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1 The inequality for cevians

In a triangle ABC with sides a, b, c, semiperimeter s, circumradius R and inradius r, let

AD be a cevian. We give a lower bound for its length, in terms of its adjacent sides and

corresponding angle.

Theorem 1. For the cevian AD with BDIDC A and angle ABAC — a, we have the

inequality

Equivalently, if the ratio BD / BC — k is given, with k! — 1 — k, the inequality is

Cevane oder Ecktransversalen sind Geraden, welche durch die Ecke eines Dreiecks
verlaufen. Sie spielen eine zentrale Rolle in der Dreiecksgeometrie. Ein Beispiel ist
der bekannte Satz von Ceva, bei dem es darum geht, in welchen Verhältnissen drei

kopunktale Ecktransversalen die gegenüberliegenden Dreieckseiten teilen. Es ist aber

auch nützlich, Aussagen über die Längen von Ecktransversalen zu finden. Die Autoren
der vorliegenden Arbeit geben hier eine allgemeine untere Schranke für diese Längen
an. Daraus ergeben sich interessante Folgerungen für spezielle Ecktransversalen sowie

für das Produkt der Längen von drei kopunktalen Ecktransversalen.

(1)

AD f (kb + k'c) cos —. (2)
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Proof. The proof is given for the inequality in form (2). Let M be a point on the side

AB, such that DM is parallel to CA. We construct two similar right triangles, AM F and

DM E, with right angles at vertices F and E, and angles equal to a/2 at vertices A and D,
see Figure 1.

A

Then the lengths of A F and DE are k'c cos | and kb cos | respectively. It is evident that
the length of the cevian A D is greater than or equal to their sum.

The inequality is sharp, with equality when the cevian AD is the bisector wa of a. In that

— cos -b+c cos 2 'case X c/b, Euclid, Book VI. 3. On the other hand by Pappus wa — cos |, hence

equality holds in (1).

We could have proceeded applying the elementary inequality for a triangle ABC

a a
sin x < T— (3)

2 b + c

to the triangle AMD, where ZM ZDMA n — a, to obtain

M a
AD + (MD + MA) sin — (kb + k c) cos —.

The inequality (3) is a direct byproduct of Mollweide's formula [5], [7]

a ß — y a
sin — /cos

2 2 b + c

It can also be derived geometrically by drawing perpendiculars from vertices B and C to
the bisector of a.
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2 Applications

Next we apply the inequality (1) to some special cevians. For the median ma, we have
X — 1, so (1) gives

b + c a
cos-. (4)

By the AM-HM and AM-GM inequalities ^ \[bc and cos(a/2)
*Js(s — a)/{be), ida — t1''- cos §, (4) implies the known useful inequalities

a > y/s(s - a) > wa.m

From (4) and ma \/2(b2 + c2) — a2/2, follows an inequality for cosines similar to

inequality (3)

a \]2 (b2 + c2) — a2

cosö^ • (5)
2 b + c

The next inequalities for symmedians, Gergonne and Nagel Cevians are possibly new.

The symmedian is a cevian which is a reflection of the median in the corresponding angle
bisector. The three symmedians are concurrent in the symmedian point, sometimes referred

to as the Lemoine point or Grebe point.

Corollary 1. For the symmedian sa, the following inequality holds

bc(b + c) a
(6>

Proof. It is well known [3] that the symmedian sa AD divides the side BC in the ratio
of the squares of the adjacent sides, that is X — c2/b2. Substituting in (1), gives (6).

From the equation of the symmedian sa bc\j2(b2 + c2) — a2/(b2 + c2), which can be

derived from Stewart's theorem, and (6), follows again the inequality (5).

The three lines connecting each vertex of a triangle to the point of contact of the incir-
cle and the opposite side are concurrent at the Gergonne point and are called Gergonne
cevians, named after the French geometer Joseph Diaz Gergonne (1771-1859). Nagel
cevians, named after the German geometer Christian Heinrich von Nagel (1803-1882), are
the three lines concurrent at the Nagel point, connecting each vertex to the point of contact
of the corresponding excircle and the opposite side. We denote the length of the Gergonne
cevian AGU by ga and the length of the Nagel cevian ANa by na. All the notation appears
in Figure 2.

For Gergonne cevians

_
BGq

_
s - b

GaC s — c
'

hence by (1)
b(s - b) + c(s - c) a

ga AGa f cos -.a 2
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A

For Nagel cevians

BNa s — c
X

NaC s-b'
hence by (1)

b(s - c) + c(s - b) a
na ANa ^ cos -.a 2

We derive as a consequence of (1) an inequality for the product of cevians. Let AD, BE,
C F be three cevians such that

BD
_

CE
_

AF
_

DC ~ ' ~ËÂ~>1, ~FB ~ V

Corollary 2. For the product ofcevians AD, BE, CF, we have the inequality

8rs2JXuvADBE-CF^^ (7)
a + i)0i + i)(v + i)

Proof. By (1) and the AM-GM inequality b + j^c ^ 2*JbcX/(X + 1), we get

2\fbcX a
AD> cos-. (8)

A+ 1 2
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Multiplying (8) by the analogous inequalities for the cevians BE,CF

l^/cäji ß 2-/äbv yBE> cos—, CF ^ cos—,
H+1 2 v+1 2

and using the well-known identities abc 4Rrs and

a ß y s
cos — cos — cos — —,2 2 2 4 R

we obtain (7).

For concurrent cevians, Ceva's theorem [1], [3], [8] says that a/i v 1, so the inequality
(7) in that case simplifies to

Corollary 3. Let the cevians AD, BE, C F be concurrent. Then the following inequality
holds

8rs2
ADBECFft- (9)

(2 + l)(/r + l)(v + 1)

Let us consider now the product of cevians of some special triangle centers.

For the centroid G and the corresponding medians holds X — n — v — 1. Hence by (9)
we have

manibinc f rs2.

Since for the exradii of the triangle, the identity rarbrc rs2 holds, this last inequality is

actually the known inequality mambmc f rarbrc [2, 8.21].

The bisectors are the cevians of the incenter I and they divide the sides in the ratio of
the corresponding sides: X c/b, /i a/c, v b/a. Thus by (9), we have the elegant
inequality for the product of bisectors

8rs2abc
wawbwc f (10)

(a + b)(b + c)(c + a)

which complements rs2 f waWbWc [2, 8.14]. We remark that the inequality (10) is a

refinement of waWhWc f SRr2s2/(2R2 + 3Rr + 2r2) given in [6, p. 217], Indeed, by
abc 4Rrs and the identity [6, p. 53]

{b + c) — 2s(s2 + 2Rr + r2),

the inequality
8rs2abc 8 Rr2s2

>
(.a + b)(b + c)(c + a) ^ 2R2 + 3Rr + 2r2

is equivalent to Gerretsen's inequality [4] s2 f 4R2 + 4Rr + 3r2.

Next we give an inequality for the product of symmedians. Since for symmedians X

c2lb2, n a2/c2, v b2la2, by (9), we have

8rs2a2b2c2
a h ' ^ (a2 + b2){b2 + c2)(c2 + a2)

We end this article by asking for a geometric proof of inequality (5), similar to the proof
of inequality (3) or the one given in Theorem 1.
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