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Powers and Polynomials in Z-m

Lorenz Halbeisen, Norbert Hungerbühler, Hans Läuchli

Dedicated to the memory ofProf. Hans Läuchli

Lorenz Halbeisen, geboren 1964 in Laufen, studierte in Basel und Zürich und
promovierte an der ETH-Zürich. Nach Forschungsaufenthalten in Caen (Normandie)
und Barcelona (Katalonien) ist er gegenwärtig als Research Fellow in Berkeley
(Kalifornien) tätig.

Norbert Hungerbühler wurde 1964 geboren. Er studierte an der ETH Zürich, wo er
1994 seine Dissertation bei Michael Struwe abschloss. Anschliessend war er an der

Universität Freiburg im Breisgau, an der University of Minnesota in Minneapolis
und an der ETH in Zürich tätig. Seit Herbst 1998 arbeitet er am Max-Planck-Institut
für Mathematik in Leipzig.

Hans Läuchli studierte an der ETH in Zürich und promovierte 1961 bei Ernst Specker
mit einer Arbeit über das Auswahlaxiom. Nach Aufenthalten an der University of
California in Berkeley und an der University of Arizona in Tucson wurde er 1966

Professor an der ETH. Seine Interessen galten der ganzen Mathematik, am liebsten
aber forschte er im Bereich der Logik, der Mengenlehre und der Kombinatorik. Nach
längerer schwerer Krankheit verstarb er, erst 64jährig, im Sommer 1997.

Beim Rechnen in Z,„, dem Restklassenring der ganzen Zahlen modulo m. darf man
laufend alle auftretenden Summanden. Faktoren und Zwischenresullale modulo m
reduzieren, so dass man nie mit wirklich grossen Zahlen rechnen muss. Wie steht es aber

mit Exponenten? Loren/. I laibeisen. Norbcri Hungerbühler und Hans Läuchli /.eigen.
dass es nur ganz, wenige Moduln m. nämlich 1. 2. 6. 42 und 1806. gib!, für die auch
eine Formel vom Typ a1' «''m"J'" allgemein zutrifft. Gewisse Reduktionen sind aber
auch bei beliebigen Moduln in möglich. So lassen sich Funktionen .v h- .v .v g Z„,)
mit (grossen) Exponenten b in systematischer Weise durch Polynome x >-^ g(x) mit
gleichen Werten auf '£„,. aber wesentlich niedrigerem Grad, ersetzen.
Hans Läuchli ist am 13. August 1997 gestorben. Die Elemente der Mathematik rechnen

es sich als Ehre an. diese schöne und reizvolle Arbeit, die letzte, an der Hans Läuchli
noch mitgearbeitet liai, publizieren zu dürfen, chl
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1 Introduction and Notations

In this article we consider powers and polynomials in the ring Zm, where m G N is

arbitrary, and ask for "reduction formulas". For example, for addition, multiplication
and exponentiation, we have the following well known reduction formulas:

a + b mod(fl,m) +mod(fr,m)modm (1)

a ¦ b mod(a, m) ¦ mod(fr, m) mod m (2)

ab mod(a, mf modm (3)

It is much more difficult to find reduction formulas which allow to reduce the exponent.
Of course in general the formula

ah amod{h'm) modm (4)

is false. In the second section we will investigate for which numbers m such a reduction
formula holds.

In the third and the two following sections we will consider generalizations of Fermat's
little theorem and Euler's Theorem which allow to replace (in Zm) certain powers ab by
a polynomial /(«) of degree deg(/) which is strictly less than b. Such formulas can be

useful for various reasons: From an algorithmic point of view, it is cheaper to compute
the polynomial /(«) modulo m than the full power ab modulo m. On the other hand one

may wish for algebraic reasons to replace an arbitrary polynomial g(a) by a polynomial
of fixed (lower) degree (depending only on m but not on g) which is, as a function in
Zm, identical to g (see Section 6).

In the last section, we address the question of the minimal degree e(m) such that every
polynomial in Zm can be written as a polynomial of degree q < e(m). We give a complete
answer to this question by determining minimal (normed) null-polynomials modulo m.

Throughout this paper, we use the customary shorthand notation a | b for a, b G Z with
\ G Z. We write

a bmodm

for numbers a, b G Z, m G N, if m | a - b, and we adopt the notation (a, b) for the

greatest common divisor of a and b. Furthermore we denote by mod(a, m) the uniquely
determined number r g {0,1,..., m - 1} such that a km + r for some k e Z, and

Mod(a, m) denotes the number re {\,...,m} such that a km + r for some k e Z.

We had been working on the present article for about two years, when the mournful

message of Hans Läuchli's death reached us. At that time, only the first part (Section
2), which comprises a theorem resulting from joint work of Hans Läuchli and Ernst

Specker on exponential rings, and the second part (Sections 3-5) had been finished. The

third part about minimal polynomials was not yet completed, and we would like to thank
Prof. Ernst Specker for inspiring and helpful discussions and for valuable suggestions
concerning that last section.
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2 Special values of m
In this section we investigate for which values of m the reduction formula (4) holds.
The answer is contained in the following theorem.

Theorem 1 Let G := {1,2,6,42,1806}, then the following statements are equivalent:

(a) m eG.
(b) For all integers a, b one has

ab aMod(h'm) modm.

(c) For all integers a one has
am+l a modm.

Remark: The equivalence of (b) and (c) is obvious: (c) follows from (b) by choosing
b m + 1. The opposite implication follows from (2) by an easy induction argument.
However, notice that in (b) we cannot replace "Mod" by "mod" in the exponent. To

make this point more precise we state without proof:

Theorem 2 Let m e G, then one has am 1 mod m (and hence (b) holds with Mod
replaced by modj ifand only ifno prime factor o/mod(fl, m) belongs to the set G + 1

{2,3,7,43,1807}.

The proof of the equivalence of (a) and (c) relies on an induction principle, which we

prove after the following lemma.

Lemma 1 Let E\ := 2 and En+\ := q + E\ E2 ¦ ¦ ¦ En for a fixed, odd q > 0. If
A := E\ ¦ ¦ ¦ Ek such that E, is prime for i < k and x \ A, then x + q G {E\,..., Ejt+i}
or x + qs is not prime for an s with 1 < s < k.

Proof. If x A, then x + q Ek+\ and we are done. If x ^ A, then let / be the smallest
number such that E\\x. If / 1, then x + q1 is even, therefore x + q 2 e {Ei}
or x + q is not prime. Hence, the claim is proved for / 1 and only the case / > 1

remains to be checked: Since E\,..., E; are prime, we have E\ ¦ ¦ ¦ E;_i | x. Notice that
Ei • • -E;_i -qmodEi (for / > 1) and that Ej qmodEi for j > I (by definition).
Therefore we conclude x — qs mod Ei, where s is smaller than the number of prime
factors of x, hence s < k. Therefore E; \ x + qs and the proof is finished. D

We will use the special case q 1 in the proof of the following

Theorem 3 (Induction Principle) Let H Ç N be a set of natural numbers with the

following properties:

(i) 1 G H,

(ii) if h £ H and h + 1 is prime, it follows that h(h + 1) G H,

(iii) ifp2 I x for p > 1, then x <£ H,

(iv) ifh Apa&H,p prime, such that all divisors of a are greater than p, then

p-l\A.
Then H G.
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Proof. By (i) and (ii), G Ç H. For the opposite inclusion we claim that 2 < h G H
implies h Ei • E; with / < 4: In fact, by (iii), we know that h pip2 ¦ ¦ -pn with
pl < J>2 < ¦ ¦ ¦ < pn being prime numbers. Now we use (iv) with A 1, p p\ and

a -. Because p\ -1 | 1 (by (iv)), we have p\ =2 E\. Now, by induction, we assume
that pj Ej for all j < k < 1. Applying (iv) again, this time with A E\E2- ¦ • Ejt,

p pk+i andfl= ^, we have jUjt+i - 1 | A. Thus, by Lemma 1, pjt+i G {Ei,... ,Ejt+i}
and since jUjt+i > p] for ; < fc, we conclude pjt+i Ejt+i. D

Proofof Theorem 1: Now, we use the induction principle to prove Theorem 1. We have

to check properties (i)-(iv) for the set L of numbers h which satisfy (c):

(i) is trivial.

(ii) follows easily from Fermat's little theorem (see Section 3).

(iii) Let h p\ ¦ ¦ -pn G L, p^ prime. By (c), we know that p\+1 pt modh. Thus,
h | Pk(p\ - 1) and hence we have p\ lmod^-. For i ^ k it follows that

p\ l modp, and therefore p, ^ p^.

(iv) By (c) we have for h Apa e L that ch+l cmodh for all c Thus h \ c(ch - 1)

and
ch (cAaf lmodjP. (5)

Now, let c be such that (c,p) 1, then (by Fermat's little theorem)

{cAaf-1 Imodp. (6)

Combination of (5) and (6) yields cAa 1 modp. Since p is prime and (c,p) 1,

it follows that p - 1 | A a and by definition of a we get p - 1 \ A, which completes
the proof of Theorem 1. D

3 A generalization of Fermat's little theorem
Let us start with a definition. Letp\,..., p t be distinct prime numbers and m p\l ¦ ¦ ¦ p£kk

with e, G N be the factorization of a number met Then we define the function cpm

for integer numbers n by

Here, the subset j {j\,...,;,} of {1,..., k } serves as a multi-index with length \j\ i
and with p} := pJl ¦ ¦ -ph. It is convenient to extend the definition of cpm by ip\ (n) := n.

Theorem 4 The function <pm(ri) has the property

<pm(n) 0modm (7)

for all numbers n G N.



122 Elem. Math. 54 (1999)

Remarks:

(i) If n is a prime number, then (7) follows from Gauss' observation that the number

of irreducible polynomials of degree m over 7Ln is given by cpm(n)/m (see [2]).
Later Serret [8], Lucas [6] and Pellet [7] stated without proof that (7) holds true
for arbitrary integer n. Later on, several proofs have been given for (7): S. Kantor
presented in [3] and [4] geometric proofs and Weyr [9] used an involved inductive
method.

(ii) Theorem 4 allows now to determine mod(nm,m) by replacing the full power nm

by a polynomial in n of degree strictly less than m, which at least partially answers
the question posed in the introduction.

Here, we show that (7) follows easily from a combinatorial fact. To demonstrate the
idea we consider the case of a prime number m p. Consider the set {{n\,..., np) :

n, G {1,... ,n}} of points in the discrete p-dimensional cube Q {1,... ,n}p. Consider

the cyclic group Cp whose action on a point (ni,... ,np) is generated by a
ap: (ni,...,np) i-s- (n2,n3,...,np,n\). According to Burnside's Lemma the total number

of orbits in Q generated by Cp is given by

number of orbits ——¦ Y^ \g (8)
|Cpl

gecp

where \g is the number of fix-points of Q under g e Cp. Since \al w for i
1,... ,p - 1 and Xav Xid np (and of course \CP\ p) it follows from (8) that
nv + (p - l)n 0modp and hence

nv — n Omodp,

which is Fermat's little theorem.

For general m we proceed similarly, but instead of using Burnside's Lemma we count

directly the orbits of given length.

Proof of Theorem 4. Let Q and Cm be as above but now with general m p\l ¦ ¦ ¦ p£kk.

We claim that there exist ^cpm(n) orbits of length m and hence the theorem follows. To

prove this claim we proceed by induction on m:

1st step: ip\(n) n, hence the assertion is true for m=\.
2nd step: "m' p\ ¦ ¦ -pk-\ —> m p\ ¦ ¦ pjt": Notice, that the number of orbits generated

by Cm in {1,..., n}m of length -^ equals the number of orbits generated by Cm/m,

in {1,..., n}m/m' of length ^. So, by induction we have that

number of orbits of length — —^—
P' V,

m <p-*h(n)
number of orbits of length —Vj^-—



Elem. Math. 54 (1999) 123

Hence,
number of orbits of length m

m

(9)è(«m- E E

3rdstep: "m' p\l ¦ ¦ ¦ p£kk l —*¦ p' p\l ¦ ¦ -p£kk": analogous to the second step. D

4 A generalisation of Euler's Theorem
One disadvantage of (7) is that it reduces in Zm only the power m. Here, we present
a formula which reduces yet another power and which is slightly stronger than Euler's
Theorem. Let us recall the definition of Euler's <p function: For any integer n, <p(n)

denotes the number of integers k e {1,..., n - 1} which are relatively prime to n, i.e.

V(n):=\{k€{l,...,n-1} : (n,k) l}\.
Furthermore, let ê{n) denote the highest power contained in n, i.e.

¦&{n) := max{fc : mk \ n, m e N, m > 1}.

Theorem 5 There holds

(a) n^iri^ - 1) 0modq for all integers n.

(b) â(q) + (fi(q) < q for all q, with equality if and only if q is prime.

Proof, (a) Let q q\l • • • q£kk be the prime factorization of q. If (n, q\) 1 it follows
from Euler's Theorem (which asserts that nv^ Imoâq provided (n,q) 1) that

qf | nv(£') - i Hence, since ip is multiplicative, i.e. ip{ab) <p(a)<p(b) for (a,b) 1,

qf\n^-\ if(n,q;) l. (10)

Furthermore we have qf l \ q and hence qf l \ q - <p(q) > 0. On the other hand, it is

clear that (n,q;) > 1 implies qi\n. Hence we have

qf\nê{^ if (n,tfi)> 1. (11)

Now, combining the two cases (10) and (11) the assertion follows.

(b) 1st step: If q is prime then obviously ¦â(q) + <p(q) 1 + (q - 1) q.

2nd step: We have to show that ê(q) + ip(q) < q if q is not prime. If q p" for a prime
number p and n > 2, the assertion is equivalent to n + (p - 1)" < p", which is easily
established by induction on n > 2. If q pnq' with p prime, q' > 1 and n ê(q) > 1,

then

and hence the assertion follows from the fact n + (p — l)n(q' - 1) < p"q' which is easily
proved by induction on n. D
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Remarks:

(i) Of course, Euler's Theorem follows from Theorem 5(a).

(ii) It is clear from the proof, that the exponent ê{q) in (a) is optimal, i.e. it cannot be

replaced by a smaller integer.

(iii) Theorem 5 allows to replace n^W+^W in TLq by a polynomial in n of degree strictly
less than ¦â(q)

5 Another application of Burnside's Lemma
In this section, we consider a variant of the arguments of Section 3. There, we considered
the cyclic group Cm, i.e. the group with one generating element of order m. Notice that
the set of points of the cube Q {1,... ,n}m (on which Cm acts) may as well be
considered as the set of colorings with n colors of the Cayley graph of Cm generated
by the generating element. (The Cayley graph G [A] of a group G generated by a subset

A {«!,...,«it} c G has the elements {g\,- ¦ ¦ ,gi} of G as its vertex set and edges
between g, and gj iff there exists an e A with g, o an gj.) By applying Burnside's
Lemma to this situation, we obtained (7).

A natural variant of this idea would be to look at the group G Cn x • • • x CPk

of k generating elements a\,... ,cik of orders p\,... ,pk, acting on the Cayley graph

G[«i,... ,«jt] over the generating elements and colored with n colors. In fact, if the

pi are chosen to be prime (but not necessarily different), we recover (7) by applying
Burnside's Lemma. But we do in fact obtain a new congruence if we look at a "reduced

Cayley graph" instead. More precisely we consider the graph Cpi[pi] x • • • x CPk\pk]
colored with n colors, and gf • • -g£kk e G acting on it by application of gr on Cp;\p;].
Counting orbits in a similar way as in Section 3 we find

Theorem 6 Ifm=p\---pk(pi prime, but not necessarily distinct), then there holds

for all integers n

(-n)l/lns(m)-s(p') Omodm

where we used the multi-index notation ofSection 3 and s(m) '.= p\ + ¦ ¦ ¦ +pk denotes
the sum of the primes in m (with multiplicity).

Remarks:

(i) Theorem 6 now allows to reduce ns(-m^ by a polynomial of lower degree in 7Lm.

(ii) If one does not insist on p, being prime, one ends up with a polynomial of degree

p\ + ¦ ¦ ¦ + pk > s(m) which vanishes in Zm.

6 Minimal null-polynomials
6.1 Normed null-polynomials. Usually one defines two polynomials / and g to be

congruent modulo m, written/ gmodm, if corresponding coefficients are congruent
integers modulo m. This equivalence relation provides a nice structure in particular if m is

chosen to be prime. On the other hand we will say that two polynomials (or, more general,
two functions) / and g are graph-congruent modulo m, written f g graph mod m, if
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they have the same graph as functions from 7Lm to Zm, i.e. if f(n) g{n) modm for all
integers n. Of course, two congruent polynomials are graph-congruent, but the converse
implication does not hold in general, e.g. x2 x graph mod 2, but x2 and x are not
congruent modulo 2. We say / is a normed null-polynomial modulo m, if / is graph-

congruent to the polynomial 0 and if / is normed (i.e. the leading coefficient equals
1). Of course, for all m there exist normed null-polynomials, e.g. fix) (x - l)(x -
2) •••(x - m), and hence it makes sense to look for minimal normed null-polynomials
modulo m, i.e. normed null-polynomials of minimal degree e(m). It is easy to see, that

if m p is prime, the polynomial

xv - x (x - 1) • • • (x - p) modp

is (up to congruence) the unique minimal normed null-polynomial, and hence e(p) =p
for p prime. Minimal normed null-polynomials are useful since they allow to replace

arbitrary polynomials by graph-congruent polynomials of degree less than or equal to

e(m) - 1 modulo m. To find a minimal normed null-polynomial on a computer by just
checking polynomial after polynomial, would be extremely time consuming. On the other
hand from Theorem 5 and 6 we infer, that

e{q) < vam{q,s{q),ê{q) + v{q)}.

Example: Let m 35 and f(n) Y^Lon'- Finda polynomial g of lower degree which
is as a function in Zm identical to /.
Theorem 4 provides a normed null-polynomial of degree 35, which would allow to find
a polynomial g of degree 34. Theorem 5 gives a normed null-polynomial of degree

¦&(m) + ip(m) 25 which is better, but Theorem 6 gives a polynomial of even lower
degree, namely s(m) 12, in fact

n12 n(n5 + n1 - n) graphmod35.

Replacing in/ successively all powers n12 by n(n5 + n7 - n) one finds

35

n' l + n- \5(n2 + n3)- \3(n4 + n5)+
1=0

+ 5(n6 + n1) + 21(n8 + n9) + 19(n10 + n11) graphmod35.

We include the following list, which decides for which m Theorem 5 or Theorem 6

yields a normed null-polynomial of lower degree:

(1) ê{q) + ip(q) s{q) if and only if q is prime or q e {4,18}
(2) ê{q) + (fi(q) < s(q) if q 2p, p prime, or q e {12,30}
(3) for all other q there holds ê(q) + <p(q) > s(q)

Since for m 18 both theorems give a polynomial of degree 8, we can look at the
difference which is the (normed) null-polynomial n1 + In6 - In5 - n4 + n3 - n2. But
still, it is not minimal. In fact n6 + n4 — 2n2 is a minimal normed null-polynomial modulo
18, i.e. e(18) 6. The following theorem gives the general answer to the problem:
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Theorem 7 The polynomial g(x) Yli=i (x + i) is a minimal normed null-polynomial
in Zm and hence e(m) §(m). Here, §(m) denotes the Smarandache function §(m) :=
min{fc g N : m | k\}.

The function §(m) is named after the Romanian Mathematician Florentin Smarandache,
but it has been introduced already in 1918 by Kempner in [5]. It has many interesting

properties and applications in number theory (see e.g. the Smarandache Function
Journal).

Proof. 1st step: g(x) is a normed null-polynomial in Zm: This follows immediately from
the fact that for all x G Z

/r 4- &(m\\
§(m)!

Now, the first factor is an integer, and §(m)! Omodm.

2nd step: e(m) > §(m): Let us consider the normed polynomial f(x) := a\X + a2x2 +
+ ar-\Xr~l + xr with a, g Z and r > 1. We define

M

and the vectors

[I
\flr-l.

In this notation, we have

/ 1

2

3

1

22

32

1 \

\r-\ (r-1)2

P

V
T

\{r-\)r

Now, suppose that

f(x) Omodm for all x 1,2,... ,r - 1,

i.e. h mq for some q G II l. Notice that M is a Vandermonde matrix and that in
particular det(M) ^ 0. Hence, the equation Ma mq - p determines for any given
right hand side a unique solution a. From Lemma 2 below we infer

r-l r-1

f(r) f rr (f - mq:) fmodm.

Lemma 3 below now gives that/(r) r! Omodm implies r > §(m). This completes
the proof. D
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Lemma 2 Let M be the Vandermonde matrix (i^){,/=i,„,r-i as above. Then, fora G Kr
and b Ma there holds

r-1 r-1 n

i l i=l ^ '
Proo/ By linearity, it suffices to show (12) for a, <5fj, j 1,2,..., r - 1. That is, we
have to show that for 1 < j < r - 1

r-1

This follows also from Lemma 3. D

Lemma 3 For reN0 and j e No,

where S2 is the Stirling number of the second kind.

Proof. A proof of this well-known lemma can be found e.g. in [1]. But for the sake of
completeness, we like to give a proof by combinatorial arguments which are similar to
those in the proof of Burnside's Lemma. Moreover, we shall give a special proof for the

case j r and will consider the general case afterwards in a slightly different way.

First notice, that from the binomial expansion of (1 + x)r with x -1, we get

which is (for r > 0) obviously equivalent to

Let A := {a0,... ,flr-i} be an alphabet of r > 0 symbols and let wr(k) denote the

set of words of length r, such that every word in wr(k) consists of exactly k different
letters. Further, let Wr(k) denote the cardinality of wr(k). Obviously we have Wr(0)
Wr(r + i) 0 (for i > 1) and Wr(r) r\. And in general we have
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To see this, remember that with k different letters we can form kr words for length r,
but of course, not all of them contain k different letters. So, to compute Wr(fc), we have

to exclude the words which contain less than k different letters.

Combining (*) and (**) we get

r I i) (r i) + (r I 2

Because S2(n,n) 1 (for all n G No), this proves the Lemma for r j even in the case

when r ; 0 (because W0(0) (°)0! 0!).

Now we consider the general case. Again, wj(k) denotes the set of all words of length
;', such that every word in W;(k) consists of exactly k different letters. For an arbitrary
word u (of length j) let übe the set of all letters occurring in u and \u\ be its cardinality.
So, if m G Wj(k), then \u\ k. For a set of letters I C A letv;(I) be the set of all indexed
/-words U\ of length j, such that ûj ç I. To each indexed word U\ there corresponds in
a natural way the (non-indexed) word u. For two different I and V such that |/| \V

we call two indexed /-words Ui and Uy equivalent (in ~ U\>) if the (non-indexed) words
are equal. Let [u]t := {vi : Vi ~ «// A |/| |/'| i}. Finally let

tyf) :=$>,(/)!.

Evidentially we have Vj(i) ([)f;. For an arbitrary word u of length j with u Ç / C A
where |/| i we get

u
Wi\= '

r -
For a word u with m < r, we have by (o) that

0.

Therefore, ]T{=o (-lY^ (diJ ° r! S2(/, r). Now, with the alphabet A we can form
r! S2(;', r) words u of length ;, such that u A, which completes the proof. D

Remark: As a corollary of the previous lemma, we obtain Wilson's Theorem: (p — 1

-1 modp if and only if p is prime. To see this, notice first that if p ab, with a, b both
bigger than 1 and (a,b) l,then« | (p—l)!andb | (p—1)!, therefore (p—1)! 0modp.
For p prime, set r j p - 1 and use Fermat's little theorem in the Lemma 3 (for the

only even prime number p 2, notice that —1 1 mod2).

6.2 General null-polynomials. Except in the case when m is prime, the minimal normed

null-polynomials are far from unique. For example, given a normed null-polynomial, one

can add a general (not normed) null-polynomial of lower degree. So, let us look now for
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non-trivial minimal null-polynomials (which need not be normed). Let ë(m) denote the

degree of a general non-trivial minimal null-polynomial modulo m. Then there holds:

Theorem 8 ë(m) equals the smallest prime factor in m.

Proof. Let m p\1 ¦ ¦ -p£kk with p, prime and p\ <pj for all j > 1.

1st step: If pi > 2, then the polynomial

is a null-polynomial. For px 2 the polynomial /(x) fx(l + x) is a null-polynomial.
Thus we have ë(m) < p\.
2nd step: Let f(x) be a non-trivial null-polynomial in Zm. Without loss of generality, we

may assume that the coefficients of/ do not contain a common divisor pf with S, > e,

(otherwise, one can divide / by pf~£i which would still be a non-trivial null-polynomial
in Zm, but with the desired property). Let n?=i p/6 be the largest common divisor (of
this form) of the coefficients of /. In particular, we have that 0 < 7, < e, for all i.
Thus, we have /(x) n?=i P?g(x) f°r a polynomial g(x) with integer coefficients and

for all x G Z there exists an integer hx such that /(x) mhx. Hence, we conclude

for g(x) that g(x) hx Yl*=l P^1'- This means that g is a null-polynomial in Zm/ with
m' n,=i Vf 7i > 1- Furthermore, ^ is non-trivial in Zm/ since the greatest common
divisor of the coefficients of g does not contain a factor p,. Now, let ; denote the smallest
index with the property that e] - 7, > 0. Then, ^ is a non-trivial null-polynomial in the

field Zp.. Since a non-trivial polynomial has in a field at most as many zeros as the

degree indicates, we conclude deg(/) deg(g) >Pj>p\.
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