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Logical equivalence of the fundamental theorems
on operators between Banach spaces

Friederike Liebaug and Karlheinz Spindler
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on a topic in applied differential geometry. She is expected to obtain her Master’s
degree in 2020.

Karlheinz Spindler received his mathematical education at the Technische Hochschule
Darmstadt. After obtaining his Ph.D. in mathematics, he spent two years as a vis-
iting assistant professor at Louisiana State University in Baton Rouge (USA) and
then worked for five years in the Flight Dynamics Department of the European Space
Operations Centre (ESOC) in Darmstadt. He currently teaches mathematics and data
processing at the Hochschule RheinMain (formerly Fachhochschule Wiesbaden). His
research interests include geometric methods in control theory, parameter estimation
related to the study of dynamical systems, and number-theoretical problems involving
elliptic curves.

The following theorems belong to the core topics of a first course in functional analysis
(where an operator always means a continuous linear mapping).

e Banach-Steinhaus Theorem (BST): Let X be a Banach space, Y a normed space and
M a family of operators T : X — Y. If M is pointwise bounded (i.e., if supycon || Tx|| <

Die Hauptsiitze iiber Operatoren zwischen Banachraumen gehoren zum Kernbestand
einer Einfithrung in die Funktionalanalysis; sie werden zumeist durch Anwendung des
Satzes von Baire bewiesen. Der vorliegende Artikel, der unmittelbar aus den Erfah-
rungen einer Vorlesung und eines Seminars iiber Funktionalanalysis resultiert, zeigt
eine andere — in der gingigen Lehrbuchliteratur nicht beachtete — Moglichkeit der Her-
leitung auf. Der Satz von Banach—Steinhaus, der mit géinzlich elementaren Methoden
bewiesen werden kann, erweist sich nimlich (ebenfalls in elementarer Weise) als lo-
gisch dquivalent zu den anderen Hauptsitzen (Satz von der offenen Abbildung, Satz
von der Umkehrabbildung, Satz vom abgeschlossenen Graphen). Im Artikel werden
ferner einige didaktische Fragen im Zusammenhang mit der Vermittlung der genann-
ten Sitze angesprochen, was vielleicht niitzliche Anregungen fiir die Gestaltung von
Lehrveranstaltungen im Bereich der Funktionalanalysis liefert.
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00 for each fixed x € X), then M is uniformly bounded (i.e., supycon [T lop < 00,
where || - |lop denotes the operator norm).

e Open Mapping Theorem (OMT): Let T : X — Y be an operator between Banach
spaces. If T is surjective, then T is open.

e Inverse Mapping Theorem (IMT): Let T : X — Y be an operator between Banach
spaces. If T is bijective, then T~ is continuous.

e Closed Graph Theorem (CGT): Let T : X — Y be a linear mapping between Banach
spaces. If the graph {(x, Tx) | x € X} of T is closed as a subspace of X x Y, then T is
continuous.

In the summer semester 2018, the second author taught a functional analysis class which
was attended (or rather suffered through?) by the first author. The approach taken in this
class was as follows: (BST) was derived in two ways, using both the elementary proof
found in [5] and the standard proof based on Baire’s theorem which can be found in nearly
all functional analysis textbooks (see, for example, [3], [9] or [10]); then (OMT) was
derived, again using the standard proof based on Baire’s theorem (loc. cit.), and finally
the implications (OMT) = (IMT) = (CGT) were proved, thereby establishing all four
theorems. Many of the students (including the first author) did not like the application of
Baire’s theorem, which seemed abstract and unintuitive, and since (BST) could be derived
without invoking Baire’s theorem, the students asked whether or not this would also be
possible for the other theorems. Moreover, the question arose which of the four theorems
could be derived from which of the other ones.

One year later, in the summer semester 2019, the second author offered a seminar on
selected topics in functional analysis, which was attended by a relatively large portion of
the previous audience (including the first author), and this offered a perfect opportunity
to explore the above questions (which formed the first author’s seminar assignment) in a
student-teacher cooperation which included a mixture of literature and internet research.
The present paper is the outcome of this cooperation. Its modest purpose is two-fold:
to present the final answers (which were scattered in the literature) in an organized and
succinct way which may serve as a help to others in preparing functional analysis classes,
and to remark on some of the didactical issues which turned up in the process.

It is clear that (BST), dealing with a family of operators, differs in character from the other
three theorems, which deal with a single operator. Thus it is natural to first concentrate
on these three theorems which, as is well known, are all equivalent (see [2]). It seemed
didactically worthwhile to not just prove the three necessary implications to establish the
equivalence of these theorems, but to derive an explicit proof for each of the six possi-
ble implications, which gave a good opportunity to review the pertinent facts on quotient
spaces (a concept not too well liked by most students), i.e., the fact that if U is a closed
subspace of a Banach space X then X /U is itself a Banach space with the quotient norm
| [x]]l := infycp ||x — u|| and that the quotient map z# : X — X /U, which assigns to each
element x € X its coset [x] = x + U, is both open and continuous.

For completeness’ sake, let us give quick proofs for all implications.
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Theorem. (OMT) & (IMT).

Proof. = Assumethat T : X — Y is a bijective operator. Then T is surjective, hence open
due to (OMT), and the openness of T is equivalent to the continuity of 7.

< LetT : X — Y be a surjective operator. Then the mapping T X/ker(T) — Y
given by T([x]) = Tx is a well-defined bijective operator. Then 7-!is continuous due to
(IMT), so that T is open. Butthen T = Toris open (as a composition of open mappings),
where 7 : X — X /ker(T) denotes the quotient map. 0J

Theorem. (IMT) < (CGT).

Proof. = Assume that 7 : X — Y is a linear mapping whose graph ' € X x Y is
closed and hence is a Banach space with the norm induced by the product normon X x Y.
Consider the projection operators
. I - X ] I - Y
pl'(x,Tx) = X pz'(x,Tx) = Tx
and note that p, is bijective. Then pl_l is continuous by (IMT). But then T = P2 o pl_l is
also continuous, being the composition of continuous mappings.

< Let T : X — Y be a bijective operator and let I" be the graph of T. Then T can be
written as the composition

X 5 r©r 2B vy

x = (x,Tx) +— Tx
of the embedding i, which is a homeomorphism, and the projection p, which is open.

Then T = p2 o i is open, being the composition of open mappings, and this means that
7~ is continuous. O

Theorem. (OMT) & (CGT).

Proof. = Let ' € X x Y be the graph of T : X — Y; we assume that I" is closed.

Then the projection p; : I' — X is a bijective operator between Banach spaces, hence is
open due to (OMT) and thus is even a homeomorphism; in particular, pl_I is continuous

The projection p> : I' — Y is also continuous. But thensois 7 = p> o pI , being the
composition of continuous mappings.

< Let T : X — Y be a surjective operator. Then

Y - X /ker(T)
"y +— [x]whereTx =y

is a well-defined linear mapping. We want to show that the graph of § is closed. To do so,
assume that y, — y in Y and Sy, — [x] in X/ker(T); we need to show that [x] = Sy.
Since T is surjective, we can find, for each n € N, an element x,, € X such that y, = Tx,
and hence Sy, = [x,]. The condition Sy, — [x] means that [x,] — [x],1.e., [x, —x] =
[0]; hence by the definition of the quotient norm there are elements &, € ker(7") such that
lxn —x — &)l = O, hence x, — & — x and therefore y, = Tx, = T(x, — &) — Tx.
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Since also y, — y, we conclude that y = Tx and thus Sy = [x]. This concludes the
proof that the graph of S is closed. Since (CGT) holds by assumption, we conclude that
S is continuous, so that there is a constant C > 0 such that ||Sy|| < C|/y| forall y € Y.
Pick an arbitrary element y € Y with |[y| < 1/C; then ||Sy|| < 1, and by definition
of the quotient norm there is an element ¢ € ker(7) with y = Tx and [[x — ¢| < 1.
Theny=Tx=T(x —-¢) € T(fo)(O)). Since y was arbitrary, we have established the

inclusion Bf}/({ 0) € T(B:X)(O)), which implies that T is open. O

This leaves us with the question which role (BST) plays in relation to the three theorems
considered so far. It seems to be a rather widely held view that (BST) is somewhat more
“elementary” than these other theorems and that it is not possible to derive them from
(BST), at least not in general (but possibly in a more restricted context like that of Hilbert
spaces); see the discussion and references in [2]. It turns out that this view is not correct.
In fact, all four theorems are equivalent, i.e., can be derived from each other, as will be
explained below. Due to the different character of (BST), it does seem neither natural
nor worthwhile to prove each of the possible implications directly. Therefore, we content
ourselves with proving the implication (CGT) = (BST) and (BST) = (OMT). Once this
is done, we know that all four theorems are logically equivalent, and since (BST) can be
established in an elementary way, it is clear that all four theorems can be derived without
invoking Baire’s theorem. (A deeper study leads to the obscurities of ultrabarreled spaces;
see (27.26) in [4].) We start by deriving the Banach—Steinhaus Theorem from the Closed
Graph Theorem.

Theorem. (CGT) = (BST).

Proof. Let 90t be a pointwise bounded family of operators 7 : X — Y between Banach
spaces. Then, for any fixed x € X, the evaluation map

M = Y
b7 W Tx

is bounded and hence is an element of the Banach space B of all bounded functions ¢ :
9N — Y, equipped with the norm [|¢||oc := Supzcon l@(T)|ly. Thus the linear mapping

(D:X—>B
X B

can be introduced.! We want to show that the graph of ® is closed. To do so, we assume
that x, — x in X and ¢, — g in B; we then have to show that g = ¢,. Since ¢,, — g,
we have

sup [1g(T) — Txplly = sup [|1g(T) — ¢x,(Mlly = g — ¢x,ll0c = 0. (%)
TeMMm TeMm

Now fix T € 9. Then (%) implies that Tx, — g(T). On the other hand, since x,, — x
and since T is continuous, we also have Tx,, — Tx = ¢,(T). Therefore, g(T) = ¢, (T).

'If M = (77,75, T3, ...} is countable, we can identify B with £°(Y) and ® with the mapping x >
(Tyx, Thx, T3x, ...), which seemed reassuring to some of the students.
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Since T was arbitrary, this implies that g = ¢,, which is what we had to show. Thus
the graph of @ is closed. Since the validity of (CGT) was assumed, this implies that @ is
continuous. Thus there is a constant C > 0 such that

Clixll = |®(x) oo = ll@xllcc = sup llgx(T)lly = sup [[Txlly
TeMm TeMm

forall x € X and hence || T |lop < C forall T € 9. (]

The next theorem establishes the most interesting implication and shows that the sup-
posedly weaker theorem (BST) actually implies the other three theorems. The proof is a
slightly expanded version of the one found in [1].

Theorem. (BST) = (OMT).

Proof. Let T : X — Y be a surjective operator. Denote by || - || x the normon X, by || - ||y
the norm on Y and by B, and B, the open balls of radius r centered at the origin in X and
Y, respectively. We show first that there is a number 6 > 0 such that

B; € T(By). (1)
To do so, we introduce for eachn € N anew norm || - ||, on Y via
Iylln = inf{l{lullx +nllolly lue X,veY, y=v+Tu}.

Since each element y € Y can be written as y = v + Tu where v := y and u := 0, we
have ||y|l, < n|ly|ly foralln € N andall y € Y. We now consider the vector space Z of
all sequences (y1, y2, y3, . ..) with only a finite number of nonzero entries, equipped with
the norm

| (b1, y2,¥3,-.) lz = sup |ynlln,

neN

and consider for each n € N the linear mapping S, : Y — Z given by
Sn()’) = (07 o e -50,y9090,"')

with the element y in the nth position. From |[S,(y)|lz = |lvll» < n|ly|ly we conclude
that S, is continuous with ||S,|lop < n. Moreover, given an arbitrary element y € Y, we
can find an element x € X such that y = T'x, because T is surjective by hypothesis. Then,
due to the decomposition y = v + Tu where v = 0 and u = x, we find that

ISaOz = llylla < llxllx

independently of n. Thus {S, | n € N} is a pointwise bounded family of operators. Invok-
ing (BST), we see that there is a constant C > 0 such that ||S,lop < C foralln € N. We
now claim that condition (1) is satisfied whenever § < 1/C. In fact, given y € B('s so that
iylly < d, we have |lylln = [ISa(P)lz < [Sullopllylly = Cllylly < Cé < 1. The defini-
tion of the norm || - ||, then implies that there are elements u, € X and v, € Y such that
y =0 + Tuy and ||u,|lx + nllog|| < 1, thus |lu,|lx < 1 (i.e.,u, € By) and n|jo,|ly < 1,
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therefore ||v,|ly < 1/n and consequently v, — 0, which implies Tu, — y and hence
y € T(By). This proves (1). Scaling immediately shows that (1) implies the condition

B(’)‘/gn - T(BI/Z") (2)
for all n € N. We claim that
By, C T(B)). 3)

To prove this claim, let y € B(’,/2 so that |ly|ly < d/2. Since y € T(Bji2), there is an

element x; € Byzsuch that ||y — Tx|ly < d/4.Sincey — Tx; € B,’,-/4 C T(By/4), there
is an element xa € Bj/4 such that ||y — Tx; — Txz2|ly < /8. Continuing in this fashion,
we find elements x; € By o« such that |y — >0, Txlly < 5/2"+1 for all n. Since

D2 Ixkllx < 2222, (1/2)% = 1 and since X is complete, the series > g | xx converges

absolutely towards an element x € X for which ||x|lx = | 270, xkllx < 200 Ixkllx <
1 so thatx € Bj. Moreover, we have Tx = T (D22, xk) = > poy Txx = y. Thus y = Tx
lies in 7'(B)). This proves (3), and (3) clearly implies that T is an open mapping. UJ

All the questions which motivated this paper are now satisfactorily answered. We conclude
with three remarks concerning aspects which played a role in both the functional analysis
class and the subsequent seminar.

Remark 1: Converses of the theorems. It is worthwhile noting that the converses of both
(CGT) and (OMT) hold trivially. For (CGT) this is immediately clear, because if T : X —
Y is continuous then x, — x implies 7x,, — Tx and hence (x,, Tx,) — (x, Tx), which
shows that the graph of T is closed. This argument requires neither the completeness of X
nor that of Y, hence works for operators between arbitrary normed spaces (not necessarily
Banach spaces). Similarly, the converse of (OMT) holds for arbitrary linear mappings
(continuous or not) between arbitrary normed spaces (complete or not).

Theorem. Let T : X — Y be a linear mapping between normed spaces. If T is open then
T is surjective.

Proof. Since T is open, there is a number & > 0 such that B; € T(B;). Lety € Y be an
arbitrary element of Y; we must find an element x € X such that Tx = y. If y = 0 we
can take x := 0. Let y # 0. Choose a number r such that 0 < r < 4. Then ry/| y| lies
in B C T(By), which implies that there is an element & € By such that T¢ = ry/|ly|l.
Letting x := (||y|l/r)¢, we have Tx = y. ]

Establishing the converses of (CGT) and (OMT) provided a good opportunity to point out
the role of completeness and to teach the students to appreciate which statements hold only
for Banach spaces and which ones hold for arbitrary normed spaces. For example, (BST)
requires completeness in X, but notin ¥ (and this is crucial in the proof that (BST) implies
(OMT), because the space Z used in this proof is not complete). It was also important to
point out which statements hold not just for linear mappings between normed spaces, but
for arbitrary mappings between topological spaces (such as the fact that the openness of a
bijection is equivalent to the continuity of its inverse), thereby giving the students a feeling
for the right level of generality of mathematical statements.
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Remark 2: Intuitive understanding. It is very important for students (and teachers!) to
not just understand mathematical theorems in the sense that the proofs can be followed,
but to also develop an intuitive understanding of the meaning and significance of these
theorems. In this respect, (IMT) can be understood relatively easily: If an operator T :
X — Y between Banach spaces is bijective, then the equation Tx = y has a unique
solution x for each given right-hand side y. The fact that (IMT) holds shows that x depends
continuously on y, i.e., if y changes only a little then x also changes only a little, a fact
which can be easily illustrated for initial value problems and is basic for the development
of numerical schemes from functional analytic results. The intuitive meaning of (OMT)
is less obvious, but can be stated as follows: The surjectivity of a mapping 7 : X — Y
can be considered as a purely qualitative existence statement: for each right-hand side y,
the equation Tx = y has at least one solution x. Now if 7 is open, this can be made into
a quantitative existence statement by guaranteeing the existence of a solution x together
with an estimate for the size of x in terms of the size of the right-hand side.

Theorem. Let T : X — Y be a surjective operator between Banach spaces. Then there is
a constant C such that for each element y € Y the equation Tx = y possesses a solution
x such that ||x|| < C|ly||.

Proof. Due to (OMT), the mapping T is open; hence there is a number 6 > 0 such that
B; C T(B)). Letting K§ := Bj and K| := Bj, we also have K; = B5; € T(By) <
T(By) = T(K;). Now let C := 1/6.If y # 0 is an arbitrary nonzero element of Y,
then 8y /| y| lies in K}; hence there is an element & € K such that dy/||y|| = T¢. Then
x = (llyll/d)¢ satisfies Tx = y and ||x|| < ||y|l/0 = C|ly|. If y = 0 we can simply
choose x := 0. [l

These ideas are nicely expanded in [6] (in particular Theorem 1.7.12), giving a deeper
understanding for the meaning of the Open Mapping Theorem which is not immediately
clear from the mere statement of this theorem. See also [7] and [8] for insightful remarks
on the Closed Graph Theorem.

Remark 3: Applications. It almost goes without saying that a true understanding of ab-
stract theorems such as the ones discussed in this paper only develops when one sees these
theorems “in action” by applying them to concrete problems. Thus the functional analysis
class which gave rise to this paper also covered applications such as initial and boundary
value problems, numerical integration schemes, Fourier analysis and others. For the stu-
dents, the blend of abstract theory and concrete applications was one of the main reasons
to appreciate the attractivity of functional analysis as a mathematical discipline.
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