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I Elemente der Mathematik

Mittelwerte als Minima

Alfred Schreiber

Alfred Schreiber war nach seiner Promotion (Universität zu Köln 1975) und Habilitation

(RWTH Aachen 1981) seit 1986 als Professor für Mathematik und ihre Didaktik
an der (heutigen) Europa-Universität Flensburg tätig. Er interessiert sich für Kombinatorik,

Heuristik sowie die Grenzbeziehungen der Mathematik zu Literatur und Kunst.

1 Die Methode der kürzesten Abstände
Die Anwendung der Methode der kleinsten Quadrate auf eine Stichproben (x\,X2, -,

xn) reeller Messwerte Xj läuft darauf hinaus, einen Wert u e M so zu bestimmen, dass die
Summe der Abweichungsquadrate

f(u) := (x\ - u)2 + (X2 - u)2 H 1- (xN - u)2 (1)

ein Minimum wird. Wertet man in 1 die einzelnen Summanden aus, so erweist sich /(«)
als eine nach oben geöffnete Parabel der Form a + bu + Nu2. Deren einziges relatives
Minimum liegt im Scheitel, ist also auch absolut, und eine kurze Rechnung bestätigt: Die
Abszisse des Scheitels ist gerade das arithmetische Mittel

X\+X2~\ b X\
«min /< A{X\,X2, -,XN)

N

Mittelwerte sind von fundamentaler Bedeutung in zahlreichen Anwendungsgebieten
wie Physik, Ökonometrie, Stochastik und Datenanalyse; auch innermathematisch spielen

sie eine wesentliche Rolle in Geometrie und Analysis, nicht zuletzt aufgrund ihrer

engen Beziehung zur Theorie der Ungleichungen. Das Kompendium von Bullen [2]
gibt einen Überblick über eine Fülle verschiedenartiger Ausformungen des Mittelwert-
begriffs. Die Situation verlangt nach einer Strukturierung. Schon früh (um 1930) wurde

die axiomatische Methode mit Erfolg eingesetzt, um spezielle Mittelwertklassen zu
charakterisieren, am bekanntesten die quasi-arithmetischen Mittelwerte (Kolmogorov
[7], Nagumo [9]). Im Folgenden soll, alternativ dazu, der Idee nachgegangen werden,
Mittelweite durch Minimalitätsforderungen zu kennzeichnen. Dabei kommt - in einer
allgemeinen Form - ein Verfahren ins Spiel, das bereits um 1800 von Gauß und Le-
gendre ersonnen und in der Ausgleichsrechnung unter der Bezeichnung Methode der
kleinsten Quadrate praktiziert wurde.
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Das Verfahren lässt sich im RN auf naheliegende Weise geometrisch deuten. Es ist ja

/(«)! der euklidische Abstand zwischen (xi,... ,Xn) und dem Ausgleichspunkt (w,

u), der für u — A(x\, X2,..., x/v) am kleinsten wird. Schon das allein ist ein triftiger
Grund, die historischen „kleinsten Quadrate" terminologisch durch „kürzeste Abstände"
abzulösen (Freudenthal und Steiner |5|, S. 175).

Um diese Idee allgemeiner zu fassen, betrachten wir Distanzen (Distanzfunktionen)
auf einer Teilmenge T ç RN, d.h. symmetrische und positiv-definite Abbildungen
d : T x T -* [0, oo) mit d(x,y) d(y,x) und rf(x, y) 0 <=> x — y für alle

x, y e T. Gilt darüber hinaus die Dreiecksungleichung d(x_, y) < d{x_, z) + d(z, y)
(x, y,z e T), so liegt eine Metrik d vor. Als Ausgleichsmenge E C fungiere die
Gesamtheit aller Punkte m := (w, u) mit m e K+ (Menge der positiven reellen Zahlen).

Die Methode der kürzesten Abstände besteht nun darin, mittels einer Distanz oder Metrik
d den Abstand eines Stichprobenpunkts x (xi,..., x/v) von E zu bestimmen,

genauer: d(x,u) mit m e E zu minimieren. Wenn ein eindeutiger Wert u um\n //
dieser Art existiert, so soll fi der d-Mittelwert von x genannt und mit Mj(x) bezeichnet
werden.

Die geläufigsten Metriken auf dem haben die Form dp (x, y) := ||x — y\\p mit der für
reelles p > 1 definierten L^-Norm ||x||p := (|xi \p + + \xn\p)xIp. - Betrachten wir
zunächst die Fälle p 2, p 1 und p oo:

N x 1/2

y) I — yj)2 I (Euklidische Metrik)
V= i

'
N

d\ (x, y) ^ |xj — yj \ (Summen-Metrik)

/=l
doo(x, y) — Max|x7 — yj | (Maximum-Metrik)

— \<j<N

Welche Mittelwerte lassen sich aus diesen Metriken mit der Methode der kürzesten
Abstände gewinnen?

(1): Im Fall der euklidischen Metrik kennen wir das Ergebnis bereits aus der eingangs
angestellten Überlegung. Die Situation soll aber noch einmal veranschaulicht werden, vorab
für N 2. Hier ist der Abstand des Stichprobenpunkts S (mit den Koordinaten X|,X2)
von der Winkelhalbierenden E im ersten Quadranten zu bestimmen (Abb. 1). Von allen
Strecken, die S mit einem Punkt auf E verbinden, ist das Lot SM _L E die kürzeste. Die
Gerade OM hat die Gleichung v — u, die Gleichung der dazu senkrechten Geraden SM
lautet: v — — u + (x\ + X2). Infolgedessen ergibt sich für den Schnittpunkt M beider
Geraden: u —u + x 1 + X2, mithin u A (xi, x2).

Diese einfache Argumentation lässt sich unmittelbar auf erweitern. Der dem
Stichprobenpunkt x nächstgelegene Punkt we E liegt zusammen mit x im Orthogonalraum E1,
hier: in der zu E senkrechten Hyperebene durch x. Diese genügt einer Gleichung

u\ + \- un c,
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Abb. 1

wobei (wegen x e E-1) gilt: c x\ + • -+xn- Für den einpunktigen Schnitt EPlE^- {//}
ergibt sich dann:

// + •• + // xi + • • • + xn (2)

und damit das arithmetische Mittel /r A(x) M,/2(x).

Die Gleichung (2) liefert im Übrigen das Vorbild, nach dem im Niveauflächen-Ansatz
Mittelwerte („level surface means" bei Bullen [2], S. 420) ad hoc als eindeutige Lösungen
von Gleichungen des Typs F(//,..., /<) F(x\,... ,xn) gewonnen werden.

(2): Bei Verwendung der Summen-Metrik d\ entsteht eine stückweise lineare Funktion

g(u) := d\ (x, ü) |xi — u\ + • + \xn — u\, die ein absolutes Minimum annimmt. Um
dieses zu bestimmen, denken wir uns die Stichproben werte angeordnet: x\ < xi < <
xn- Bei ungeradem N 2m — 1 besitzt g(u) ein eindeutiges Minimum für u fi := xm.
Bei geradem N 2m wird g(u) für jeden Wert u aus dem abgeschlossenen Intervall
\xm,xm+\ \ minimal. Um auch im nicht-ausgearteten Fall xm < xm+\ Eindeutigkeit zu

erzielen, wird üblicherweise der Mittelpunkt := (xm + xm+\)/2 ausgezeichnet. Der so

festgelegte Mittelwert Ml/I (x) := // ist der Median (Zentralwert) der Stichprobe x.

Die Minimum-Eigenschaft des Zentralwerts möge folgendes Beispiel illustrieren: Ein
Unternehmen muss jeden Monat an sieben Orte S i,..., S7, die in dieser Reihenfolge auf
einer Fahrtroute liegen, beziehentlich 6, 18, 2,7,7, 5, 6 Wagenladungen eines bestimmten

Gutes liefern. Nun soll ein Versorgungslager an einem Ort U der Route eingerichtet

werden, um den Gesamtweg zu minimieren. - Sei O ein fester, etwa vor Si

gelegener Punkt, Xj die Längen der Strecken OSj und u die Länge von OU. Die
Gesamtweglänge (einschließlich Rückfahrten) beläuft sich dann auf das Doppelte der Summe
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6|xi — u\ + 18|x2 — u\ H h 6|jc7 — u|. Diese wird minimal für den an 26-ster Stelle in

der angeordneten Folge x\ (6-mal) < xi (18-mal) < < xj (6-mal) stehenden Zentral-
wert u A3; dieser steht für U S3 als Standort des Versorgungslagers. Man überzeugt
sich leicht, dass keine weitere Verbesserung erzielt wird, wenn man U zwischen zwei Orte
platziert.

(3): Für N 2 nimmt der Abstand dœ(x,ï7) Max(|jf| — u|, |*2 — u|) auf R2

genau dann ein absolutes Minimum an, wenn u A(x 1, JC2)- Denn setzen wir ohne

Einschränkung X] < X2 voraus, so zeigt eine einfache Fallunterscheidung: doofc «) *2 — u

für m < A(x\,X2) unddoo(x,ü) u— x\ für« > A (x\, JC2). Hieraus darf allerdings nicht
geschlossen werden, der zu gehörige Mittelwert sei im Allgemeinen das arithmetische
Mittel. Schon im Fall N 3 scheitert diese Vermutung. Vielmehr erweist sich der fragliche

Mittelwert als das sog. Bereichsmittel (engl, midrange), das arithmetische Mittel aus
dem kleinsten und größten Wert der Stichprobe: p /4(Min(*), Max(*)) Mj^lx).
Speziell gilt bei N 2 Elementen: M(iao(x\, X2) — A(x 1, JC2). Die Einzelheiten der einfachen

Überlegungen können dem Leser überlassen bleiben.

Das Bereichsmittel eignet sich vor allem für mittig tendierende Messwerte; es minimiert
die Variation unter allen Auswahlen eines Mittelpunkts. Gelegentlich wird es dazu verwendet,

die durchschnittliche Tagestemperatur an einem bestimmten Ort anzugeben. Schiehlen
und Seifried 1111 berichten über mögliche Anwendungen auf Probleme aus der Strukturdynamik

von Balken.

Betrachten wir schließlich noch den allgemeinen Fall der Ep-Metrik r/p(x, y) ||^ — y\\p
für p > 1. Tatsächlich nimmt zu beliebigem, aber fest gewähltem x_ G die Funktion
u i->- dr(x,l7) ein eindeutiges Minimum p Ml/n(x) an. Allem Anschein nach lässt

sich dieses jedoch für N > 2 nicht in expliziter geschlossener Form darstellen (vgl. dazu

Hajja [6]). Für wachsendes p nähert sich M(ip (jç) dem Bereichsmittel; ob von oben oder

von unten, hängt von der Stichprobe x ab. Hajja vermutet, dass keine zwei rfp-Mittelwerte
vergleichbar sind.

2 Eine Metrik für konjugierte Mittelwerte
In diesem Abschnitt fragen wir umgekehrt: Besteht ein spezifischer Zusammenhang
zwischen bestimmten Klassen von Mittelwerten und den sie erzeugenden Metriken (Distanzen)?

Aus welchen Metriken d lassen sich (wenn überhaupt) beispielsweise das harmonische

(//), das geometrische (G) und das quadratische (Q) Mittel gewinnen? Die klassischen

Funktionen

gehören (wie A selbst) zu den quasi-arithmetischen Mittelwerten, die im Folgenden
genauer definiert werden sollen. Tatsächlich lässt sich zeigen, dass alle quasi-arithmetischen
Mittel in natürlicher Weise als Minima bezüglich einer geeigneten Familie von Metriken
darstellbar sind.
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Wir beginnen mit einigen Definitionen und vorbereitenden Überlegungen.

Mittelwerte werden einer Stichprobe von N Elementen (hier: /V-Tupel positiver reeller
Zahlen, N > 2 ganz) zugeordnet, sie sind somit Werte einer Funktion (noch näher zu
beschreibenden Typs) F : Ri -> R+. Die Bezeichnung „mittelnde Funktion" wäre dafür
durchaus angebracht, ebenso „Mittelwert-Funktion"; hingegen bezeichnen „Mittelwert"
oder „Mittel" eigentlich nicht die Funktion F selbst, sondern die von ihr gelieferten Werte.

Als Bezeichnung für F sind sie, da eingebürgert, zumindest cum grano salis zu verwenden.

Es ist sinnvoll, von einer Mittelwert-Funktion F zu verlangen, dass sie reflexiv ist, d.h. die
Identität F(u. u) — u erfüllt. Ferner sollte sie isoton sein, d.h. monoton wachsend
in jedem ihrer Argumente. Eine reflexive und isotone Funktion F ist stets auch internal
in dem Sinn, dass sie ihre Werte zwischen dem kleinsten und dem größten Wert einer

Stichprobe annimmt: Min(x) < F{x_) < Max(x).
Um die engere Klasse der quasi-arithmetischen Mittelwerte definieren und kennzeichnen

zu können, bedarf es noch weiterer Begriffe.
Zu gegebenen offenen Intervallen /, J Ç M+ betrachten wir die Menge S(I, J) aller
stetigen, streng monoton wachsenden Abbildungen (p von I auf J. Ein solches (p ist bijektiv,
mithin ein Homöomorphismus / —> J. Damit definieren wir die tp-Konjugierte Ff von F
wie folgt:

F'P(X], ...,xN)-= <p~l(F(<p(x\),<p(xN)).
Bemerkung. - Die in dieser Beziehung (eine Äquivalenzrelation) stehenden Funktionen
F und Ff bezeichnet Bullen als „corresponding means" und führt sie auf Andreoli fl]
zurück, während der Daröczy (4] entnommene Begriff des „conjugate mean" vom hier
erklärten Begriff der ^-Konjugierten deutlich abweicht (vgl. [2], S.422 und S. 320).

Beim Übergang von F zu einer Konjugierten Ff bleiben viele Eigenschaften der

ursprünglichen Funktion erhalten, z.B. Reflexivität, Isotonie (und damit die Eigenschaft,
Mittelwert-Funktion zu sein), ferner Stetigkeit und Symmetrie (sofern sie bereits bei F
vorliegen). Auch die Assoziativität bleibt erhalten. Definitionsgemäß liegt diese bei einer
Funktion F vor, wenn sich für beliebiges ganzes p mit 1 < p < N die ersten p Elemente

jeder Stichprobe (x\,..., xs) durch u F(x\,... ,xr) ersetzen lassen, ohne dass sich

dadurch der Mittelwert der Stichprobe ändert:

F(u,..., u, xp+\,... ,xN) F(x\,... ,xN).

Eine Mittelwert-Funktion F heißt nun quasi-arithmetisch, wenn F — Af für ein geeignetes

(p e S gilt (hier der Einfachheit halber ohne Angabe der Definitionsintervalle notiert).
Wie Kolmogorov [7] gezeigt hat, ist dies genau dann der Fall, wenn F eine stetige,
symmetrische und assoziative Mittelwert-Funktion ist.

Ohne große Mühe ist zu erkennen: Af — 0 für ip(x) x2, Af Fl für <p(x) — - und

Af G fünp(x) logx.
Auch die Potenz-Mittelwert-Funktionen Pr (mit reellem Parameter r / 0), nach Holder
durch
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definiert, sind quasi-arithmetisch; man hat ja lediglich cp(x) xr zu wählen. Offensichtlich

ist H P_i, A Pi und Q ^2- Auch der geometrische Mittelwert G — Pq,

verstanden als Grenzfall von Pr für r —» 0, reiht sich unter die Potenz-Mittelwerte ein

(vgl. etwa 112]).

Es soll nun gezeigt werden, dass sich jeder quasi-arithmetische Mittelwert mit der Methode
der kürzesten Abstände als c/-Mittel wert mit einer geeigneten Metrik d auf Rw gewinnen
lässt. Allgemeiner gilt sogar der

Satz 1. Existiert bezüglich der Metrik d die zugehörige Mittelwert-Funktion Mj, so lässt
sich jede Konjugierte (Md)tp (<p e S) als Mittelwert-Funktion bezüglich einer geeigneten
Metrik dtp darstellen, für die gilt: (M,/)^ M,iv.

Beweis. 1. Wir betrachten der Einfachheit halber Homöomorphismen des Typs

tp : R+ —> R+.

Diese dehnen wir komponentenweise auf den Stichprobenraum R+ aus vermöge der
Definition:

tp(x \,...,xN) := (<p{x\), ...,tp(xN)).

Zu gegebener Metrik d auf R^ werde nun dtp : R+ x R^ — R definiert durch

d<p(x,y) := d(äp{x),lp(y)) (tje R+).

Man verifiziert unmittelbar, dass dtp eine Metrik auf R^ ist.

2. Zu gegebener Stichprobe x e R^ sei nun n ein eindeutig bestimmtes Abstandsminimum

bezüglich der Metrik d. Es gilt dann für alle u e R+:

d(x_,jt) < d(x_, ü). (3)

Dato bijektiv ist, haben wir^(y) a mit eindeutig bestimmtem y e R+ sowie fi tp{/i o)
und u tp(uo) mit eindeutig bestimmten /<o, «o e R+. Damit ergibt sich aus (3)

d(tp(y), tp(/ao)) < dCtpiy), tp(ua)), und folglich (4)

d<p(y, Töi) < dtp(y,TÜ)).

Mit u durchläuft auch uo ganz R+, es liefert daher /<o einen Punkt kleinsten Abstands zu

y bezüglich dtp. Für jedes y e R+ existiert eindeutig ein solches Minimum.

3. Da mit /r Md(x) auch /uo eindeutig ist, können wir schreiben: /uo Md<p(y). Aus

der Ungleichung (4) folgt tp(fio) MdQp(y)), also /<o (<P~X ° o ç>)(y), und wir
erhalten für Mj^ und die ço-Konjugierte von Mj die Beziehung

Mäip (Mjf. (5)

Mithin lässt sich die konjugierte Funktion (Mj)ip durch Minimierung bezüglich der ho-

möomorph „verformten" Metrik dtp gewinnen.
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Speziell für d (euklidisehe Metrik) geht die rechte Seite von (5) in A? über, d.h.

jeder quasi-arithmetische Mittelwert kann als rü^-Mittelwert aufgefasst werden.

Beispiel: Für die harmonische Mittelwert-Funktion H gilt H mit <p(x) 1/jc. Dann
ist d2<p eine Metrik auf R+, und der Abstand

wird genau dann minimal, wenn u H (x). Es gilt demnach H

3 Eine Verallgemeinerung der Metrik dp

Im Folgenden soll die Minimierung mit Distanzen folgender Bauart erörtert werden:

Hierbei ist cp als eine auf K+ U (0) definierte stetige und streng monoton wachsende
Funktion mit ^(0) 0 vorausgesetzt. Das in (6) erklärte d ist dann symmetrisch und

positiv-definit, also eine Distanz. Ob auch die Dreiecksungleichung gilt (und damit eine
Metrik vorliegt), hängt von gewissen Eigenschaften der Funktion (p ab. Im speziellen Fall
(p(u) un, p > 1, folgt die Dreiecksungleichung aus der Minkowski-Ungleichung für
endliche Summen (vgl. etwa Bullen [2], S. 189).

Suchen wir (im allgemeinen Fall) zu vorgegebener Stichprobe x — (jt|,..., xn) deren
J-Abstand zu E, so genügt es aufgrund der Monotonie von ip (und damit auch von <p~]),

die Werte u mit kleinster Summe l (°(lxj ~ u\) zu bestimmen. Nach einem Satz von

Nagumo [ 10| besitzt diese Summe ein eindeutiges absolutes Minimum genau dann, wenn
<!o eine auf R+ strikt konvexe Funktion ist. In dem Fall erweist sich die resultierende Funktion

M,/ zudem als eine in allen Argumenten xi,...,xn stetige Abbildung.

Die Konvexität von (p allein garantiert allerdings noch nicht die Gültigkeit der Dreiecksungleichung.

Schreibt man diese für d einmal gemäß der rechten Seite von (6) aus, so wird
ersichtlich, dass erst die folgende Verallgemeinerung der Minkowski-Ungleichung zum

wo £(x) \= x\ + • • • + xs- Mit anderen Worten: Die Subadditivität der ^-Konjugierten
des Summenoperators 2 impliziert die Dreiecksungleichung für die durch (6) gegebene
Distanz. Mulholland [8] hat nachgewiesen: ist subadditiv, wenn neben tp e S auch

<pexp log ocp o exp) konvex ist.

Wir fassen die vorangegangenen Überlegungen zusammen:

Satz 2. Sei cp : IK+ U {0} —> K+ U {0} eine stetige, streng monoton wachsende und konvexe

Funtion mit <p(0) 0; ferner sei r/)exp konvex. Dann ist die durch (6) definierte Distanz d
eine Metrik.

(6)

Ziel führt:

^(x + y) < i?,(£) + z*ty),
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Je nach Wahl von (p kann der durch (6) induzierte Mittelwert quasi-arithmetisch sein oder
nicht. Der zweite Fall soll hiereinmal durch das Beispiel

ip(u) cosh(u) — 1 (7)

illustriert werden. Man überzeugt sich unschwer davon, dass (p die Voraussetzungen von
Satz 2 erfüllt. Auswertung von (6) ergibt

di,(x, y) := arcoshl I — N + ^cosh(jty — yy) J,
^ j=i '

wodurch aufgrund von Satz 2 eine Metrik dh auf K+ gegeben ist (h für „hyperbolisch").
Wie im allgemeinen Fall genügt es hier, den Ausdruck l cosK-*/ — u) zu minimieren.

Mittels Nullsetzen der ersten Ableitung nach u und Vorzeichenprüfung der zweiten

Ableitung erhält man auf übliche Weise das eindeutige (absolute) Minimum:

'
1....

ßX' ^ ßXN
X

wmin — 0 log —• Mhyp(-*1, Xtf
2 e~Xl + • • • + e~XN

Die so gewonnene Abbildung Mhyp K+ —>• K+ ist, wie sich einfach verifizieren lässt,

eine symmetrische, in jedem Argument stetige und isotone Mittelwert-Funktion. Ferner ist
Mhyp nicht-assoziativ und daher auch nicht quasi-arithmetisch (außer im 2-dimensionalen
Fall, wo A/hypOn,*2) A(x],x2)).

Immerhin lässt sich Mhyp einer umfangreichen Klasse von Mittelwert-Funktionen einordnen,

welche (unter vielen anderen) auch die quasi-arithmetischen Mittelwerte enthält. Es

handelt sich um die sogenannten Abweichungsmittelwerte, die folgendermaßen definiert
sind: Sei / ç R+ ein nichl-ausgeartetes Intervall. Eine Funktion E : / x / -» R heißt
dann Abweichung(sfunktion) (engl, deviation), wenn E(x,x) 0 und E(x, •) im zweiten

Argument stetig und streng monoton wachsend ist für alle x /. Für die kumulierte
Abweichung

K(x_,u) := E(x\, «) + ••• + E(xn,u)

hat man dann: K(x, Min(*)) < 0 < K(x, Max(*)), und es existiert stets genau ein
zwischen Min(x) und Max(*) gelegenes ß e I mit K(x, ß) 0. Es ist ß =: De(x\, x^)
der von Daröczy [3| eingeführte Abweichungsmittelwert (engl, deviation mean) der Stichprobe

x (x\,..., A/v).

Wählen wir zu gegebenem ip speziell E(x, u) ip(u) — <p(x), so ergibt sich

N

K(x,u) N <p(u) - Y<p(xj)
j=1

und somit De(x) A^ix). Die quasi-arithmetischen Mittelwerte erweisen sich daher als

Unterklasse der Abweichungsmittelwerte. Auch führt von hier aus (zumindest in gewissen
Fällen) ein Weg zu einer Metrik, welche das jeweilige quasi-arithmetische Mittel erzeugt.
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Dazu berechnet man für die einzelnen Stichprobenwerte Xj das Integral von E{xj, 1) über
dem Intervall |Xj, u] und summiert anschließend Uber alle j 1,..., N. Beispielsweise
ergibt sich so für cp(u) u:

N
^ çu

N
^

,u j
N

^ j
E(xj,t)dt ^ (t - xj)dt - u)2 -/(«),

j=\Jx' j=iJxJ j=\
wo / die Funktion aus Gleichung (1) ist, deren Minimierung zum ^-Mittelwert A führt.

Tatsächlich ist auch der hyperbolische Mittelwert Mhyp ein Abweichungsmittelwert. Das

erkennt man, wenn E(x,u) — sinh(w — x) als Abweichungsfunktion gewählt wird. In
diesem Fall liefert die Summe der Integrale

f sinh(w — t)dt — cosh(*y — u) — 1 (j 1,..., N)
JXj

das Argument von <p~x in (6) (mit dem (p aus (7)), mithin den Ausdruck, der für die

Ermittlung des kleinsten (mit d/, gemessenen) Abstands zu minimieren ist.

Literatur

[1] Andreoli, G.: Aspetto gruppale e funzionale delle medie, Giorn. Mal. Battaglini 5/85 (1957), 12-30.

[2] Bullen, P. S.: Handbook of Means and Their Inequalities. Kluwer Academic Publishers, Dordrecht 2003.

[3] Daröczy, Z.: Über eine Klasse von Mittelwerten, Publ. Math. Debrecen 19 (1972), 211-217.

[4] Daröczy, Z.: On a class of means of two variables, Publ. Math. Debrecen 55 (1999), 177-197.

[5] Freudenthal. H., Steiner. H.-G.: Aus der Geschichte der Wahrscheinlichkeitsrechnung und der mathema¬

tischen Statistik. In: Behnke, H-, Bertram, G., Sauer, R. (Hrsg.), Grundz.iiae der Mathematik, Band 4,
Vandenhoeck & Ruprecht, Göttingen 1966.

[6] Hajja, M.: Some elementary aspects of means. Int. Journ. of Mathematics and Mathematical Sciences

(2013), Article ID 689560, DOI.org/10.1155/689560.

[7] Kolmogorov, A. N.: Sur la notion de la moyenne. Atti Accad. Naz. Lincei. Rend. 12/9 (1930), 388-391.

[8] Mulholland, H. P.: On generalizations of Minkowski's inequality in the form of a triangle inequality. Proc.
London Math. Soc. 51/2 (1950), 294-307.

[9] Nagumo, M.: Über eine Klasse der Mittelwerte. Japan. J. Math. 7 (1930), 71-79.

[10] Nagumo, M.: Über den Mittelwert, der durch die kleinste Abweichung definiert wird, Japan. J. Math. 10

(1933), 53-56.

[11] Schiehlen, W., Seifried, R.: Impacts on beams. Uncertainty in experiments and numerical simulation.

Chapter 9 in: Papadrakakis, M., et al. (eds.): Computational Structural Dynamics and Earthquake
Engineering, CRC Press, 2008.

[12] Schreiber, A.: Vergleichbarkeit quasi-arithmetischer Mittel am Beispiel von Potenz- und Exponential-
Mittelwerten. Math. Semesterber. 65/2 (2018), 171-182. DOI.org/10.1007/s00591-017-0207-2.

Alfred Schreiber

Abteilung für Mathematik und ihre Didaktik
Europa-Universität Flensburg
Auf dem Campus 1

D-24943 Flensburg
e-mail: info@alfred-schreiber.de


	Mittelwerte als Minima

