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Mittelwerte als Minima

Alfred Schreiber

Alfred Schreiber war nach seiner Promotion (Universitit zu Koln 1975) und Habilita-
tion (RWTH Aachen 1981) seit 1986 als Professor fiir Mathematik und ihre Didaktik
an der (heutigen) Europa-Universitit Flensburg titig. Er interessiert sich fiir Kombina-
torik, Heuristik sowie die Grenzbeziehungen der Mathematik zu Literatur und Kunst.

1 Die Methode der kiirzesten Abstande

Die Anwendung der Methode der kleinsten Quadrate auf eine Stichprobe x = (xy, x2, .. .,
xn) reeller Messwerte x; lduft darauf hinaus, einen Wert # € R so zu bestimmen, dass die
Summe der Abweichungsquadrate

F@) =1 —u)? + 2 —u)? + -+ (xy — u)? (1)

ein Minimum wird. Wertet man in (1) die einzelnen Summanden aus, so erweist sich f(u)
als eine nach oben geoffnete Parabel der Form a + bu + Nu?. Deren einziges relatives
Minimum liegt im Scheitel, ist also auch absolut, und eine kurze Rechnung bestitigt: Die
Abszisse des Scheitels ist gerade das arithmetische Mittel

X1+x2+---+an
N :

Umin = 1 = A(x1, X2, ..., XN) =

Mittelwerte sind von fundamentaler Bedeutung in zahlreichen Anwendungsgebieten
wie Physik, Okonometrie, Stochastik und Datenanalyse; auch innermathematisch spie-
len sie eine wesentliche Rolle in Geometrie und Analysis, nicht zuletzt aufgrund ihrer
engen Beziehung zur Theorie der Ungleichungen. Das Kompendium von Bullen [2]
gibt einen Uberblick iiber eine Fiille verschiedenartiger Ausformungen des Mittelwert-
begriffs. Die Situation verlangt nach einer Strukturierung. Schon friih (um 1930) wur-
de die axiomatische Methode mit Erfolg eingesetzt, um spezielle Mittelwertklassen zu
charakterisieren, am bekanntesten die quasi-arithmetischen Mittelwerte (Kolmogorov
[7], Nagumo [9]). Im Folgenden soll, alternativ dazu, der Idee nachgegangen werden,
Mittelwerte durch Minimalititsforderungen zu kennzeichnen. Dabei kommt — in einer
allgemeinen Form — ein Verfahren ins Spiel, das bereits um 1800 von Gau8 und Le-
gendre ersonnen und in der Ausgleichsrechnung unter der Bezeichnung Methode der
kleinsten Quadrate praktiziert wurde.
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Das Verfahren lisst sich im RN auf naheliegende Weise geometrisch deuten. Es ist ja

f(u)% der euklidische Abstand zwischen (xi, ..., xy) und dem Ausgleichspunkt (u, .. .,
u), der fir u = A(xy,x2,...,xy5) am kleinsten wird. Schon das allein ist ein triftiger
Grund, die historischen ,kleinsten Quadrate” terminologisch durch ,kiirzeste Abstinde*
abzulosen (Freudenthal und Steiner [5], S. 175).

Um diese Idee allgemeiner zu fassen, betrachten wir Distanzen (Distanzfunktionen)
auf einer Teilmenge T < RY, d.h. symmetrische und positiv-definite Abbildungen
d:TxT —[0,00) mitd(x,y) = d(y,x)und d(x,y) = 0 <= x = y fiir al-
le x, y € T. Gilt dariiber hinaus die Dreiecksungleichung d(x, y) < d(x, 2) -Ifd(g, y)
(x,y,z € T),so liegt eine Metrik d vor. Als Ausgleichsmenge £ C RN fungiere die Ge-
samtheit aller Punkte % := (u, ..., u) mitu € R, (Menge der positiven recllen Zahlen).
Die Methode der kiirzesten Abstiinde besteht nun darin, mittels einer Distanz oder Metrik
d den Abstand eines Stichprobenpunkts x = (xy,...,xy) € Rﬁ von E zu bestimmen,
genauer: d(x, ) mit u € £ zu minimieren. Wenn ein eindeutiger Wert #4 = upin =
dieser Art existiert, so soll u der d-Mittelwert von x genannt und mit My (x) bezeichnet
werden.

Die geliufigsten Metriken auf dem R” haben die Form dp(x,y) = ||x — yl|l, mitder fiir

reelles p > 1 definierten L”-Norm ||x||, := (Jx¢|” + -+ lxn|?)1/P. - Betrachten wir
zunichst die Fille p =2, p = 1 und p = oc:

N 1/2
dr(x,y) = (Z(x =y ,)2) (Euklidische Metrik)
j=1

N
di(x,y) = Z lx; — y;l (Summen-Metrik)
j=I
doo(x, y) = Max|x; — y;| (Maximum-Metrik)
- 1<j<N

Welche Mittelwerte lassen sich aus diesen Metriken mit der Methode der kiirzesten Ab-
stinde gewinnen?

(1): Im Fall der euklidischen Metrik kennen wir das Ergebnis bereits aus der eingangs an-
gestellten Uberlegung. Die Situation soll aber noch einmal veranschaulicht werden, vorab
fir N = 2. Hier ist der Abstand des Stichprobenpunkts S (mit den Koordinaten x1, x2)
von der Winkelhalbierenden [E im ersten Quadranten zu bestimmen (Abb. 1). Von allen
Strecken, die S mit einem Punkt auf [E verbinden, ist das Lot SM L [E die kiirzeste. Die
Gerade OM hat die Gleichung v = u, die Gleichung der dazu senkrechten Geraden SM
lautet: v = —u + (x| + x2). Infolgedessen ergibt sich fiir den Schnittpunkt M beider
Geraden: u = —u + x| + x2, mithin u = A(xy, x2).

Diese einfache Argumentation lisst sich unmittelbar auf R erweitern. Der dem Stichpro-
benpunkt x nichstgelegene Punkt # € E liegt zusammen mit x im Orthogonalraum E*,
hier: in der zu [E senkrechten Hyperebene durch x. Diese geniigt einer Gleichung

w4 +uy =c,
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=¥

Abb. 1

wobei (wegen x € E1) gilt: ¢ = x;+- - -+ xy. Fiir den einpunktigen Schnitt ENE+ = {1}
ergibt sich dann:
Bt B SX Tt Xy 2)

und damit das arithmetische Mittel 4 = A(x) = My, (x).

Die Gleichung (2) liefert im Ubrigen das Vorbild, nach dem im Niveauflichen-Ansatz
Mittelwerte (,,level surface means™ bei Bullen [2], S. 420) ad hoc als eindeutige Losungen
von Gleichungen des Typs F(u, ..., #) = F(x1,...,xy) gewonnen werden.

(2): Bei Verwendung der Summen-Metrik d; entsteht eine stiickweise lineare Funktion
gu) =di(x,u) = |x; —u|+---+ |xn§y — ul, die ein absolutes Minimum annimmt. Um
dieses zu bestimmen, denken wir uns die Stichprobenwerte angeordnet: x| < xp < ... <
xy. Bei ungeradem N = 2m — 1 besitzt g(u«) ein eindeutiges Minimum fiir u = p := x,,.
Bei geradem N = 2m wird g(u) fiir jeden Wert u aus dem abgeschlossenen Intervall
[Xm» Xm+1] minimal. Um auch im nicht-ausgearteten Fall x,, < x,4; Eindeutigkeit zu
erzielen, wird iiblicherweise der Mittelpunkt u := (x,;, + xn41)/2 ausgezeichnet. Der so
festgelegte Mittelwert My, (x) := u ist der Median (Zentralwert) der Stichprobe x.

Die Minimum-Eigenschaft des Zentralwerts moge folgendes Beispiel illustrieren: Ein Un-
ternechmen muss jeden Monat an sieben Orte Sy, ..., S7, die in dieser Reihenfolge auf
einer Fahrtroute liegen, beziehentlich 6, 18,2,7,7, 5, 6 Wagenladungen eines bestimm-
ten Gutes liefern. Nun soll ein Versorgungslager an einem Ort U der Route eingerich-
tet werden, um den Gesamtweg zu minimieren. — Sei O ein fester, etwa vor S; gele-
gener Punkt, x; die Lingen der Strecken OS; und « die Linge von OU. Die Gesamt-
weglinge (einschlieBlich Riickfahrten) belduft sich dann auf das Doppelte der Summe
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6|x; —u| + 18|x2 — u| + -- - + 6|x7 — u|. Diese wird minimal fiir den an 26-ster Stelle in
der angeordneten Folge x| (6-mal) < x> (18-mal) < --- < x7 (6-mal) stehenden Zentral-
wert u = x3; dieser steht fiir U = S3 als Standort des Versorgungslagers. Man iiberzeugt
sich leicht, dass keine weitere Verbesserung erzielt wird, wenn man U zwischen zwei Orte
platziert.

(3): Fiir N = 2 nimmt der Abstand do(x,u) = Max(|x; — ul, |x2 — u|) auf R? ge-
nau dann ein absolutes Minimum an, wenn u = A(xj, x2). Denn setzen wir ohne Ein-
schriankung x| < x; voraus, so zeigt eine einfache Fallunterscheidung: doo(x, ) = xo —u
firu < A(xy,x2) und dog (x, u) = u — x; fiiru > A(xy, x7). Hieraus darf allerdings nicht
geschlossen werden, der zu d, gehorige Mittelwert sei im Allgemeinen das arithmetische
Mittel. Schon im Fall N = 3 scheitert diese Vermutung. Vielmehr erweist sich der fragli-
che Mittelwert als das sog. Bereichsmittel (engl. midrange), das arithmetische Mittel aus
dem kleinsten und groBten Wert der Stichprobe: 1 = A(Min(x), Max(x)) = M, (x).
Speziell gilt bei N = 2 Elementen: My (x1, x2) = A(x1, x2). Die Einzelheiten der einfa-
chen Uberlegungen konnen dem Leser iiberlassen bleiben.

Das Bereichsmittel eignet sich vor allem fiir mittig tendierende Messwerte; es minimiert
die Variation unter allen Auswahlen eines Mittelpunkts. Gelegentlich wird es dazu verwen-
det, die durchschnittliche Tagestemperatur an einem bestimmten Ort anzugeben. Schiehlen
und Seifried [11] berichten iiber mogliche Anwendungen auf Probleme aus der Strukturdy-
namik von Balken.

Betrachten wir schlieBlich noch den allgemeinen Fall der L ,-Metrik dp(x, y) = [lx — y|I»

fiir p > 1. Tatsdichlich nimmt zu beliebigem, aber fest gewihltem x € Rﬂ die Funktion
u + dp(x,u) ein eindeutiges Minimum x = My, (x) an. Allem Anschein nach ldsst
sich dieses jedoch fiir N > 2 nicht in expliziter geschlossener Form darstellen (vgl. dazu
Hajja [6]). Fiir wachsendes p nihert sich Mg, (x) dem Bereichsmittel; ob von oben oder
von unten, hiingt von der Stichprobe x ab. Hajja vermutet, dass keine zwei d,-Mittelwerte
vergleichbar sind.

2 Eine Metrik fiir konjugierte Mittelwerte

In diesem Abschnitt fragen wir umgekehrt: Besteht ein spezifischer Zusammenhang zwi-
schen bestimmten Klassen von Mittelwerten und den sie erzeugenden Metriken (Distan-
zen)? Aus welchen Metriken d lassen sich (wenn iiberhaupt) beispielsweise das harmoni-
sche (H), das geometrische (G) und das quadratische (Q) Mittel gewinnen? Die klassi-
schen Funktionen

N

N I/N
Hx)= Gx) = (l_lxj) . Qkx) =
2= © =

J

gehoren (wie A selbst) zu den quasi-arithmetischen Mittelwerten, die im Folgenden ge-
nauer definiert werden sollen. Tatsiichlich lisst sich zeigen, dass alle quasi-arithmetischen
Mittel in natiirlicher Weise als Minima beziiglich einer geeigneten Familie von Metriken
darstellbar sind.
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Wir beginnen mit einigen Definitionen und vorbereitenden Uberlegungen.

Mittelwerte werden einer Stichprobe von N Elementen (hier: N-Tupel positiver reeller
Zahlen, N > 2 ganz) zugeordnet, sie sind somit Werte einer Funktion (noch niher zu be-
schreibenden Typs) F : Rﬁ' — R, . Die Bezeichnung ,mittelnde Funktion* wire dafiir
durchaus angebracht, ebenso ,Mittelwert-Funktion™; hingegen bezeichnen , Mittelwert*
oder ,,Mittel” eigentlich nicht die Funktion F selbst, sondern die von ihr gelieferten Werte.
Als Bezeichnung fiir F sind sie, da eingebiirgert, zumindest cum grano salis zu verwen-
den.
Es ist sinnvoll, von einer Mittelwert-Funktion F' zu verlangen, dass sie reflexiv ist, d.h. die
Identitdt F(u,...,u) = u erfiillt. Ferner sollte sie isoton sein, d.h. monoton wachsend
in jedem ihrer Argumente. Eine reflexive und isotone Funktion F ist stets auch internal
in dem Sinn, dass sie ihre Werte zwischen dem kleinsten und dem grofiten Wert einer
Stichprobe annimmt: Min(x) < F(x) < Max(x).
Um die engere Klasse der quasi-arithmetischen Mittelwerte definieren und kennzeichnen
zu konnen, bedarf es noch weiterer Begriffe.
Zu gegebenen offenen Intervallen /7, J € Ry betrachten wir die Menge S(/, J) aller ste-
tigen, streng monoton wachsenden Abbildungen ¢ von / auf J. Ein solches ¢ ist bijektiv,
mithin ein Homéomorphismus / — J. Damit definieren wir die p-Konjugierte F? von F
wie folgt:

FP(x1,...,xn) = go*l(F(go(xl), o 0(xN)).
Bemerkung. — Die in dieser Beziehung (eine Aquivalenzrelation) stehenden Funktionen
F und F? bezeichnet Bullen als ,corresponding means“ und fiihrt sie auf Andreoli [1]
zuriick, wihrend der Dar6czy [4] entnommene Begriff des ,.conjugate mean” vom hier
erklidrten Begriff der ¢-Konjugierten deutlich abweicht (vgl. [2], S. 422 und S. 320).

Beim Ubergang von F zu einer Konjugierten F? bleiben viele Eigenschaften der ur-
spriinglichen Funktion erhalten, z.B. Reflexivitiit, Isotonie (und damit die Eigenschaft,
Mittelwert-Funktion zu sein), ferner Stetigkeit und Symmetrie (sofern sie bereits bei F
vorliegen). Auch die Assoziativitdt bleibt erhalten. Definitionsgemibl liegt diese bei einer
Funktion F vor, wenn sich fiir beliebiges ganzes p mit | < p < N die ersten p Elemente
jeder Stichprobe (xy,...,xy) durchu = F(xj,..., xp) ersetzen lassen, ohne dass sich
dadurch der Mittelwert der Stichprobe dndert:

Fll o s 55 s Epdts s ws W) = F@¥Ls oo s XN

Eine Mittelwert-Funktion F heillt nun quasi-arithmetisch, wenn F = A fiir ein geeigne-
tes ¢ € S gilt (hier der Einfachheit halber ohne Angabe der Definitionsintervalle notiert).
Wie Kolmogorov [7] gezeigt hat, ist dies genau dann der Fall, wenn F eine stetige, sym-
metrische und assoziative Mittelwert-Funktion ist.

Ohne groBe Miihe ist zu erkennen: A? = Q fiir p(x) = x*, A? = H fiir p(x) = . und
A? = G fiirp(x) = logx.

Auch die Potenz-Mittelwert-Funktionen P, (mit reellem Parameter r # 0), nach Holder

durch
1 N 1/r
Pr(xlv'-'s-xN) = (—N Zx;)
j=1
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definiert, sind quasi-arithmetisch; man hat ja lediglich ¢ (x) = x” zu wihlen. Offensicht-
lichist H = P_;,A = Py und Q = P,. Auch der geometrische Mittelwert G = Py,
verstanden als Grenzfall von P, fiir r — 0, reiht sich unter die Potenz-Mittelwerte ein
(vgl. etwa [12]).

Es soll nun gezeigt werden, dass sich jeder quasi-arithmetische Mittelwert mit der Methode
der kiirzesten Abstiinde als d-Mittelwert mit einer geeigneten Metrik 4 auf RV gewinnen
lasst. Allgemeiner gilt sogar der

Satz 1. Existiert beziiglich der Metrik d die zugehorige Mittelwert-Funktion My, so ldsst
sich jede Konjugierte (My)? (¢ € S) als Mittelwert-Funktion beziiglich einer geeigneten
Metrik do darstellen, fiir die gilt: (My)? = Mg,.

Beweis. 1. Wir betrachten der Einfachheit halber Homéomorphismen des Typs
¢ Ry — Ry

Diese dehnen wir komponentenweise auf den Stichprobenraum R_’}_’ aus vermoge der De-
finition:
P(x1,...,xn) == (p(x1), ..., @(xN)).

Zu gegebener Metrik d auf Rﬁ werde nun d¢ : Rﬂ X Rﬁ — R definiert durch

dp(x,y) :=d@x),7(y))  (x.y eRY).

Man verifiziert unmittelbar, dass d¢ eine Metrik auf Rﬁ ist.

2. Zu gegebener Stichprobe x € Rf sei nun x ein eindeutig bestimmtes Abstandsmini-
mum beziiglich der Metrik d. Es gilt dann fiir alle u € R:

d(x, ;) < d(x,u). (3)

Da ¢ bijektiv ist, haben wir @(y) = x miteindeutig bestimmtem y € RY sowie u = ¢(uo)
und u = @ (up) mit eindeutig bestimmten xg, up € R,. Damit ergibt sich aus (3)

d(@(y), p(uo)) = d(@(y), ¢(uo)), und folglich 4)
do(y, 1o) < do(y, uo).
Mit u durchliuft auch ug ganz R, es liefert daher x¢ einen Punkt kleinsten Abstands zu
Yy beziiglich dg. Fiir jedes y € Rﬁ existiert eindeutig ein solches Minimum.
3. Da mit 4 = My(x) auch pg eindeutig ist, konnen wir schreiben: po = Mgy (y). Aus

der Ungleichung (4) folgt ¢(uo) = Ma(@(y)), also po = (9~
erhalten fiir My, und die p-Konjugierte von My die Beziehung

o Mg o@)(y), und wir

Myy, = (Mg)?. ®)

Mithin lisst sich die konjugierte Funktion (M4)? durch Minimierung beziiglich der ho-
moomorph ,,verformten Metrik d¢ gewinnen. O]
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Speziell fiir d = d (euklidische Metrik) geht die rechte Seite von (5) in A? iiber, d.h.
jeder quasi-arithmetische Mittelwert kann als d>@-Mittelwert aufgefasst werden.

Beispiel: Fiir die harmonische Mittelwert-Funktion H gilt H = A? mitg(x) = 1/x. Dann
ist d¢ eine Metrik auf RY, und der Abstand

Yooy
b = | > (= --)
=\yxr W
Jj=I
wird genau dann minimal, wenn u = H (x). Es gilt demnach H = My, ,.

3 Eine Verallgemeinerung der Metrik d,
Im Folgenden soll die Minimierung mit Distanzen folgender Bauart erortert werden:

N

d(x,y) =¢4'(Z§0(|x1' —yjl))- (6)

d=1

Hierbei ist ¢ als eine auf Ry U {0} definierte stetige und streng monoton wachsende
Funktion mit ¢(0) = 0 vorausgesetzt. Das in (6) erklirte d ist dann symmetrisch und
positiv-definit, also eine Distanz. Ob auch die Dreiecksungleichung gilt (und damit eine
Metrik vorliegt), hingt von gewissen Eigenschaften der Funktion ¢ ab. Im speziellen Fall
p(u) = u?, p > 1, folgt die Dreiecksungleichung aus der Minkowski-Ungleichung fiir
endliche Summen (vgl. etwa Bullen [2], S. 189).

Suchen wir (im allgemeinen Fall) zu vorgegebener Stichprobe x = (xy,...,xy) deren
d-Abstand zu [E, so geniigt es aufgrund der Monotonie von ¢ (und damit auch von ¢ '),
die Werte u mit kleinster Summe Z?:l @(|x; — u]) zu bestimmen. Nach einem Satz von
Nagumo [10] besitzt diese Summe ein eindeutiges absolutes Minimum genau dann, wenn
@ eine auf R strikt konvexe Funktion ist. In dem Fall erweist sich die resultierende Funk-
tion My zudem als eine in allen Argumenten x, ..., xy stetige Abbildung.

Die Konvexitiit von ¢ allein garantiert allerdings noch nicht die Giiltigkeit der Dreiecksun-
gleichung. Schreibt man diese fiir 4 einmal gemiB der rechten Seite von (6) aus, so wird
ersichtlich, dass erst die folgende Verallgemeinerung der Minkowski-Ungleichung zum
Ziel fiihrt:

2P +y) < ZP () + Z(p),

wo X(x) := x1 + - -+ + xn. Mit anderen Worten: Die Subadditivitit der ¢-Konjugierten
des Summenoperators X impliziert die Dreiecksungleichung fiir die durch (6) gegebene
Distanz. Mulholland [8] hat nachgewiesen: £ ist subadditiv, wenn neben ¢ € S auch
9P (= log op o exp) konvex ist.

Wir fassen die vorangegangenen Uberlegungen zusammen:
Satz 2. Sei g : Ry U{0} — R4 U{0} eine stetige, streng monoton wachsende und konvexe

Funtion mit ¢ (0) = 0; ferner sei p*P konvex. Dann ist die durch (6) definierte Distanz d
eine Metrik.
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Je nach Wahl von ¢ kann der durch (6) induzierte Mittelwert quasi-arithmetisch sein oder
nicht. Der zweite Fall soll hier einmal durch das Beispiel

@(u) := cosh(u) — 1 (7)

illustriert werden. Man iiberzeugt sich unschwer davon, dass ¢ die Voraussetzungen von
Satz 2 erfiillt. Auswertung von (6) ergibt

N
dp(x,y) = arcosh(l - N+ Zcosh(xj — yj)),

j=1

wodurch aufgrund von Satz 2 eine Metrik dj, auf Rﬂ:’ gegeben ist (A fiir ,,hyperbolisch®).
Wie im allgemeinen Fall geniigt es hier, den Ausdruck Z?;I cosh(x; — ) zu minimie-
ren. Mittels Nullsetzen der ersten Ableitung nach u und Vorzeichenpriifung der zweiten
Ableitung erhilt man auf iibliche Weise das eindeutige (absolute) Minimum:

1 el 4 ... eV

Umin = i |08 el + -+ e N = Mhyp(Xl, ...,XN).

Die so gewonnene Abbildung Mpyp : Rﬂ! — R, ist, wie sich einfach verifizieren lisst,
eine symmetrische, in jedem Argument stetige und isotone Mittelwert-Funktion. Ferner ist
Mpyp nicht-assoziativ und daher auch nicht quasi-arithmetisch (auBer im 2-dimensionalen
Fall, wo Mhyp(xl, x2) = A(xy, x2)).

Immerhin ldsst sich Myy,, einer umfangreichen Klasse von Mittelwert-Funktionen einord-
nen, welche (unter vielen anderen) auch die quasi-arithmetischen Mittelwerte enthilt. Es
handelt sich um die sogenannten Abweichungsmittelwerte, die folgendermalen definiert
sind: Sei / € R, ein nicht-ausgeartetes Intervall. Eine Funktion £ : I x I — R heilit
dann Abweichung(sfunktion) (engl. deviation), wenn E(x,x) = 0 und E(x,-) im zwei-
ten Argument stetig und streng monoton wachsend ist fiir alle x € /. Fiir die kumulierte
Abweichung

Kx,u) =EMx,u)+---+ E(xn,u)

hat man dann: K (x, Min(x)) < 0 < K(x, Max(x)), und es existiert stets genau ein zwi-
schen Min(x) und Max(x) gelegenes € I mit K(x, u) = 0.Esist u =: Dg(xy,...,XN)
der von Dardéczy [3] eingefiihrte Abweichungsmittelwert (engl. deviation mean) der Stich-
probe x = (x1,...,xN).

Wiihlen wir zu gegebenem ¢ speziell E(x, u) = ¢(u) — p(x), so ergibt sich

N
K(x,u)=N-p)— > p(x))

j=l

und somit Dg(x) = A?(x). Die quasi-arithmetischen Mittelwerte erweisen sich daher als
Unterklasse der Abweichungsmittelwerte. Auch fiihrt von hier aus (zumindest in gewissen
Fillen) ein Weg zu einer Metrik, welche das jeweilige quasi-arithmetische Mittel erzeugt.



Mittelwerte als Minima 31

Dazu berechnet man fiir die einzelnen Stichprobenwerte x; das Integral von E(x;, t) iiber
dem Intervall [x;, ] und summiert anschlieBend iiber alle j = I, ..., N. Beispielsweise
ergibt sich so fiir ¢ (u) = u:

N pu N pu [ o I
Zf E(xj,0ydt = (I—Xj)dt:EZ(Xj—u)Z:Ef(u)s
j=17%i j=1"%i J=1

wo f die Funktion aus Gleichung (1) ist, deren Minimierung zum d>-Mittelwert A fiihrt.
Tatsiichlich ist auch der hyperbolische Mittelwert Myy, ein Abweichungsmittelwert. Das
erkennt man, wenn E(x,u) = sinh(u — x) als Abweichungsfunktion gewihlt wird. In
diesem Fall liefert die Summe der Integrale

/ sinh(u — t)dt =cosh(x; —u)—1 (j=1,...,N)

x]

das Argument von go_' in (6) (mit dem ¢ aus (7)), mithin den Ausdruck, der fiir die Er-

mittlung des kleinsten (mit d;, gemessenen) Abstands zu minimieren ist.
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