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On a Model of Plane Geometry

R. C. Powers, T. Riedel, and P. K. Sahoo

Robert C. Powers: In 1988, I obtained my doctorate in mathematics at the University
of Massachusetts under the supervision of M. F. Janowitz. My interests in mathema-
tics include ordered sets, discrete mathematics, functional equations and geometry.
Outside of mathematics, I enjoy spending time with my wife and baby daughter.

Thomas Riedel: After studying physics at Eberhard-Karls Universitit Tiibingen (Ger-
many), I received my PhD (mathematics) from the University of Massachusetts,
Amherst, in 1990 under the direction of B. Schweizer. Most of my work is on
functional equations and their applications to probabilistic metric spaces, informa-
tion theory, geometry and numerical analysis. I am also interested in computers
(including their use in education) and physics.

Prasanna K. Sahoo: I obtained my doctorate in mathematics from the University of
Waterloo in 1986. My primary research area is functional equations and their appli-
cations to areas such as geometry, numerical analysis and economics. Occasionally
I work on image thresholding and image compression, and 1 am mainly interested
in applying information theoretic techniques to threshold an image.

In [3], Griinbaum and Mycielski proposed the following model of plane geometry. The
points of this model are the points of the Euclidean plane R2. There are four types of
lines for this model: a vertical Euclidean line; a horizontal Euclidean line; a translate
of the hyperbola L = {(x,y) : x > 0,y = 1/x}; and a translate of the hyperbola

Modelle der ebenen Geometrie, die mit Ausnahme des Parallelenaxioms alle anderen
 erfiillen, haben fiir die Entwicklung der Mathematik eine ausserordentlich wichtige
Rolle gespielt, Thre Entdeckung durch Beltrami, Klein und Poincaré zeigte ja nichit
nur die logische Unabhéngigkeit des Parallelenaxioms, sondern sie machte auch klar,
dass die Mathematik Axiome weitgehend unabhiingig von irgendwelchen Bezligen zur
Wirklichkeit setzen kann. Ausser den berihmten Modellen von Kiein und Poincaré
werden jedem Studierenden der Mathematik auch andere vorgefiihrt, die nur einen
Teil der Axiome der ebenen Geometrie erfiillen; die endlichen affinen und projektiven
Ebenen sind fiir diese Zwecke besonders beliebt. Unendliche Modelle sind weniger bex
kannt, Der vorliegende Beitrag von Powers, Riedel und Sahoo beschiiftigt sich mit einer
ganzen Klasse von einfach zu beschreibenden unendlichen Modellen dieser Ast. Die
Autoren gehen dabei auch der Frage nach, unter welchen Bedingungen zwei Modelle
threr Klasse zueinander zsommph sind. ust




172 ElL Math. 57 (1996)

L* = {(x,y) : x < 0,y = —1/x}. We will follow [3] and label this model G2. Notice
that G2 does not satisfy the Euclidean, hyperbolic, or elliptic parallel postulates. Thus
G2 makes a nice example for students who take a geometry-for-teachers course.

%
R|p—

Fig. 1 The lines of G2

There is no reason why one needs to use the hyperbolas 1/x and —1/x (plus translates)
as lines of G2. Indeed, if we replace 1/x with 1/x? and —1/x with —1/x2, then we
generate yet another model of plane geometry that does not satisfy any of the standard
parallel postulates. In [3], the authors proposed the curves e~ and e* as yet another
version of model G2. One might think that all these versions of G2 are essentially the
same. As our theorem below demonstrates, these versions are not isomorphic as models
of incidence geometry. This result parallels the one given in [3] and further developed
in [2] and [4].

Let f:I — Rand g:] — R be two functions where I and | are subintervals of R.
We propose the following generalization of G2 using the functions f and g. As before,
the points of this generalization of G2 are the points of R2. There are four types of
lines: a vertical Euclidean line; a horizontal Euclidean line; a translate of the graph
{(x,y) : x € I,y = f(x)}; and a translate of the graph {(x,y) : x € [,y = g(x)}. We
denote this interpretation of incidence geometry by M.

In order for M(¢ to be a model of incidence geometry we need f and g to be one-to-one.
In particular, if these functions are continuous then one needs to be strictly decreasing
and the other needs to be strictly increasing. Thus, we will require f(x) to be strictly
decreasing on I and g(x) to be strictly increasing on J. If y = f(x) is bounded above by
y = m and below by the line y = n, then there is no line in My, that passes through
the points (0,m + 1) and (1,n — 1). Therefore, we will require f(x) and g(x) to be
unbounded from either above or below. It is possible that f and g are unbounded in both
directions (e.g., f(x) = log(—x) for x < 0 and g(x) = log(x) for x > 0) or in different
directions (e.g., f(x) = 1/x for x > 0 and g(x) = —1/x for x > 0). Our goal, however,
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is to determine those functions f(x) and g(x) such that M, and G2 are isomorphic
as models of incidence geometry. Toward this end, we will require f(x) and g(x) to be
continuous, unbounded from above and bounded from below, and bounded on one side
by vertical asymptotes.

Lemma 1 Let F : R? — R? be a bijection that induces a map from Msq) onto My ).

Then
F(x,y) = (fi(x), 2(y)) (1)
for some bijections f| and f, of R.

Proof The following geometric fact is clear in M. If L is a line and p is a point not
on L such that there is exactly one line through p parallel to L, then L is a horizontal
line. It follows from this fact that the family of horizontal lines is mapped to itself. Since
a line in Ms is vertical if and only if it intersects every horizontal line it follows that
F maps the family of vertical lines to the family of vertical lines. It now follows that
F (x,y) has the form described by equation (1). O

We point out that G2 = M(;/x,—1/x) satisfies Lemma 1. In fact, we can prove more.

Lemma 2 F : R? — R? is a bijection that induces a map from G2 onto G2 if and only

if
ren=(o 1) (5)+(5) @

for some nonzero \ € R and o, 8 € R.

Proof By Lemma 1, we know that F(x,y) = (fi(x), f2(y)) for some bijections f; and
f> of R. Since F maps G2 onto G2 it follows that {F (x,y)|x > a,y = 1/(x —a) + b}
is a line of G2. Since {F(x,y)|x > a,y = 1/(x —a) + b} is neither a horizontal
nor vertical line it follows that it is a translate of either {(x,y)|x > O,y = 1/x} or
{(x,y)|x < 0,y = —1/x}. Thus, there exist a’,b’ € R such that

(ilx) —a)(faly) =) =1or —1 (3)

for x > a and y = 1/(x —a) + b. If the above product is 1, then

(fi(x) —a)(faly) =) = (x —a)(y — b),

and so
fix)—a _ y-b
X—a foly) —b"

Therefore, there exists a nonzero constant A such that

i) —a ___y=b

xX—a foly) —b"

Thus, fi(x) = A + « and fo(y) = sy + (8 for some constants a and § and for all
x >aand y = 1/(x —a) + b. Since the line {(fi(x), f2(y))|lx >a,y=1/(x —a)+ b} is
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bounded below it follows that A > 0. If the product in equation (3) is —1, then a similar
argument will show that there exists a constant A < 0 such that fi(x) = Ax + a and
f2(y) = =5yy+ for some constants & and 3, for all x > a, and y = 1/(x—a)+b. Since
a and b can be chosen arbitrarily it follows that f;(x) = Ax + « and f,(y) = (_—1,\)y + 6
for all x and y. Hence F (x,y) satisfies (2).

It is straightforward to verify that if F : R> — R? is a bijection of the form described
by equation (2), then F induces a map from G2 onto G2. L]

We can now prove our main result.

Theorem 3 If there exists a continuous bijection ¢ of R? onto itself which induces a map
from G2 onto My, then, up to translations, f(x) = a/x for x > 0 and g(x) = —a/x
for x < 0 for some positive constant a.

Proof The argument used to establish equation (1) in Lemma 1 can be used to show
that, for all (x,y) € R?,

o(x, ) = (é1(x), 2(y)) (4)

for some bijections ¢; and ¢, of R. Now consider the family of automorphisms of
Mt given by 7;(x,y) = (x +t,y) where t € R. Then, for each t, 7/ = ¢~ 'n¢ is an
automorphism of G2. It follows from Lemma 2 that

o7 (d1(x) +1) =Ax +a (5)

for some nonzero constant \. If A # 1, then the equation x = Ax +a has x = %5 as a
solution. If x = 1% then equation (5) becomes

le(x) +t= ¢1(x)7

and so, t = 0. So for ¢t # 0, it follows that A = 1. Hence
7 = (x + h(t),a(t)y + b(t))

where h,a,b are functions and where h satisfies the Cauchy Functional Equation
h(r+s) = h(r)+h(s) for all r,s € R. Since ¢p o7/ = 110 ¢ it follows that ¢; (x +h(t)) =
&1(x) + t. The last equation holds if we replace ¢;(x) by ¢;(x) — ¢:(0), thus we can
assume that ¢;(0) = 0. If we set x = 0, then we get ¢;(h(t)) = ¢t for all . Hence
¢1 = h~! where h is continuous. It follows from Cauchy’s Functional Equation (see [1])
that h(t) = kt for some nonzero constant k. Hence ¢;(x) = {x for all x. A similar
argument will show that, for all y, ¢,(y) = k'y for some nonzero constant k’. It now
follows that equation (4) has, up to composition of a translation, the form

¢(x’y) = (klxa ka)

for some nonzero constants k; and k,.
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The line L = {(x,y)|x > 0,y = 1/x} in G2 is mapped by ¢ to the line {(kx, koy)| x >
0,y = 1/x} in Ms,. The latter must be a translate of either the graph of f or the graph
of g. If it is a translate of the graph of f, then there exist o and 3 such that

koy=f(kix+a)+ 8

forall x > 0 and y = 1/x. Since f(x) is assumed to be bounded below and y ranges over
the interval (0, oo) it follows that k, > 0. This in turn forces k; > 0, since y=1/x (for

x > 0) and f are strictly decreasing functions. Replacing x by 7% in the last equation
leads to

flx) =

-8 (6)

X —«
for all x > a.

Note that ¢ maps a translate of L = {(x,y)|x > 0,y = 1/x} to some translate of the
graph of f. Since ¢ maps G2 onto M, it follows that ¢ maps

L* = {(x,y)lx <0,y = ~1/x}
to a translate of the graph of ¢. Thus

o) = k2 _ g 7)

x—ao

for all x < o. In fact, it is easy to see that « = o’ and 8 = 3.

If the image of L under ¢ is a translate of the graph of ¢ then, using the same type
of argument as above, we get k; < 0, ky > 0, f(x) = lea’il — [ for all x > «, and

gx) =Kk _ g forall x < o

x—a!
So f(x) and g(x) are just scaled translations of 1/x. Given that My is closed under
translations, we can take f(x) = a/x for x > 0 and g(x) = —a/x for x < 0 where a is
some positive constant. O

In conclusion, we note that the converse of Theorem 3 is true since, for a > 0, ¢(x,y) =
(vax, \/ay) is a bijection of R? which induces a map from G2 onto M/x,—a/x)-
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