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Short note  Inequalities of Levin—Steckin, Clausing
and Chebyshev revisited

Alfred Witkowski

Abstract. We prove the Levin—Steckin inequality using Chebyshev’s inequality and symmetriza-
tion. Symmetry and a slightly modified Chebyshev inequality are also the key to an elementary
proof of Clausing’s inequality.

1 Introduction

It seems that the Levin—StecCkin inequality appeared first in an appendix to the Russian
edition of the famous Hardy, Littlewood and P6lya Bible on inequalities [3]. The translator
(Levin) enumerates the appendices written by Steckin, by himself and by both of them. The
inequality we consider here comes from Appendix I written by Steckin. But the English
version of the appendix [4] did probably not make this distinction clear enough, so most
of the inequalities from that Appendix cited in the literature are called Levin—Steckin. The
one we deal in this paper reads as follows.

Theorem 1.1 (Levin—Steckin’s inequality). If a function p: [0, 1] — R satisfies the con-
ditions

(1) pis non-decreasing in [0, 1/2],

(2) p is symmetric, i.e., p(x) = p(l — x),

then for every convex function ¢ the following inequality holds
| 1 1
/ p(X)p(x)dx < / p(x)dx[ p(x)dx. (1)
0 0 0

The original proof is elementary, but quite complicated. Recently Mercer ([5]) published
a proof that uses the notion of extremal points of the set of concave positive functions
satisfying 101 f(x)dx < 1. His method, not very elementary, has an advantage: it provides
a simple proof of the Clausing inequality.
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Theorem 1.2 (Clausing’s inequality [2]). Let p be a nonnegative function on |0, 1] satis-
fying the following conditions:

e p is non-decreasing on [0, 1/2],

e p is symmetric.
Then for every concave, positive function @ the inequality
1 1 1
| pwoex < [peodx [ 4minx, 1 - x)p@ds @
0 0 0
holds.

Both inequalities make the reader think of the inequality of Chebysheyv, linking the mean
of the product of functions with the product of their mean values.

Theorem 1.3 (Chebyshev’s inequality). If the functions f, g : [a, b] — R are monotone
in the same direction, then

1 b 1 b 1 b
E—_—a/a f(x)gx)dx = m/ﬂ f(x)dxb—a/,, g(x)dx.

The inequality is reversed if the monotonicities are opposite.

Our aim is to give elementary proofs of Levin—Steckin’s and Clausing’s inequalities. The
proofs we offer here are sponsored by the word symmetrization.

2 The Levin—Steckin inequality

We prove this inequality in two steps: firstly we show that Theorem 1.1 is valid for sym-
metric convex functions:

Lemma 2.1. Under the assumptions of Theorem 1.1 if ¢ is symmetric and convex, then
the inequality (1) holds.

Proof. A symmetric convex function is non-increasing in the interval [0, 1/2], thus by
Chebyshev’s inequality we get

1 1 1/2 1 1/2 1
f p(x)dx/ p(x)dx = (/ p(x)dx +/ p(x)dx)(/ o(x)dx +f (p(x)dx)
0 0 0 1/2 0 1/2
1/2 1/2 1/2 1
=4 [T pwx [ par=2 [ pweds = [ ptoptds
0 0 0 0

and we are done. O

We shall consider now an arbitrary ¢, but the symmetry keeps playing the main role.
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Proof of the Levin—Steckin inequality. Note that for convex ¢ the function wﬁé“"—_” is
convex and symmetric, so we can use Lemma 2.1

: Jo POp)dx + Jy p(1 = x)p(1 — x)dx
| et - .

] —
:/ p(x)rp(x)+¢(l %) i
0

2

I I _ 1 1
5/ p(x)dx/ o) + ol x)dx =/ p(x)dx/ p(x)dx.
0 0 2 0 0

This concludes the proof of the Levin—Steckin inequality. O

Note. The above theorem is valid for a much broader class of functions ¢. In fact ¢ may
be a function that is v-shaped (i.e., decreases on the left part of the interval and increases
on the right) and its symmetrization is v-shaped as well. The proof is essentially the same.
We leave the details to the reader.

3 Chebyshev’s inequality

To prove the Clausing inequality we need a slightly stronger version of Chebyshev’s in-
equality, where the monotonicity of one function is replaced by a weaker condition. Note
that this result is somewhat similar to the result of Brunn [1].

Definition 1. We shall say that a function f belongs to the class Mt (a, b) if it is Riemann
integrable in [a, b] and there is a ¢ € [a, b] such that for all a < x < b the following
inequality holds

1 b
(10— [ roar) -0 =0 G)
We say that f belongs to M~ (a, b) if the inequality in (3) is opposite.

Obviously every non-decreasing function belongs to the class M+ (take

c=supft: () < 55 [ foyar})

and the non-increasing functions belong to M —, but these classes are much broader (e.g.,
sin e M~ (0, 2x)).

Theorem 3.1. If g : [a,b] — R is non-decreasing and f € M (a,b) or g is non-
increasing and f € M~ (a, b), then

1P 1t 1
m/ f(x)g(x)dxim[ f(x)dxb—af g(x)dx.

Exchanging M* and M~ toggles the inequality.
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Proof. Let f € M and g be non-decreasing (the proof in other cases is similar). Denote
F= ﬁ fab f(x)dx and let ¢ be the point from Definition 1. Then

b b
] (f(x) = f*) g(x)dx =/ (f(x) = f*) (g(x) — g(c))dx

b _
= [0 =) -0 x £ Dy s o,

—

which is equivalent to the required inequality. ([l

4 Clausing’s inequality

Now we have all the tools needed to present an elementary proof of a generalization of the
Clausing inequality.

Theorem 4.1. Let p, q be nonnegative functions on [0, 1] satisfying the following condi-
tions:

e p and q are symmetric (i.e., p(x) = p(l — x)),
e pisincreasing on [0, 1/2],
e g is convexon [0, 1/2],
e g(0) = 0and fol qg(x)dx = 1.
Then for every concave function ¢ with ¢(0) + ¢ (1) > O the inequality

1 1 1
fo iy = [0 p(X)dx fo (g (x)dx @)

holds.

Proof. Let fol ¢ (x)dx = K. The Hermite—Hadamard inequality yields K > 0.
Assume first that ¢ is symmetric. The inequality (4) can be rewritten as

1/2
0 < fo [Kq(x) — p(0)] pe)dx. )

Let us investigate the function u(x) = K q(x)—@(x) on the interval [0, 1/2]. Symmetry of
@ implies ¢ (0) > 0, thus « is convex, #(0) < 0 and fol /2 u(x)dx = 0. Therefore it belongs
to the class M, and by Theorem 3.1 fol/z[Kq(x) — ¢(x)]1p(x)dx > 0 which proves (5).
Now let ¢ be arbitrary. We have

1 1 B
/ p(x)p(x)dx = f p(x)w(x) + (1 x)dx
0 0

2

</' o) +o(-x),
</ :

1
. fo p()g(x)dx  (by (4))

1 1
:f ¢(x)dxf p(x)q(x)dx
0 0

which completes the proof. U
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The function go(x) = 4 min{x, | — x} is a borderline between admissible gs and sample
functions ¢. Setting ¢ = qo in (4) we obtain

| |
/(;p(x)qo(x)dXS/O p(x)q(x)dx

which means that go provides the best bound in (4).
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