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1 Introduction

The Enestrom—Kakeya theorem ([6], [7], and [10]) establishes upper and lower bounds on
the moduli of the zeros of a polynomial with positive coefficients that are simple explicit
functions of the coefficients. It has been extended and generalized in different ways, a
good overview of which can be found in [8], while sharpness of the bounds was considered
in [1], [2], and [9]. For additional historical remarks about this pretty theorem we also refer
to [16, pp. 271-272].

Here we construct a framework that generates theorems similar to that of Enestrom and
Kakeya, namely, theorems that derive regions in the complex plane that contain the zeros
of polynomials with positive coefficients. These regions, which consist of a single disk
or the union of several disks, are explicitly determined, i.e., they do not require numerical
methods, and we use the same two basic tools to derive all of them: a family of polynomial

Das klassische Enestrom—Kakeya Theorem liefert explizite obere und untere Schran-
ken fiir die Nullstellen von Polynomen mit positiven Koeffizienten. Der Autor der vor-
liegenden Arbeit entwickelt einen gemeinsamen Rahmen fiir diesen Satz und Varianten
davon und gelangt auf diese Weise zu einer Theorie, welche deutlich feinere Aussagen
erlaubt. So lassen sich explizit Regionen in der komplexen Ebene angeben, welche die
Nullstellen enthalten. Diese Regionen sind Kreisscheiben oder die Vereinigung von
Kreisscheiben. Die Verallgemeinerung einer Beobachtung von Cauchy und eine Fa-
milie von geeigneten Polynom-Multiplikatoren fiihren dabei zu einem einfachen und
transparenten Zugang.
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multipliers and a generalization of an observation by Cauchy. This transparent approach is
simpler than traditional ones and unifies the derivation of existing and new results.

Although we obtain useful bounds, our main purpose is to show how a classical and elegant
theorem is based on another classical result and how generalizations of the latter can be
used to improve it in ways that are quite different from existing ones.

The paper is organized as follows. In Section 2 a few results are collected that are needed
throughout. In Section 3, we derive zero inclusion regions composed of a single disk cen-
tered at the origin, while in Section 4 we obtain disks that are not centered at the origin.
In Sections 5 and 6, we derive zero inclusion regions consisting of two and three disks,
respectively. Some technical remarks are relegated to an appendix.

2 Preliminaries

We first collect a few theorems and definitions that will be needed further on. Throughout
this section, we consider a polynomial p(z) = anz" + an_12" " + -+ + a1z + ap with
complex coefficients, unless specified otherwise.

Definition 2.1. The Cauchy radius of the kth kind of p, withk = 1,..., n, is defined as
the unique positive solution s of

n—k+1

| _
ianlzn'*'lan—llzn + -+ lan—k+112 —|a,;_k|Z" k_"'_|a||~_|a0|:0- (1

When k = 1, sy is simply called the Cauchy radius of p.

Definition 2.2. The sets I'j(k) and I'2(k) for the polynomial p, with k = 1,...,n, are
defined as

(k) = [z e C: la,,z" +ap2 4 + ap—i+12|

< lanlsf + lan-1lst ™" 4 4 lan-k It
and
(k) = lz €C:lanz* +ap12" + -+ ap_k12 + anl

k k—1
= 'an|5k+| + lan— |Sk+| + -+ lan—k+1 Sk+1 + 'an—kll .

The boundaries of I'j(k) and I'2(k) are lemniscates. With these definitions, we state the
following theorem, which is Theorem 3.2 in [13], where k here corresponds to n — k in
that theorem.

Theorem 2.1. All the zeros of the complex polynomial p(z) = Z?‘:o aj 2/ lie in the sets
I'1(k) and T2(k). If T'1(k) or I'2(k) consists of disjoint regions whose boundaries are
simple closed (Jordan) curves and € is the number of foci of its bounding lemniscate that
are contained in any such region, then that region contains € zeros of p when it does not
contain the origin, and { + n — k zeros of p when it does contain the origin.



A unifying framework for generalizations of the Enestrom—Kakeya theorem 3

The special case I'1(1) in Theorem 2.1 is the disk defined by |z| < s, where s is the
unique positive solution of

|an|2" — lan—112" "' — -~ — |ai|z — |ag| = 0. )
This is a classical observation by Cauchy from 1829 ([5], see also, e.g., [11, Th. (27, 1),

p.- 122 and Exercise 1, p. 126], [15, Theorem 3.1.1], [16, Theorem 8.1.3]).

The special case I'2(1) in Theorem 2.1 is the disk defined by |z + a,—1/a,] < 52 +
la,—1/an|, where s> is the unique positive solution of

—1 -2
lan|z" + lan-112""" — lan—2|2""° —--- —|a1lz — |ao| = 0.

This is Theorem 1 in [12].

As k increases, I'| (k) and I'2(k) become too complicated. Instead, we will approximate a
region I", bounded by a lemniscate of the form |¢(z)| = R, where g(z) = 2" +bp_ 12" '+
-+ + by, as follows. Denoting the zeros of g by c¢;, we have that

1g@)| = 2" + bz '+ -+ bol =z —cillz—c2]...|1z—cml ,
so that
F'={zeC:lqR)I<R}={ze€C:lz—-cllz—c2|...lz—cm| £ R},

which implies the inclusion
m
I C U [zeC:iz—lesR'/’"] .
=1

Although larger than I', this union of disks is easier to work with, and is, as we shall see,
still useful. It may sometimes be better to allow different disks to have different radii, but
in the interest of simplicity we will use the same radius for all disks.

Additional zero inclusion regions can be obtained by applying Theorem 2.1 to the reverse
polynomial p#([) = apl" ~}—al¢""l +- -+ apn—1 +a, (with ag # 0), whose zeros are the
reciprocals of the zeros of p. Upper bounds on the moduli of the zeros of p* then lead to
lower bounds on the moduli of the zeros of p. We refrain from obtaining such additional
regions, as their derivations are straightforward applications of the results for p.

We conclude this section by stating the Enestrom—Kakeya theorem ([6], [7], and [10]) with
a proof that already contains the ingredients for its generalization.

Theorem 2.2 (Enestrom—-Kakeya ). All the zeros of the real polynomial p(z) = Z;’ _0aj2’
with positive coefficients lie in the disk defined by

.
zeC:|z] £ max — X
Osjgn—laj_H

Proof. Consider (z — y)p(z), where y € R:

@—7)PR) =an™"' + D (@j1—yaj)z) —yao. 3)
j=1
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Clearly, any upper bound on the zeros of (z — y)p(z) will also be an upper bound on the

zeros of p. From (3) we observe that all the coefficients of (z — y)p(z), except that of

z"*1, will be nonpositive if
aj
y = max ,
O<j=n—lajy|

while the constant term is negative. For that value of y, the Cauchy radius of (z — y ) p(z)

is the unique positive solution of (z — y)p(z) = 0 and, since y > 0 is a positive zero
of (z — y)p(z) and p has no positive zeros, it must be equal to the Cauchy radius. This
concludes the proof. O

It is worth pointing out that the Enestrom—Kakeya bound is not necessarily better than the
Cauchy radius of p, although its obvious advantage is that it is explicit and therefore does
not require the solution of a polynomial equation. The following example illustrates the
theorem.

Example. Define the polynomials pi(z) = 22° + z* + 4z% + 22 + 2z + 3 and p2(z) =
22+ 24 +223 43224+ 2z + 1. For p|, whose largest zero has magnitude 1.3921, the Cauchy
radius is 1.9242, while the Enestrom—Kakeya theorem gives 4.00 as an upper bound, which
1S worse.

On the other hand, for p,, where the largest zero has magnitude 1.4013, we obtain 2.4654
and 2.0 for the Cauchy radius and Enestrom—Kakeya, respectively. Here, the Enestrom—
Kakeya bound is better.

There is one clear case where the Enestrom—-Kakeya theorem is guaranteed to produce a
better upper bound than the Cauchy radius, namely, when a,, | /a, = max <<, a; /a;.
This can be seen by substituting a, | /a, in the left-hand side of (2), which yields a nega-
tive value, indicating that a,—/a, is less than the Cauchy radius. It is also an immediate
consequence of Theorem 8.3.1 in [16].

The key ingredients in the proof of Theorem 2.2 are the multiplier z — y and the set I'; (1),
defined by the Cauchy radius, which provides the motivation for generalizing this theorem
by changing the multiplier, while using the sets I'j(k) and ['2(k) from Theorem 2.1 for
k > 1, leading to inclusion regions consisting of a single disk as well as several disks.
To avoid tedious repetition, we will provide one fully worked out theorem for each case,
while stating additional results with an explanation of how they are obtained, but without
a formal proof.

From here on, we denote by D(a, r) the closed disk with radius r and centered at a.

3 Single disk centered at the origin

In this section we derive two inclusion regions consisting each of a single disk centered at
the origin. These two results, one of which is similar to an existing one, are only marginally
more complicated than Theorem 2.2, and clearly illustrate how more such inclusion disks
can be obtained.
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Theorem 3.1. Let the real polynomial p(z) = Z'}zo a ,'zj with n > 3 have positive
coefficients, and let

- ap—| y ap—2 — Y2ap—1
2. = s 2 =
[ dp ’

y1ao y2a0 + y1ai aj — y2aj+1 — Y1442
70 = max 10, s ,  max
—daj —as 0<j<n-3 aji3

Then all the zeros of p lie in the disk D(0, ), where u is the unique positive zero of
3 2
7 — Y227 — Y12 — Yo0-

Proof. Consider q(z) = (z* — y22% — y1z — y0) p(2), where yo, y1, 72 € R:

q(z) = anz" "> + (an—1 — y2a0)2" 2 + (@n-2 — y2an-1 — y18n)2" !

n
+ z (aj_3 — y2aj_2 — y1aj—1 — yoa;) 2/ — (y2a0 + y1a1 + yoaz) 22
j=3

— (y1a0 + yoa1) z — yoao . 4)

If we define yg, y1, and y2 as in the statement of the theorem, then the coefficients of
the nonleading powers of z in the right-hand side of (4) are all nonpositive, which means,
reasoning as in the proof of Theorem 2.2, that the Cauchy radius of g, which is also an
upper bound on the moduli of the zeros of p, is the unique positive zero of z3 — y,22 —
Y12 = Yo O

The following theorem is obtained similarly, by using a quadratic multiplier of the form
2
=712 —7Yo-

Theorem 3.2. Let the real polynomial p(z) = Z?:o a jzj with n > 2 have positive
coefficients and let

Ap—1

ai — Vid;
= and yo——-max[O, max ul

an 0<j<n-2 ajy2

Then all the zeros of p lie in the disk D (0, % (71 1 (3’12 + 4)}()) 1/2)).

Although somewhat dissimilar at first sight, this theorem is essentially Theorem 1 in [3].

Example. We illustrate the theorems in this section with the polynomial p3(z) = z° +
4z° +2z* 4+ 223 4 322 4 6z + 7. They produce the following upper bounds on the moduli
of the zeros:

Cauchy radius: 4.580 Theorem 3.1:  3.788
Enestrom—Kakeya theorem: 4.000 Theorem 3.2:  4.000 .

It is, in general, difficult to predict which theorem is preferable. Theorems obtained with
higher-order multipliers do not necessarily outperform those obtained with lower-order
multipliers, although they frequently do, as is the case here.
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4 Single disk not centered at the origin

We now derive additional inclusion regions, consisting, this time, of disks not centered at
the origin. We present three theorems, of which one is an existing result, although formu-
lated slightly differently.

Theorem 4.1. Let the real polynomial p(z) = Z?‘:o a jzj with n > 4 have positive
coefficients, and define

ap-2 dp-3
anp dp—|

p= (% (a + (o + 4ﬂ)”2))”2.

Then all the zeros of p lie in the closed disk D(—ap—1/an, p + |an—1/anl).

aj —adj42
l, ﬁ:maxIO, max ;],

O<j<n—4  Qji4

a=max|

Proof. Consider q(z) = (z* — az® — B) p(z):

n+2 n+1

q(z) = anz"* + ap_ 12" + (an-2 — aan) "2 + (ap—3 — aan-1) z

n
+ D (aj-4 —aaj2— pa;) </

j=4
— (aay + Ba3) 2* — (aap + Paz) 2> — Paiz — fag . (5)
We have from equation (5) that all the coefficients of ¢, except those of z" 4 and z"+3, will

be nonpositive if @ and f# are defined as in the statement of the theorem. Then the Cauchy
radius of the second kind of g is the unique positive solution of (z* — az®> — f)p(z) = 0,
which is the unique positive solution x of z* — az® — f. This quartic is a quadratic in z°,

1/2\\ !/2 .
. Theorem 2.1 with the

set I'2(1) then implies that all the zeros of ¢, and therefore also all those of p, must lie in
the closed disk D(—ay—1/an, pt + |lan—1/ay|). Ol

and its positive zero is given by u = (% (a + (a® +4p)

The following theorem is a slightly different version of Corollary 3 of Theorem 3 in [4].
Here, it is obtained with a multiplier of the form zZ — x? and the set I'5(1).

Theorem 4.2. Let the real polynomial p(z) = Z;‘:O a jzj with n > 2 have positive

coefficients, and let
aj 1/2
H = max .
O<j<n-2ajy2

Then all the zeros of p are included in the closed disk D(—ay— /an, it + |an—1/anl).

The following theorem is obtained with a multiplier of the form 2 —yiz— 70 and the set
I'2(1).
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Theorem 4.3. Let the real polynomial p(z) = Z'J'-:O a ij with n > 3 have positive
coefficients, define

ap-2 aj —yiaj+2
, yo=max {0, max ————
anp 0<j<n-3 aj43

71 =

and denote by y the unique positive zero of 22 — y12 — Yo- Then all the zeros of p lie in
the closed disk D(—a,—1/an, p + lan—1/an))-

Example. To graphically illustrate some of these results, we have chosen the upper bound
from Theorem 3.1 and combined it with the inclusion disk from Theorem 4.1 for the
polynomial p3(z) = z° + 42> + 2z* + 2z% + 3z% + 6z + 7 we encountered at the end
of Section 3. The result can be found in Figure 1, where the solid circle centered at the
origin is obtained from Theorem 3.1, and the dashed circle indicates the upper bound
from the Cauchy radius. The disk obtained from Theorem 4.1, centered at —4, is bounded
by the other solid circle. The zeros of p are indicated by black dots. Here the disk from
Theorem 4.1 cuts off a significant part of the disk from Theorem 3.1, since the zeros must
lie in the intersection of both.

The radii of the inclusion disks for the theorems in this section are as follows:

Cauchy radius of the second kind: 5.475 Theorem4.2: 5.732
Theorem 4.1: 5.492 Theorem4.3: 5.618 .

As in Section 3, one discerns a positive trend with increasing degree of the multipliers
upon which the theorems are based.

8 —6-4-20 2 4 6
Figure 1 Inclusion regions from Theorems 3.1 and 4.1 for pj3.
So far, we have only used the sets I'y (k) and ['2(k) from Theorem 2.1 for k = 1. In the

following two sections we derive inclusion regions with k > 2 consisting of two and three
disks, respectively.
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5 Two disks

In this section we derive zero inclusion regions consisting of two disks. We present two
theorems.

Theorem 5.1. Let the real polynomial p(z) = Z;zo a jzj with n > 2 have positive
coefficients, and define

dp—1

dn

1/2

ai

ﬂz( max —-j—~) and R:,u2+
0<j<n-2aj42

Then all the zeros of p are included in the union of disks D(0, R'>)UD(—a,_1 /an, R'/?).

If the disks are disjoint, then the disk centered at —a,, | /a, contains one zero and the one
centered at the origin contains the remaining n — 1 zeros of p.

Proof. Consider the polynomial g(z) = (z> — y)p(z). Then

n
q(z) = anz"? + ap_ 12" + Z(aj_z —yaj)z) —yai1z—yap .
j=2

If we now choose y = u? with u as in the statement of the theorem, then all the coeffi-
cients of g, other than the two leading ones, are nonpositive, so that s, its Cauchy radius
of the second kind, is its unique positive solution, namely, . The set I'1(2) in Theorem 2.1
is then given by

Q)= [ze(C: z(z+an_l) < R] .
an
with R = u? + (ay—1/an) u. This set is contained in the following union of two disks:
[zeC:IzISR]/Z]U[zeC: z+£ln—_1 SRW] .
An

If the disks are disjoint, then, from Theorem 2.1 with &k = 2, we obtain that the disk
centered at the origin contains 1 4+ (n + 2) — 2 = n + | zeros, while the disk centered at
—ay—1/an contains one zero of g. The zeros of g are those of p with the addition of + .
Because the disks are disjoint, all points in the disk centered at —a, | /a, have a negative
real part, so that z must lie in the disk centered at the origin, which means that —u also
lies in that disk. The only zero of g in the disk centered at —a,_|/a, must therefore be
a zero of p, while the other n — 1 zeros of p lie in the disk centered at the origin. This
concludes the proof. 0

This theorem is somewhat similar to Theorem 4.2. However, instead of one disk centered at
—a,—1/ay, we now have two disks (one centered at the origin and the other at —a, | /a,)
with a smaller radius. That this radius is smaller follows from the fact that

2 1/2
an—1 an—1 anp— A —
#2+—:1—.u5(ﬂ+ ; ) —_—>(#2+;—I#) <ut+——,

n an n

where u has the same meaning here as in Theorem 4.2.
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The following theorem is obtained with the multiplier z3 — i3, combined with the set
[2(2).

Theorem 5.2. Let the real polynomial p(z) = >} _ga iz with n > 3 have positive
coefficients, define

1/3
aj ap—1 ap-2
H= max 4 and R = pu?> + =—u + =,

and let ¢\ and c; be the zeros of the quadratic z> + (an—1/an)z + Gn—2/an.
Then all the zeros of p are included in the union of disks D(c1, R'/?) U D(c2, R'/?).

If the disks are disjoint, then c» < ¢ < 0, the disk centered at c» contains one zero, and
the one centered at ¢\ contains the remaining n — 1 zeros of p.

Example. Figure 2 compares the inclusion regions obtained from Theorem 4.2 and Theo-
rem 5.1 for the same polynomial p3(z) = z°+4z> +2z* 4+ 223 + 322 4+ 62+ 7 that we used
at the end of Section 3 and in Figure 1. The dotted circle centered at the origin (with ra-
dius 3.788) is the boundary of the disk obtained from Theorem 3.1, while the large dashed
circle (with radius 5.732) is the boundary of the disk from Theorem 4.2. The two smaller
solid circles (with radii 3.151) are the boundaries of the disks from Theorem 5.1. The ze-
ros of p, which necessarily lie in the intersection of the inclusion regions, are indicated by
black dots. The Cauchy radius of p3 is 4.580.

-
o’—- S
. -~
P ~
P IS

PLLLL TS
. v s e,

’ *

"camm=u=”

8 —6 —4 -2 0 2 4 6

Figure 2 Comparison of Theorems 4.2 and 5.1 for p3.

Regions composed of two disks are not necessarily smaller than those composed of a sin-
gle disk, although they frequently are. Moreover, when the disks are disjoint, they provide
additional information about the location of the zeros that cannot be obtained from stan-
dard generalizations of the Enestrom—Kakeya theorem.
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6 Three disks

In this section we carry out one more application of Theorem 2.1 to obtain a zero inclusion
region consisting of three disks.

Theorem 6.1. Let the real polynomial p(z) = Z?:O a jzj with n > 3 have positive
coefficients, and define

a; "1 i
,u:(max —j) and R = i’ + p*+ u .

Then all the zeros of p are included in the union of disks D(0, R'3) U D(c1, R'3) U
D(ca, R'3), where ¢| and ¢ are the zeros of the quadratic z* + (an_1/an)z + an—2/an.
There exist only the following two scenarios for disks to be disjoint.

(1) The disk centered at the origin is disjoint from the other two, in which case that disk
contains n —2 zeros of p, while the union of the other two contains the two remaining
zeros of p. If these are also disjoint, then each contains one zero of p.

(2) The two disks not centered at the orgin are disjoint, but only one of them is disjoint
from the disk at the origin, in which case that disk contains one zero of p, while the
union of the other two contains n — 1 zeros of p. This scenario is only possible when
¢y and c> are real and negative.

Proof. Consider the polynomial ¢ (z) = (z} — ) p(z), which is given by

n
q(2) = an" P + ap_ 12"+ ay 22"t + Z (aj_3 —yaj)z’ - yazt —yaiz — yao ,
j=3

with y = u3, where u is as in the statement of the theorem. Then the three leading
coefficients of g are positive, while all other coefficients are nonpositive. The Cauchy
radius of the third kind of ¢ is then its unique positive zero, which is the unique positive
zero y '/3 = y of z3 — y . This means that the set I'; (3) in Theorem 2.1 is given by

ay — an—
z(zz+"—lz+ ‘ 2)‘ER] s

ay an

I'@3) = [zE(C:

where R = u3 + (a,,_l/a,,)yz + (ap—2/ay) . This set is contained in the union of three
disks:

{ZEC:|Z|SRm]U[Z€C3|Z—C||SR]/3}U[zE(C:IZ—CzlfRI/“] .

The following scenarios arise when the disks are disjoint. If a>_, /a2 < 4a,_»/ay, then
c1 and ¢, are complex conjugate with a negative real part, and the disks centered at these
points are either not disjoint or both disjoint from the disk centered at the origin. When
they are disjoint, then, by Theorem 2.1, g has 1 + (n + 3) — 3 = n + 1 zeros in the disk
centered at the orgin. One of those must be x, the real positive zero of h(z) == z° —y. The
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other two zeros of h have the same modulus as x and must therefore also lie in that disk,
which means that the remaining n — 2 zeros of ¢ in that disk are zeros of p, and so are the
two zeros of g in the union of the two disks centered at ¢; and ¢;. If these are also disjoint
from each other, then, by Theorem 2.1, each contains one zero of p.

If ¢; and ¢ are not complex, then they are both real and negative. If the disks centered at
these points are both disjoint from the disk centered at the origin, then reasoning similarly
as before, their union contains two zeros of p; if they are disjoint from each other, then
each contains one zero of p. If only one is disjoint from the disk centered at the origin,
then it contains one zero of p. U

Examples. The following examples illustrate Theorem 6.1.

¢ In Figure 3, we compare the inclusion regions obtained from Theorem 5.1 and Theo-
rem 6.1 for the same polynomial p3(z) = z0+42° +2z* + 223 + 322+ 6z +7 we used
before. The dotted circle centered at the origin (with radius 3.788) is the boundary
of the disk obtained from Theorem 3.1. The solid circles in the top figure (with radii
3.151) are those obtained from Theorem 5.1, while those in the bottom figure (with
radii 2.507) are obtained from Theorem 6.1. The zeros of p are indicated by black
dots. The Cauchy radius in this case is 4.580.

-8 -6 -4 -2 0 2 4 6
Figure 3 Comparison of Theorems 5.1 and 6.1 for p3.
e In Figure 4, we carried out the same comparison as in Figure 3 for the polynomial

pa(z) = 28 +92° +5z* + 623 + 422 + 8z + 1. The dotted circle centered at the origin
(with radius 8.744) is the boundary of the disk obtained from Theorem 3.1. The
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solid circles in the top figure (with radii 5.012) are those obtained from Theorem 5.1,
while those in the bottom figure (with radii 3.552) are obtained from Theorem 6.1.
As before, the zeros of p are indicated by black dots. The Cauchy radius of p4 is
9.592. Here Theorem 6.1 isolates one zero of p4 from the others.

-
..-.- -.....
.

- .
MITTTT LA

-12 -8 -4 0 4 8 12

L4 -
_8 te, o
"--._--l‘

-12 -8 -4 0 4 8 12

Figure 4 Comparison of Theorems 5.1 and 6.1 for p4.

Conclusion. We have constructed a framework to derive generalizations of the classical
Enestrom—Kakeya theorem using two simple tools: polynomial multipliers and a theorem
establishing inclusion regions for the zeros of a polynomial. This framework unifies and
simplifies the derivation of these generalizations, obtaining new as well as old theorems
in the process, while transparently showing how more of them can be generated. One
feature of our results, namely, zero inclusion regions consisting of more than one disk, is
apparently not found in any of the existing generalizations of this theorem.

Appendix

The following remarks are mainly concerned with relations between the different theo-
rems.
(1) Ifin Theorem 3.1
— aj < ap—1 < an—2 ,

O<j<n-3aji an an—1
then y; > 0, which implies that yo = 0, and we obtain precisely the result in Theorem 3.2,
which in this case yields a smaller upper bound than the Cauchy radius, as explained in (3)
below.
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(2) In Theorem 3.1, the alternative choice

aj — Y2aj+1
, 71=0, and yo = max {0, max b A e
0<j<n-3 aj4+3

y max [an—l dp-2 ]
2 = )
dp  dp—|

leads to a similar result, which for brevity’s sake we do not pursue.

(3) Theorem 3.2 delivers a better bound than the Cauchy radius when yo = (a,-2 —

Y1an—1)/an, which is a consequence of Theorem 3.1 in [14]. We also note that, if ﬂz;—' =

Maxg<j<p—1 u‘}%, then yo = 0 and the upper bound from this theorem is identical to the
Enestrom—Kakeya upper bound, which in this case is better (smaller) than the Cauchy
radius (as in the example of Section 3).

(4) In Theorem 4.1, if

- - aij an—3 aij
2 = max j or =2 — max —L , (6)
Aan O<j=n-2aj42 an—1 O<j<n-2aj4r

then # = 0 and the upper bound becomes /a. If, given (6), a,_2/an > an_3/an_1,
then we obtain the same bound as in Theorem 4.2 and Theorem 4.3 while, if, given (6),
an_3/an—1 > ap_»/a,, then we obtain the same bound as in Theorem 4.2, but not neces-

sarily as in Theorem 4.3.

(5) In Theorem 4.3, when a, _>/ap = maxo<j<p-2aj/aji2, then yo = 0, in which case
this theorem produces the same inclusion disk as in Theorem 4.2.

(6) Variations of Theorem 4.3 can be generated by using the multiplier > — y22% —y1z—y0
with yo = (1 — €)a,—1/a, for 0 < & < 1, which shifts the center of the inclusion disk
to —&a,—1/a,, making Theorem 4.3 a special case for ¢ = 1. Similar variations can be
considered for other theorems here as well, although we will not pursue them.

(7) The two disks in Theorem 6.1 that are not centered at the origin have the same centers
as the disks in Theorem 5.2, but their radii are smaller because

2 3
Qn— Qn_2 Qn— Qn_2
#2(ﬂ2+ s B ) S(u2+ 21#+ ! )

ap ay

1/3 1/2
ap— an— anp— an—
#1/3(ﬂ2 , 9n 1# n 2) S(,llz n 1# n 2) ‘

Aap danp ap dnp

implies that

(8) If the radius of the disk centered at the origin in the theorems of Sections 5 and 6 is
larger than the Cauchy radius, then it will obviously contain all the zeros of the polynomial
and the other disk(s) can be ignored. This can be detected by a simple substitution of the
radius of that disk in equation (1).
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