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1 The inequality for cevians

In a triangle A BC with sides a, b, ¢, semiperimeter s, circumradius R and inradius r, let
AD be a cevian. We give a lower bound for its length, in terms of its adjacent sides and
corresponding angle.

Theorem 1. For the cevian AD with BD/DC = A and angle ZBAC = a, we have the

inequality
A | a
AD > b —., 1
(,1+1 +;t+1c)c°sz M

Equivalently, if the ratio BD/BC = k is given, with k' = | — k, the inequality is

> (kb +Kk'c) cos %. (2)
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Proof. The proof is given for the inequality in form (2). Let M be a point on the side
AB, such that DM is parallel to CA. We construct two similar right triangles, AM F and
DM E, with right angles at vertices F and E, and angles equal to /2 at vertices A and D,
see Figure 1.

Figure 1

Then the lengths of AF and DE are k’c cos § and kb cos & respectively. It is evident that
the length of the cevian A D is greater than or equal to their sum. U

The inequality is sharp, with equality when the cevian A D is the bisector w, of a. In that

case 2 = ¢/b, Euclid, Book VL. 3. On the other hand by Pappus w, = 22< cos 5, hence

a = btc
equality holds in (1).
We could have proceeded applying the elementary inequality for a triangle ABC

. a
sin — <
2 b+c

(3)
to the triangle AM D, where /M = /DMA = — a, to obtain
. M P o
AD > (MD—!—MA)smf = (kb—l—kc)cosz.

The inequality (3) is a direct byproduct of Mollweide’s formula [5], [7]

f—y__a
2 b+c

. a
sin —/ cos
2

It can also be derived geometrically by drawing perpendiculars from vertices B and C to
the bisector of a.
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2 Applications

Next we apply the inequality (1) to some special cevians. For the median m,, we have
A =1,s0 (1) gives

b+
my = 2 < cos %. (4)
By the AM-HM and AM-GM inequalities b% = %, h% = +/bc and cos(a/2) =

A/s(s —a)/(bc), w, = % cos 7, (4) implies the known useful inequalities

Mg 2 +/S(s —a) = w,.

From (4) and m, = +/2(b2 + ¢2) — a2/2, follows an inequality for cosines similar to
inequality (3)

o _ V202 + ¢2) — a2
2 b+c '

The next inequalities for symmedians, Gergonne and Nagel Cevians are possibly new.

CcoSs

)

The symmedian is a cevian which is a reflection of the median in the corresponding angle
bisector. The three symmedians are concurrent in the symmedian point, sometimes referred
to as the Lemoine point or Grebe point.

Corollary 1. For the symmedian s,, the following inequality holds

be(b + c) a
—W Cos 5 (6)

Sa =

Proof. Tt is well known [3] that the symmedian s, = A D divides the side BC in the ratio
of the squares of the adjacent sides, thatis 4 = cz/bz. Substituting in (1), gives (6). J

From the equation of the symmedian s, = bey/2(b2 + ¢2) — a2/ (b + ¢?), which can be
derived from Stewart’s theorem, and (6), follows again the inequality (5).

The three lines connecting each vertex of a triangle to the point of contact of the incir-
cle and the opposite side are concurrent at the Gergonne point and are called Gergonne
cevians, named after the French geometer Joseph Diaz Gergonne (1771-1859). Nagel ce-
vians, named after the German geometer Christian Heinrich von Nagel (1803-1882), are
the three lines concurrent at the Nagel point, connecting each vertex to the point of contact
of the corresponding excircle and the opposite side. We denote the length of the Gergonne
cevian AG, by g, and the length of the Nagel cevian AN, by n,. All the notation appears
in Figure 2.

For Gergonne cevians

G F—¢
hence by (1)
b(s —b -
8a = AG, = (s =b)+els —c) cOS —

a 2"
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Figure 2
For Nagel cevians
P BN, _s-=c
N, s—b
hence by (1)
b(s — —b
ng= AN, > b= &) +¢(s )c ®

a

We derive as a consequence of (1) an inequality for the product of cevians. Let AD, BE,
C F be three cevians such that

BD . CE_  AF

— = - = — =,
pc_ " EA" "™ TFB

Corollary 2. For the product of cevians AD, BE, CF, we have the inequality

8rs2 /A uv

AD-BE-CF > 7
A+DE+DH@+1D )
. . A 1
Proof. By (1) and the AM-GM inequality ;355 + 57¢ = 2vbcl/(Z + 1), we get
2+/bc
AD > 2 cos 2, (8)
A+1 2
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Multiplying (8) by the analogous inequalities for the cevians BE, CF

2./ 2/ ab
BE > cer cosé, CF > a 1)cosl,
u+1 2 v+ 1 2
and using the well-known identities abc = 4Rrs and
a y s
COS — COS — COS — = —,
2 2 4R
we obtain (7). UJ

For concurrent cevians, Ceva’s theorem [1], [3], [8] says that Auv = 1, so the inequality
(7) in that case simplifies to

Corollary 3. Let the cevians AD, BE, CF be concurrent. Then the following inequality

holds

8rs?

A+ D+ +1)’

Let us consider now the product of cevians of some special triangle centers.

AD-BE:-CF 2 9)

For the centroid G and the corresponding medians holds A = x = v = 1. Hence by (9)
we have

MeMpm, = rs.
Since for the exradii of the triangle, the identity ryrpr. = rs? holds, this last inequality is
actually the known inequality mympm. = rarpre [2, 8.21].
The bisectors are the cevians of the incenter / and they divide the sides in the ratio of
the corresponding sides: A = ¢/b, p = a/c,v = b/a. Thus by (9), we have the elegant
inequality for the product of bisectors

8rsZabc
(a+b)b+c)c+a)

which complements rs? = wawpw,e [2, 8.14]. We remark that the inequality (10) is a
refinement of w,wpw, = 8R.r232/(2R2 + 3Rr + 2r2) given in [6, p. 217]. Indeed, by
abc = 4Rrs and the identity [6, p. 53]

l—[ (b+c¢)=2s(s>+2Rr + ),

WaWpWe =

(10)

the inequality
8rs’abc 8Rr2s?

(@a+b)b+c)c+a) ™ 2RZ+3Rr +2r2
is equivalent to Gerretsen’s inequality [4] s <AR? +4Rr +3r2.

Next we give an inequality for the product of symmedians. Since for symmedians 4 =
¢2/b?, u = a*/c*, v = b*/a®, by (9), we have

8rsla’h?c?

(a® + bY)(b% + ) (c* + a?)’
We end this article by asking for a geometric proof of inequality (5), similar to the proof
of inequality (3) or the one given in Theorem 1.

SaSpSc Z
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