n - 1)-dimensional simplex, and hence t n - 1) h(n) for all
n 1.

A)

x1

x2

2r + D)/2
s

t

s t

B)

x1

x2

1

xi x j

xi

x j

Fig. 4 Constructions

To show the opposite inequality we let {ai : i I} be a collection of pairwise touching
translations of a regular n - 1)-dimensional simplex. We may assume that each ai is a

translate of the standard regular simplex n-1 and that each ai is contained in the affine
subspace {x Rn : k xk 1}. Note that for each i I there exists a vector xi Rn,

with k xik 0, such that

ai x Rn : xk xik for all k, and

k

xk 1

Fig. 4 B)). The intersection of ai and aj satisfies

ai n aj x Rn
: xk max{ xik x j

k } for all k, and

k

xk 1 2)
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As the simplices ai and aj are touching, it follows from 2) that they touch at the point

xi x j with coordinates xi x j
k max{xik x j

k } for 1 k n. This implies that

k max{xik x j
k} 1. Therefore, we can use the equality

d(xi x j

k
|xik - x j

k|
k

2max{xik x j
k}- xik - x j

k

to deduce that d(xi x j 2 for all i j Thus, {xi : i I} is an 1-equilateral set in
Rn such that k xik 0 for all i I and hence t n - 1) h(n) for every n 1, which
completes the proof.

Note that h(4) 5, so that by Theorem 3 we can place five translated copies of a regular
tetrahedron in R3 such that any two distinct ones touch. At first glance this might seem

impossible, but it can be done. Fig. 5 shows the way to do it. A simple way to think about
this configuration is to see it as a part of the regular lattice packing pictured in Fig. 6.

Fig. 5 Touching tetrahedrons

Fig. 6 Lattice packing of tetrahedrons
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We conclude by noting that despite the variations we have presented, the problem has not
given away its secrets; but, it certainly has become more intriguing.
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