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Short note  On the Inequalities of Griiss—Cebyshev and
Kantorovich: A Probabilistic Approach

Lothar Heinrich

Abstract. First we recall the original form of inequalities found by P.L. Cebyshev in 1882, G. Griiss
in 1935 and V.L. Kantorovich in 1948. Then we formulate generalized versions of these inequal-
ities in the language of probability theory which allows to prove them by simple probabilistic
arguments. A further moment inequality of this type rounds off this note.

1 Introduction and Results

V. Ptak, see [6], provided a very short proof of the following inequality which has been
first proved by V.L. Kantorovich, see [3] or [8], p. 85.

Kantorovich Inequality: For any real numbers xi, ..., x, satisfying 0 < x; < -+ <
Xp <ooand A1,...; 4, = Osuchthat 37 Ay =1
n n
Ai (x1 + xp)?
Ai X — < — . |
(Zom) (X5) <o 2
i=1 i=lI
In the particularcase A = --- = 4, = ,1—1 the inequality (1) has been shown by P. Schwei-

tzer, see [7], by applying the fact that the function ¢ (xy, ..., x,) = i +---4+ ﬁ is strictly
Schur-convex and decreasing in each coordinate, see [5], p. 71. In Theorem 1 we formulate
a slightly more general version of (1) emphasizing its probabilistic nature, where its proof
is similarly short as that of (1) given in [6].

To state the next two inequalities we define for any two bounded functions f, g : [a, b] —
R with —00 <a <b < 0

1 b 1 b b
Aap(f. 8) = b——_a[a F(x)g(x)dx — (b——a)Z/a f(x)dx/“ glx)dx . (2

éebyshev Inequality: If f and g are Lipschitz continuous on [a, b] with Lipschitz con-
stants L s and Ly, respectively, then

1
| Aup(f, 8)] < E(b~a)2 LfLg,  see [1]. 3)
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Griiss Inequality: If f and g are Riemann integrable on [a, b] with bounded oscillations
OSCZ(f) =sup{f(x) :x € la,b]}—inf{f(x) : x €[a, b]}and oscg(g), respectively, then

1
| Aap(fo )] < Zoscz(ﬂ osch(g),  see [2]. (4)

Remarks: The factors 1/12 in (3) and 1/4 in (4) cannot be replaced by smaller constants.
Fora = 0,b = 1 this is easily seen by inserting f(x) = g(x) = 2x — 1 in (3) and
f(x) = g(x) = sign(2x — 1) in (4). E. Landau, see [4], pointed out that (4) holds in
case of continuous functions f, g with the best possible factor 4/45 instead of 1/4. More
about éebyshev—type and Griiss-type inequalities including historical notes the reader can
find in [1], Chapter 3 and references therein. Among others there are provided discrete and
operator versions of (3) and (4) in different settings.

In what follows, let X and Y denote real-valued random variables (short: rv’s) on some
probability space [Q2, F, P], where E, Var and Cov designate expectation, variance and
covariance, respectively. We remind the reader that Cov(X, Y) := E(XY) — EX EY and
Var(X) := Cov(X, X).

Theorem 1 (Probabilistic Kantorovich-Type Inequality). Let X be an rv taking values
onlyinla,b] fora,b € R suchthat0 <a < b < co. Then

2
1 - (a+b) .

ce(h) =

&)

Equality holds in (5) iff P(X = a) = P(X = b) = 1/2. Obviously, (1) follows from (5) if
Ai=PX =x)fori=1,...,panda=x <--~<x=0.

The key to formulate probabilistic versions of (3) and (4) consists in the simple fact that
Aq.p(f, g) coincides with Cov(f(X), g(X)) when X is uniformly distributed on [a, b].

Theorem 2 (Probabilistic éebyshev- and Griiss-Type Inequality). Let X be an rv taking
values in a finite or infinite interval [a, b] such that EX? < oo. If f,g :la,b] — R are
Lipschitz continuous functions on [a, b] with Lipschitz constants L g, L, then

| Cov(f(X),8(X))| < LysL,Var(X) <LsL, (EX —a)(b—EX). (6)

If f,g : la, b] — R are Borel-measurable functions on |a, b] with bounded oscillations
oscﬂ(f) and osc2 (g), then

|Cov(£(X), 8(X)| = ; osh(f) oscl(@). Q

Finally, we state an estimate of the absolute central moment E| X — EX|? of order p > 2.
Theorem 3. Let the rv X take values in a finite interval [a, b] with y := EX. Then
EIX — p|? < (max(pe —a,b— u)’* (1 —a)(b — p) ®)

with equality for p=2 iff P(X €{a,b})=1and for p>2 iff P(X=a)=P(X=b)=1/2.
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2 Proofs of the Theorems 1, 2, and 3

Proof of Theorem 1. Putting ¥ = X/+/a b implies that P(/a/b < Y < /bja) =
and E(X) E(1/X) = E(Y) E(1/Y). Making use of the well-known inequality ,/u v <
(u + v)/2 for any real two numbers u, v > O (with equality iff ¥ = v) we obtain the
relation

ene(y) <3 (E0+e6) = 2[o - GO- )]

Since the expectation term and also the whole term within the brackets are non-negative
it is clear that the right-hand side of the latter relation is less than or equal to (v/b/a +
Ja/b)? /4 = (a + b)?/4ab which proves (5). Equality in this estimate holds iff the ex-
pectation term disappears and this takes place iff the rv Y is concentrated on the numbers
Ja/band \/b/a,say p :=P(Y = /a/b) = 1 — P(Y = /b/a). Then equality in the first
estimate, that is E(Y) = E(1/Y), is equivalent with

fivwnlEoriEean);
Py tA=pyo=py_+U-p .

This equation is satisfied just for p = 1/2 completing the proof of Theorem 1. (1

Proof of Theorem 2. The inequality of Cauchy—Schwarz—Bunyakovsky, see [8], yields
| Cov(f(X), g(X))| < +/Var(f(X)) +/Var(g(X)). We estimate the variance Var( f (X)) in
two ways: First by using | f(y) — f(x)| < Ly|y — x| and the probability distribution
Px(:) = P({w € Q: X(®) € (-)}) on the Borel sets of R we get

Var(f (X)) = E(f(X) — Ef (X))’ / / FO) = F())2Px(dy) Px(dx)

L2
< 7’ /RfR(y — x)2Px(dy) Px(dx) = L% Var(X)

implying | Cov(f(X), g(X))| < Ly L, Var(X). This combined with (8) for p = 2 com-
pletes the proof of (6).

Second from the estimate Var(f(X)) < E(f(X) — 0)2 for any ¢ € R we obtain for the
special value co = (infy<x<p f(X) + sup,<y<p f(x))/2 that sup, ., <, | f(x) —co| <

osc?(f)/2 and thus
VVarf(X) < och(f)/Z
proving (7). ]

Proof of Theorem 3. We rewrite and estimate E| X — p |P as follows

b
E|X — u|?” Z/#(ﬂ )y Px(dx)+f (x — u)? Px(dx)
a u

< (max{g —a, b — u})P"? Var(X) .
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To complete the proof of (8) we show that

w0 (x50 s~ (x4 2

S

< (b;a)z—(ﬂ—a;b)zz(b—#)(ﬂ—a)-

On the other hand, the relation

0=(b—w)(u—a)—EX —p)?=EX—a)b—X)

is valid iff P(X € {a, b}) = 1. This means that « = P(X = a) = 1 — P(X = b) and
pw=aa+ (1 —a)b forsome0 < a < 1. A short calculation reveals that equality in (8)
is only possible fora = 1/2. 0]
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