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The Planarity of the Equilateral, Isogonal Pentagon

In a recent pubhcation, van der Waerden has shown that the equilateral, isogonal
pentagon must be planar and has also given some interesting insights into the mental
processes that led him to his proof of the theorem [1]. As van der Waerden graciously
acknowledged, he was made aware of this remarkable property of the pentagon in the
course of a conversation with one of us (J. D. D.) in 1969, but the property was first
recognized (by J. W.) more than 25 years earlier, in the course of an electron-diffraction

study of gaseous arsenomethane, (AsCH3)n. It must be very rare that a
mathematicai discovery1) has been made from the results of an expenmental molecular-
structure investigation so that a brief account of the earlier developments may be of
interest in supplementing van der Waerden's description.

The result of the electron-diffraction study of arsenomethane [2] was a radial-
distribution function2) consisting of only two peaks, a sharp one at 2.42 Ä and a
broad one, of approximately the same area, centred at 3.44 Ä. Since As...As inter-
actions would have to dominate over all others (Zas 33, Zq 6, Zu 1) it follows
that each arsenic atom in the arsenomethane molecule has the same number of

*) We claim no thorough acquamtance with the mathematicai literature but, as far as we are
aware, this property of the pentagon had not been recognized earlier At any rate it came as

somethmg of a surprise not only to van der Waerden (loc. cit) but also to G. Pölya, with
whom J D D discussed the problem in February, 1970. Pölya disclaimed any previous
knowledge of the theorem and added "if van der Waerden didn't know about it then
it wasn't known to mathematics"f

2) In the electron-diffraction method a beam of monochromatic electrons (A ^ 0 06 Ä) lm-
pinges on a stream of gas emergmg from a nozzle mto an evacuated Chamber. The electrons
are scattered by the molecules, and the scattered mtensity recorded on Photographie film.
The mtensity pattern, which is radially Symmetrie, depends on the strueture of the molecules,
specifically on the atomic numbers of the constituent atoms and on the interatomic distances
The FouRiER-transform of the expenmental mtensity distnbution is known as the radial
distribution function, r D(r). It consists of a set of nearly Gaussian peaks at vanous distances
r from the ongm, corresponding to the vanous interatomic distances oecurrmg in the molecule.

The height of each peak is roughly proportional to the product of the atomic numbers
of the two atoms mvolved in that particular distance. For further details see any book on
modern structural chemistry.
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unbonded neighbours (at approximately 3 44 Ä) as bonded neighbours (at 2 42 Ä)
This is possible only if the arsenic atoms form a five-membered ring, m which the
average As-As-As angle would have to be about 90°, a value close to the expected
valency angle at arsenic [3] In a four-membered ring, which is at first sight suggested
by the 90° angle, each arsenic atom would have twice as many bonded neighbours
as unbonded

The breadth of the peak at 3 44 Ä then had to be explamed It implies that the
cross-rmg As As distances are unequal Smce the bonded As-As distances are equal,
as shown by the sharpness of the 2 42 Ä peak, this would mean that the As-As-As
angles are unequal Why should they be unequal Thmkmg about this question led
J W to the recognition of a unique property of the pentagon [4]

"Of all n-gons (n ^ 4) the pentagon is the only one for which the following is
true The construction of an equilateral, equiangular pentagon is possible for only
two values of the angle For all other n-gons (exceptmg the trivial case of the triangle)
there is a whole ränge of angles for which an analogous construction is possible The
pentagon under consideration is planar, the possible angles are 108° and 36° "

In an equilateral pentagon with average angle of 90° the angles must then be

unequal, the equilateral pentagon with all angles equal to 90° cannot be constructed1
The proof provided by J W (not published at the time) was simple and straightfor-
ward Shghtly Condensed, it runs as follows

A pentagon (in space) with all angles and all distances equal must be planar

Smce <3i2 <£3, the groupmg 1234 must possess at least a dyad axis, it may
also possess a mirrorplane (Fig 1)

HO

OS

Q> (1 Figure 1

Equilateral isogonal pentagon showmg heights
of vertices from a reference plane In A the
groupmg 1234 has C2v symmetry in B only C2

symmetry

Case a) Suppose 1234 possesses C2v symmetry Then smce 2-5 3-5, the pentagon

itself has a mirrorplane perpendicular to 2-3, passmg through 5 (Fig 1A)
Case b) Suppose 1234 possesses only C2 symmetry Again, smce 2-5 3-5,

5 lies on the plane that is the perpendicular bisector of 23 and, smce 1-5 4-5, also

on the plane that is the perpendicular bisector of 14 These planes do not coincide by
assumption, the lme they share is the dyad axis of 1234, and thus a dyad axis of the
pentagon itself (Fig 1B)

Passmg round the pentagon, an exactly analogous argument can be applied for
every groupmg of four vertices In every case, the remainmg vertex must he on a

mirrorplane or dyad axis of the pentagon. The resultmg system of mtersectmg
mirrorplanes and/or dyad axes must possess at least D5 symmetry and hence the
pentagon must be planar.
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The spark in the genesis of this proof was the idea of considering just four of the
five points. It was quickly realized that the four points had to be related by a dyad
axis, with two additional mirror planes when the points were coplanar. It was then
straightforward to demonstrate that the fifth point had to be on the dyad axis in
the non-planar case, and on the mirror plane perpendicular to the plane of the four
points in the second case. The fact that the combination of the symmetry elements
obtained by cyclic permutation would lead to D5 or D5h was prior knowledge; the
mind was, so to speak, programmed by relationships of this kind, and this may well
have contributed to the genesis of the proof.

Several years later, the strueture of crystalline arsenomethane was determined
by X-ray diffraction analysis and the puckered pentagonal strueture of the molecule
confirmed [5]3). The structures of several rings containing arsenic and phosphorus
atoms were later discussed by Donohue to whom it was known that "the only
equilateral, isogonal pentagon is planar'' [6]. Nevertheless, the theorem did not become

generally known to structural chemists.
If J. D. D. had ever known of it, he had forgotton it by 1966 when he came across

a paper on the conformations4) of five- and six-membered rings [7]. This paper
contains the statement: for a regulär five-membered ring which is in the "envelope"
conformation and has side / and internal angle 2 a, the angle <f> between the planes
BCD and ABDE (Fig. 2) is given by

7/4 — 2 cos2a — sin2 2a — cos2a
COS0 ;

2 sm2a cosa

Figure 2

Dihedral angle <f> between the planes BCD and ABDE.

A few minutes consideration showed that the regulär five-membered ring as
described must be planar since, if all angles are set equal to 2a, then

BD l (1 - 2 cos2a) 2 / sina

which is satisfied only for 2a 108° (or 36°). The formula given for the dihedral angle
was obviously incorrect!

J. D. D. was sufficiently impressed and excited by this result that he told it
almost immediately to J. Donohue, on sabbatical leave from the University of
Pennsylvania, who was spending the academie year 1966-1967 in Zürich. It came
as no surprise to Donohue, who already knew of the result in the more general formu-

3) In crystalline arsenomethane, the individual As-As-As angles in the puckered five-membered
ring are: 100.4°, 100.0°, 105.6°, 105.4°, 97.5°, mean value 101.8°. The conformation is about
midway between one of mirror symmetry and one with a dyad axis (see4)).

4) In chemistry, the different possible shapes of a molecule with given bond distances and
angles are called conformations.
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lation Aecordmg to him, it had been well known among the members of the structural

chemistry group at the California Institute of Technology around 1944-1945,
but he could not recall any general proof

J. D D was soon able to provide tngonometne proofs for the special cases of the
equilateral, isogonal pentagons with Cs and C2 symmetry He was convmced that
the theorem must be true m the general case but the proof eluded him until he suddenly
realized the importance of a property of the pentagon that he had known all along
but without conneetmg it with the problem If all sides are equal and all angles are
equal, then all 1,3-diagonals are equal Smce each 1,3-diagonal of a pentagon is also

a 1,4-diagonal, the torsion angles5) must also be equal at least m magmtude, if not
m sign

Referrmg back to Figure 1, suppose that the torsion angles co(3451) and co(4512)
have opposite signs, then points 2 and 3 he on the same side of the plane 451 and are
displaced from this plane by the same amount, so that the points 1, 2, 3, 4 are co-

planar In this case the torsion angle a>(1234) is zero, hence all torsion angles are zero
and the pentagon is planar Suppose alternatively that co(3451) and co(4512) have
the same sign, then pomts 2 and 3 are equally displaced from the plane 451 but
he on opposite sides of it In this case the pentagon has a dyad axis passmg through
5 Again, the argument can be applied to each vertex m turn Either some torsion
angle (and hence all torsion angles) must be zero or we have a dyad axis through
each vertex, leadmg to D5 symmetry and planarity, as m J W 's proof

In the meantime we have learned of three other proofs m addition to that given
by van der Waerden [1] One of these, by Ruch [8], is geometncal, hke the proofs
already discussed, but it mtroduces some new aspects

Because of the equality of the sides and angles of the pentagon, the five diagonals
are equal m length By omittmg each vertex in turn we obtain five tetrahedra Each
tetrahedron has as its six edges three connected sides and three connected diagonals
of the pentagon The five tetrahedra are thus identical or mirror images

Let AM MD and BN NC (Fig 3) Smce ZlABD JDCA and zlABC
zlDBC it follows that BM CM and AN DN, so that the lme MN is perpendicular
to BC and AD and hence a dyad axis of the tetrahedron ABCD The pomt E must also

6) In chemistry the torsion angle co(ABCD) is defined as the angle between the bonds BA and
CD m projection down the bond BC and is given by

(ABxBC) (BCxCD)
cosco

(BC/BC) smeo

AB(BC)2CDsmö1smö2 '

(ABxBC)x(BCxCD) [ABxBC CD]BC
AB(BC)2CD sm $x sm 02 AB(BC)2(CD) sm 6X sm 02

where 6X and 02 are the angles ABC and BCD, respectively If AB, BC, CD axe unit vector*
nx, n2, n8, respectively, then

\nt, n2, tt3]
sma» —~ —.sm 0X sm 02

The distance AD depends on the torsion angle co as well as on the bond distances and bond
angles For all bond distances equal to unity and all bond angles equal to 0

(AD)2 =* 3-4 cos04- 2 cos20- 2 sm20 cosco
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lie on this axis; this follows from CE BE and DE AE in case that the tetrahedron
is non-planar, or from one of these equalities in case that the tetrahedron is planar -
in the latter case all five tetrahedra must be planar and must lie in a common plane
since any two such tetrahedra share three points in common. In either case the line MN
is a dyad axis of the pentagon which thus possesses five such dyad axes and must be

planar.

Figure 3

Another proof (by J. W.) is based on vector algebra. Let the directed edges of
the equilateral, isogonal pentagon with angle 0 be represented by unit vectors nx, n2,

n3, n4, n5. All possible triple scalar products formed by the five unit vectors involve
either consecutive vectors, such as [nx, n2, #i3] or non-consecutive vectors, such as

[nx, n2, n4]. The sign of a triple scalar product is, of course, reversed by changing the
order of any two vectors in the product. The torsion angle about any edge is given5)
by

int-i> ni> nt+ii
sinco, —-sm20

and the sum of the torsion angles by

where the indices are understood to be modulo 5.

For brevity, we shall write products such as [nx, n2, n3] and [nx, n2, n4] simply
as [123] and [124] with 27 [123], 27 [124] for the corresponding sums over the cyclic
permutations (modulo 5). For the pentagon

[1 4- 2 + 3 4- 4 4- 5, 2, 3] 0 [123] + [423] 4- [523]

Rearrangement and cyclic permutation gives

[123] + [234] 4- [235] 0

[234] 4- [345] 4- [341] 0

[512] 4- [123] 4- [124] -= 0

Summing,

2 27 [123] 4-27 [124] 0.



30 J D Dunitz and J Waser The Planarity of the Equilateral

Similarly,

[1, 1 4- 2 4- 3 4- 4 4- 5, 3] 0 [123] 4- [143] 4- [153]

leadmg to

27 [123] - 2 27 [124] 0

Hence 27 [123] 27 [124] 0 so that the sum of the torsion angles is zero But the
mdividual torsion angles are equal m magmtude (from the equality of the 1,3-dia-
gonals, which are simultaneously 1,4-diagonals in the pentagon) Hence every torsion
angle must be zero and the pentagon is planar

It is of mterest that for a general, spatial pentagon, quantities of the form [123]
etc., but defined in terms of vectors representing the pentagonal sides rather than
unit vectors, still have the property that 27[123] and 27[124] are zero, [123], [234],
etc., are again related to the corresponding torsion angles, but not as simply as in the
equilateral, isogonal case. For other spatial polygens similar relationships exist, e g.
2 27[123] 4- 27[124] 4- 27[125] 0 and 3 27[123] 2 27[135] for the hexagon

Fmally, at a still more refmed level of abstractlon, is a proof by Oosterhoff [9]
based on matrix algebra, given here m shghtly modified form

Again let the directed edges of the equilateral, isogonal pentagon with angle #
be represented by umt vectors nx, n2, n3, n4, n5 From the rmg-closure condition we
have

nx + n2+ + n5 0

from which we obtain five equations by successive scalar multiplication with nx,
n5 (Skl (nk> ni) Slk)

(«) Sll + 512 + + s„ 0

(ß) ^21 ' ^22 i + s25 0

(y) «31 + + s38 0

(«5) s« + s45 0

W S51 + S52 + + s65 0

The Matrix S

Hl

determines the linear dependence of the vectors nx, n5 and the planarity of the
pentagon follows if S can be shown to be of rank 2.

From the conditions imposed on the pentagon we have

h.k+i - cos# a
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noting again that the cyclic strueture implies that when k 5,k+l l (modulo 5).

By appropriate adding and subtracting the five equations above we obtain also

Sk,k + 2
: 1/2 - a b

For example, s13 is obtained from (a) 4- (ß) 4- (y) — (d) — (e). (At this stage a
geometrie proof can be based on the equality

sk,k + sk,k+i + sk,k+2 1/2

from which it follows that the vector sum of any three consecutive sides projeeted
on the first of these sides bisects that side. The subsequent steps follow the lines of
the proofs discussed earlier. Oosterhoff prefers a more abstract approach).

We can now rewrite S explicitly in terms of its elements as

1 a b b a

a 1 a b b

b a 1 a b

b b a 1 a

a b b a 1

ax a2 cr3 <r4 <r5

a5 ox a2 o*3 a4

<r4 cr5 ax a2 oz

#3 °*4 °5 ai °2
0*2 or3 o*4 (T5 ax

S is seen to be a circulant matrix of order 5. It is a property of any circulant C
of order n that its determinant | C | can be expressed as a product of n factors of the
form [10]

ox + ö2 ojj + ct3 af- + h an oj"~x

where o>j(j 1, 2, n) is one of the wth roots of unity, exp(2ni jjn). Thus in our
case

\s\=nz^<"-;-l Ä l

The factor with / 5 is zero because it is identical with the left side of (a). Of the
remaining four factors those with / 1 and j 4 are complex conjugate, and similarly

those with / 2 and / 3. Therefore the rank of S is either 0, 2 or 4. It is cer-
tainly not 0 (e.g. sxx + 0) and it cannot be 4 since the vectors are three-dimensional.
Hence the rank of S is 2, which proves the theorem.

We remark that the 3x3 subdeterminants of | S | are identical with products
(and Squares) of the quantities [123] etc. referred to earlier. For example, the 3x3
determinant of scalar products obtained by retaining rows 1, 3, 5 and columns 2, 3, 4

of | S | is equal to [135] [234], being a generalization of Gram's determinant [11].

J. D. Dunitz, Zürich6)
J. Waser, Pasadena7)

6) Organic Chemistry Laboratory, Swiss Federal Institute of Technology.
7) Gates and Crellin Laboratories of Chemistry, California Institute of Technology; Contri-

bution No. 4255.
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A New Method of Evaluating the Sums of
oo

Z (—l)k+1 k"2p, p 1, 2, 3,... and Related Series
k~l

oo

The decisive tool in our attempt to evaluate the sum J^(—1)*+1 k~2p for fixed
k=i

pe N {1,2,3, .} is the kernel of Dirichlet in both of its representations
(for all real x)

D°w m{9^1H -y + Zcoskx <W6N>• w

First of all, let us consider

n

Cp(k)^ f fiPcosktdt, keN;
o

a twofold Integration by parts gives the recursive formula

c#) 4r «-W*»-1 - (2 ^ -!) cp-iW} (P e N)

c0(k) o

and hence, as is immediately verified1),

C,(„) - (-1)^20! jfr(-l)'-» (2^7+D' ^ ^^^ (2)

1) Formula 3 529 1 in [4] is obviously mcorrect


	The planarity of the equilateral, isogonal pentagon

