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1 Introduction
1.1 Irrationality measure

An irrational number a is considered to be well approximated by rational numbers iff for
any v e N, there are infinitely many choices of rational numbers p/'q that satisfy

I« - (p/q)\ < 1 / qv, for somen 6 IN. (1)

Für natürliche Zahlen n > 0 liegen die Werte cos n im offenen Intervall (—1,1). Man
könnte daher vermuten, dass die Zahlen der Folge (cos/z)" mit wachsendem n gegen
0 streben. Andererseits liegen die Zahlen cosn dicht in [—1, 1], und es könnte daher
sein, dass gewisse Werte cos n so nahe bei 1 oder - 1 liegen, dass dies auch noch für die
Potenz (cos n)n zutrifft. Tatsächlich ist letzteres der Fall. Mehr noch: Die Autoren der
Arbeit zeigen, dass es ein ganzes Spektrum von Teilfolgen gibt, die sich aus der
Umgebung von 0 lösen. Diese Teilfolgen hängen zusammen mit den Nennern, die in der
diophantischen Approximation von ic erscheinen und geben Einblick in das Irrationa-
litätsmass von n. Das Irrationalitätsmass einer Zahl beschreibt, wie effizient sie durch
rationale Zahlen approximiert werden kann. Man weiss, dass das Irrationalitätsmass
von k (und jeder anderen transzendentalen Zahl) grösser oder gleich 2 ist, der genaue
Wert ist jedoch unbekannt. Die numerischen Indizien in dieser Arbeit deuten nun darauf

hin, dass das-Irrationalitätsmass von % genau 2 ist. :
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The idea is that if the set

U(a, v)
q

e <Q : 0 <
p l

a < —
q qv.

(2)

is infinite for a fixed v, then U(a, v) contains rationals with arbitrarily large denominators

and so one can find a sequence of rationals ^ 6 U(a, v) which converge to a. One
Qn

could say that this sequence converges to a "at rate v". When this can be accomplished
for any peN, the number a can be approximated by sequences with arbitrarily high rates

of convergence. Such numbers are called Liouville numbers after Joseph Liouville who
proved that all such numbers are transcendental, thereby giving the first proof of the
existence of transcendental numbers [5], See Appendix A for a proof of the transcendentality
of Liouville numbers.

When the number a is not well approximated by a sequence of rationals, one can grade
"how approximate" a is in terms of the optimal exponent for which an approximating
sequence of rationals may be found, and this leads to the notion of irrationality measure
(also variously called the Liouville-Roth irrationality measure, irrationality exponent,
approximation exponent, or Liouville-Roth constant); cf. [3, 9],

Definition 1.1 (Irrationality Measure). The irrationality measure of« e ]R \ (Q is

H(a) inf{v : \U(a, v)| < oo}.

This means, for example, that except possibly for at most finitely many "lucky" choices of
every rational approximation ^ that gives n + 1 correct decimal digits of a must satisfy

10"
P

a
<7

1

j /i(a)+e

for any e > 0.

Example 1.2. Liouville numbers are precisely those numbers a with p(a) oo; cf. [3],
The most well-known example is Liouville's Constant [10], defined as:

OO

« X 10^! =0.110001
k=\

One can see by inspection that the partial sums in the 10-ary expansion of a (more
commonly called the decimal expansion) of a approach the true value extremely quickly. If
sn denotes the nth partial sum, we have the first few rational approximations and their
corresponding error bounds

n 1 2 3 4

0.1 0.11 0.110001 0.11000100...001
| a - sn | < 2 x 10"2 2 x 10"6 2 x 10"24 2 x 10"120
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Observe that the number of decimal places for which sn agrees with a increases much
faster than n. In terms of Definition 1.1, we have found that U(a, 2) contains infinitely
many points.

In contrast, for (whose irrationality measure is equal to 2), no such patterns exist in the

10-ary expansion, or indeed, in the q-axy expansion of for any q e (Q+.

It is clear that there exists a deep underlying meaning and complexity to the irrationality
measure of a number, and thus any efforts towards determining the exact values of the

irrationality measures of different numbers would yield considerable insight.

It can be shown that //(a) 1 for any rational number a e Q, and that q(a) 2, for
every algebraic number a of order greater than 1, from Roth's theorem on arithmetic
progressions; cf. |4].' However, transcendental numbers may have any irrationality measure

greater than or equal to 2. There is no known method to compute or determine the exact

value of the irrationality measure of any transcendental number, or even estimate the

value. Upper bounds have been proven for many interesting transcendental constants, for
example, /i (n < 7.6063 [7] and /< (In 3) < 5.125 [6]. Proofs of exact values are rare, and

one such gem is e, for which it is known that q (e) 2 [3]. This is perhaps not surprising
in light of the fact that almost all numbers have irrationality measure 2.

An exact value for the irrationality measure of the most famous of mathematical constants,

k, has evaded us thus far, though it is widely believed that q(it) — 2. Using Corollary 1.4,

we provide further numerical evidence that q(jc) 2 in §4.

Our main result concerns the following set:

O {y > 0 : limsup{|cos&|F }kN 1}. (3)

Theorem 1.3. For O as defined in (3), we have sup 0 2q (n — 2.

Corollary 1.4. //sup 0 2, then q (n =2.

Remark 1.5 (The relation of q {n to the end behavior of special sequences). The value of
q (n is closely tied to the behavior and convergence of special sequences of transcendental
numbers. For example, Alekseyev proved that the convergence of the Flint Hills series

directly implies q{it) < 2.5, in [1],

The investigation in the present paper began with a question raised by a student regarding
the behavior of the sequence an — cos(n)n. Since | cosn| < 1, one might expect that raising

this number to a large power would cause an -> 0. However, preliminary numerical
investigations revealed that this is not the case. Indeed, while most values of this sequence
are extremely close to 0, certain subsequences form oscillations with amplitude 1. The top
of Figure 1 shows the first million terms of the sequence, and the bottom shows a magnification

ofjust the first 100,000 terms, which reveals several rapidly decaying subsequences.
In this note, we examine the sequence an cos(/i)"' for y > 0, and show that it is closely
related to the value of q(n).

'This is a deep result, and Roth's work in this area earned him the 1958 Fields Medal.
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Figure 1 The top plot shows the first 20,000 terms of an cos(n)n ; the bottom figure shows the first 1,000,000.
Two subsequences, even and odd k are plotted. Note: each peak actually corresponds to a different subsequence,

an arithmetic progression of the form n£ 355k +22j ; see §5 for details.

2 Proof of the main result
Definition 2.1. We define a function Q(n) : TL i-»- TL such that for any integer n, Q{n)
maps to the integer minimizing |n — Q(ji)n\. In other words, if [jc] denotes the nearest

integer to x,2 then

Q(n) |+ j argmin{|n — mn \ : m e TL}. (4)

Outline of the proof of Theorem 1.3

We prove Theorem 1.3 by establishing

1, y < 2n(n) — 2, (5a)

0, y > — 2. (5b)
lim sup{I cos+7 }^ejN

The proof will require a couple of technical lemmas, which we state and prove before

proceeding. From Lemma 2.2, it follows that Q(ti) O(n), n -h> oo, and this is the

observation used to show (5a).

For (5b), we establish a bound of the form

1

\cosp\py <11
V MP)J

24
Mp)= 12Q(p)2(M^)-I+A)_I

and Mp) P?,

Y

for

and then apply Lemma 2.3.

2Note that \x I is not the same as the floor or ceiling function.



156 S.F. Chen and E.PJ. Pearse

Lemma 2.2. lim^oo n.

Proof. This is immediate from Definition 2.1 by Diophantine approximation.

Lemma 2.3. Let (f>o(x) and f>\(x) be M-valuedfunctions satisfying

lim <t>o{x) — oo and lim <f)\{x) — oo.
x^-oo x—>oo

If<po(x) Y 0 for all x e It and fo o(4>\), as x -» oo, then

I1 <A>0o)
fa(x)

lim I 1 - —— I 0. (6)
.r^oo

Proof. Observe that r(r — l)(r — 2) (r — n + 1) < r", so comparing the Taylor series

for (1 + x)r and e" gives
(1 + x)r < erx

Now making the substitutions x — and r <p\ (x), we obtain

V V

and the right side tends to 0 as x —> oo because fo — o(</>i).

Proofof Theorem 1.3. Step 1: we prove (5a). By Definition 1.1, there are infinitely many
integers p, q > 0 such that:

0 <
P

n
q

l
< S > 0.

We will make repeated use of the following Taylor approximation:

x2
|cosx|>l——, forxelR. (7)

Choosing arbitrary integers p and Q(p) satisfying the above inequality and combining the
above inequalities, we have:

(p — Ji Q(p))2 1

I cos p\ I cos(/7 — n Q{p))\ > 1 — >l~ 2Q(p)W«)-i-cY
(8)

Raising (8) to py and applying the Bernoulli inequality we have:

\C0Sp\ - (1 ~ 2Q(p)2(^(>r)-l-e)) >l 2^Observe lim sup | cosk\kr < 1.

Let y < 2(p(ji) — 1 — s). We have py — o{Q{p)2^'^~x~£^) because 0(p) O(p) by
Lemma 2.2. Since we can choose arbitrarily large p and 0(p) satisfying (1), we can bring
I cos p\p7 arbitrarily close to 1 by (9). This establishes (5a).
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2 4

Step 2: we show (5b). First, observe that [ cos x —
1 — T + §5 forx e [-§, §]. Here,

the interval [— 5-, f1 is chosen arbitrarily; any interval which is small enough to ensure
the inequality would suffice (the inequality does not hold for all x). Fix e > 0 and let

y 2(fi(K) — 1 + e). Then for arbitrary integers p and Q(p), \p — n Q(p)\ < §, we
have:

^

,+„/, ip-xy(p)r (p-K(j(p)r \p
I COS <1 1 | I (10)

A
_

(p-xQip))2 (p-xQ(p))4Y
2 24 J

By Definition 1.1, for any real number 2 > 0, there exists an integer N such that

\P ~qK \ > 1+^' for all p,q > N. (11)

2 4
Since 1 — ^ ^ is monotonically increasing on [—y, 0) and monotonically decreasing
on (0, j], for p, Q(p) > N, we have:

I cos p\' <(l_ (P-nQiP))2 (p-nQ(p))4Y
^ 2 24 J

4- 2Q(p)2^W-I+V 24Q(P)4(P(K)^I+*) J

" 1
• (12)

/ 12Q(p)2^W_1+^-lV
y 24Q(/t)4^(f)-l+^) y

Observe that if we define a function (/>(/?) such that:

1 UQip)2^)-^) - 1

<P(p)
~ 24<2(p)40d*)-l+>0 '

then ^(p) C(0(p)2^^'_l+/l). If y > 2(p(n) — 1+2), then we have 4>(Q{p))
o(py). Since we can choose arbitrarily large p and Q(p) satisfying (11), by Lemma 2.3

we can bring (10) arbitrarily close to 0.

Thus lim sup{| cosä:^'}^eiN 0 for all y > 2{p{n) — 1 + 1). Since our choice of 2 is

arbitrary but greater than zero, this establishes (5b). By (5a)-(5b) the proof is complete.

3 Further investigations

Theorem 3.1. lim sup | cos«|"Z > exp(—n2 /2) ~ 0.007192.

Proof. By Diophantine approximation and (7), (8) becomes:

I ii/ r>r wi ^ I
(P ~nQ(P))2 1

y.Q,I cos p\ \cos(p - it Q(p))\ > 1 > 1 - (13)
2 2 Q(pY
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Raising (13) to the p2, we obtain

2 / 1 \p2
\cosp\p > 1 —r I (14)

V 2 Q(p)2J

2

Fix e > 0. Since jf-r —> n by Lemma 2.2, we have n2 — e < J! < 7r2 + e for all
u(p) J Q(p)

sufficiently large whence

2 ' Ur \ P2

>(>-$)
It follows that the limit of the right side of (14) is exp(—7r2/2).

3.1 Cosine identities

We manipulate the following identity to obtain insight on the sequence:

"
J cos#* — ^Tcos(ei0i H be,A),

2"
k=l eeS

where S — (1, -1)".

Theorem 3.2. We have the estimate

(15)

cos(n)"2 > 1 - (16)

2

Proof. Choosing #* n and S {1, — 1}" in (15), the identity becomes:

cos(n)" ^ ^cos((ei H F en)n) ^ f" J cos ((2i - n)n).
eeS i=0

2
Observe that for cos(n)" we have:

2

2 1 fn^\
cos(n)" —j- ^ ^ J cos ^(2i — n2)nj (17)

Applying the cosine approximation (7) and writing Q(n) — [^-], for large choices of n

which satisfy (1), we have:

cos(rt)" > —7
2n'4c2)(-<2"°2)2(rm'2)
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^(CO-CD2^-^)
2n / 2\SO'-^4^x^(2.-«¥

i=0

n2(n — TT Q(n))2
1

^
" (18)

2 2 2
where we have used the identity X?=o (" )(^' ~ w2)2 h22" in the last step. Definition

1.1 then yields

cosW"2 ^ 1 -
and (16) follows.

From (16), we can see that the existence of a lower bound (as we pick larger n which better

approximate multiples of n) is determined by the growth rate of the second term. If the

rate is 0(1), then there is a positive lower bound. If the growth rate is o( 1), then the lower
bound is 1, and the limsup is also 1.

Additionally, we can get a more precise lower bound of (16) by adding more terms to the

Taylor expansion (note that we continue choose large values of n which satisfy (1)):

2 n2(n — 7t Q{n))2 n2(3n2 — 2)(n — n 0(n))4
cos(n) =1

2! 4!

ra2(16 + 15n2(n2 — 2))(« — n 0(n))6
6!

(19)

where all of the identities of the form Xa=o (" ~~ n2)a were computed with Mathe-
matica. Thus, we have shown the following.

Corollary 3.3. The bound, in Theorem 3.2 can be improved to

2

_
n~ n2(3n2 — 2) n2(16+ I5n2(n2 -2))

_costn) _ 2!w2/2(2f)-2 4ln4fi(x)-4 6ln6fi(ir)-6

Now it is clear from (20) that if we assume p (n) 2, then only the highest coefficient of
the numerator will remain when we take the lim sup:

„2 1 3 15 105 945
hrn sup I cos(h) |>i — + — — — H—^ ^ ^ 0.6065 (21)

Note that the numerator coefficients we use in (21) were from identities found using Math-
ematica. A full table of these coefficients up to denominator 16! is shown below:
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Denominator Numerator

2! -1
4! 3

6! —15

8! 105

10! -945
12! 10395
14! -135135
16! 2027025

Since we are determining these coefficients through Mathematica, we do not know the

growth rate of the coefficients. It is possible that the series could diverge, but as long as we
truncate the series at a negative term, the lower bound holds.

2

Corollary 3.4. lim sup | cosn|" > 0.6065

2

Proof. /u(z) > 2, by transcendentality of n. If — 2, then lim sup | cosn\n >
0.6065 by (21). If /.i{n) > 2, then lim sup | cos/i|" 1 by Theorem 1.3. This
completes the proof.

4 Numerical results

Computationally, we find values of | cos k\k' very close to one for values of k on the order
of 108, with values of y very close to 2. When we set y 2, we do not find values of
k close to one. This is evidence that /i (ti — 2, but a proof has evaded us so far. Various
values of y are plotted in Figure 2 and Figure 3.

We see that for larger values of y, points near one get more sparse but still reach values

very close to 1. In the case of y =1, there are interesting subsequences, some of which
persist quasiperiodically or die out entirely. Investigations of these subsequences are an

interesting subtopic which is open to exploration. Figure 4 shows plots of y near and

above 2.

Ie5 le6

Figure 2 Left: Varying values of y, plotted from 0 to 170000. Right: y 1 plotted from 0 to 106.
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y 1.8 y 1.9

y =2.0

0.0 0.2 0.4 0.6 0.8 1.0
le8

y 2.1

Figure 4 Plots of (cos n)n for y ~ 2.

When y is just below two, we still see subsequences that are close to 1, but they become

more sparse as y is closer to 2. In the case where y 2.1, we see that the values approach

zero, and do not appear to take on values close to one in the range sampled, which is

expected if h(k) 2.
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5 Subsequences of (cos n)ny

Various interesting subsequences appear in (cos n)"\ and the following theorems shed

some light on the topic.

Theorem 5.1. For all 0 < y < 2(/i(ji — 1), for any real number a £ (0, 1), there

exist infinitely many a rbitrarily long arithmetic progressions S such that for all an e S,
y

|cosa„|fl" > a.

Proof. The proof relates closely to the proof of (5a). We modify (9) to obtain:

|cos(„P)l«' > (i - V'""'
> "yff' - Y 2 J 2Q(/?)20'(^)-l-e)

By (1), for any n £ N, we can bring [ c<.)s{np)\(np>' arbitrarily close to 1, which is greater
than a. Also observe that for any a e IN, a < n we have:

ny+2py ay+2py

2Q(p)2(>bO-l-e)
>

2Q(p)2GG)-l-<0

Thus for any series of length n e IN, there exist infinitely many integers p such that
the sequence {| cos(kp)\^y, k — 0,1, 2,..., n) is bounded below by a e (0, 1). This
completes the proof.

Definition 5.2. We refer to the subsequences which Theorem 5.1 guarantees to exist as

persistent subsequences.

The terminology of Definition 5.2 stems from the idea that these values of cos(n*) are

sufficiently close to 1 that not even raising them to the (typically extremely large) number
n-k will result in a number near 0.

Numerical experimentation reveals that each peak in Figure 1 corresponds to a separate
persistent subsequence

cos(nk)"k, where n/c 355k + (3 + 22 j), kM, (22)

for some fixed j £ N. The appearance of p 355 is due to its role in the continued
fraction expansion of % and the fact that yy| is the best rational approximation of n with

denominator less than 16604, and the appearance of 22 is also likely due to n ~ y. This

suggests that other persistent subsequences may be found by looking at other exceptionally
accurate fractional approximations to it, for example: ^5557 and {343535?- Indeed,

we find persistent subsequences for n^ 833719k and «/.- 833719k + 42208400, as in

Figure 5.

Each persistent subsequence appears to have a single peak, of a shape very similar to

a Gaussian distribution (for those whose peak is not too close to 0). Curve matching in
MATLAB reveals that these peaks match well. For example, the persistent subsequence

cos(/u)n* with nk 644 + 355k has a coefficient of determination R2 — 0.9983 with the
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Figure 5 Left: the persistent subsequence for n£ 833719k. Right: the persistent subsequence for n/,
833719k + 42208400. Notice: the scale on the horizontal axis is x 108 (right) and x 109 (left).

Figure 6 | cos(8.49137 -10 8* — 0.0353982)1*'
2

plotted against the sequence | cos(an)\a"2.

I jc—260.8

S I 84 "Gaussian 0.9978 e V 8 57 ' However, these curves are not truly Gaussian; the following

theorem derives the general peak shape we observe in persistent subsequences and is

matched against a sample subsequence in Figure 6.

y
Theorem 5.3. For any arithmetic progression an pn + d, the sequence {| cosa„|a"}
lies on the curve

f(x) I cos((p - n Q(p))a(x) +d n Q(d))\x (23)

Proof. The proof begins similarly to the proof of Theorem 5.1. Let S be an arithmetic
progression of the form Sn pn + d, where p., d e TL. Then we have:

I cos {pn + d)\(pn+dy I cos (n(p - n Q(p)) + (d - n Q(d)))\(pn+dy

The domain can be extended into the reals via the transformation a(x) — and this

yields (23).
P
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Appendix: Irrationality measure of rational and algebraic numbers

Theorem A.l ([3, Thm. E.2]). Ifa e Q, then p{a) — 1.

Proof. Since \qa — [qa]\ < 1 for every q e N, we have ft(a) > 1. If a | in lowest

— then I cl — — I :>
—1—

q, men \a q
\ _terms, and a ^ -, then \a — tAt, whence fi(a) =1.

Using continued fraction expansions, one can prove that p (a) > 2 whenever a e JR \ Q,
but that is beyond the scope of this paper. However, we can show that all Liouville numbers

are transcendental. It suffices to prove the following result; our treatment is adapted
from [8].

Theorem A.2. For all irrational algebraic numbers a ofdegree n, there exists a constant

c > 0 such that: > 4L for any p,q e7L with q > 0.

Proof. Let P{x) — X!fc=oakxk be a polynomial of degree n such that P{a) 0, and

denote the set of rational roots of P by R {; e Q : Pic =01- For a given rational

r q, we consider the following three cases: (i) \a — r\ > 1, (ii) r 6 R, and (iii) r ^ R

but I« — rI < 1.

Case (i). For any r ^ satisfying \a - r| > 1, we have \a — r\ > ~, and c 1 would
work.

Case (ii). For r e R, we can define £ > 0 by

min{|a — r\ : r e R), R f 0
1, R 0,

and we immediately have \a — r\ > f
Case (iii). For r £ R, we know that P(r) is some multiple of Since r ^ R, this implies

|P(a)-P(r)| \P(r)\ > -1. (24)
q"

Observe that
k— 1

ak -rk (a -r)^r,ai'-1-'.
i=0

Solving this identity for rk and substituting it into the definition of P leads to

n k— 1

P(a) - P(r) (a-r) ^ak^r'a*-1"'.
k= 1

Recall that for this case we have also assumed \a—r \ < 1. For such r, we have |r| < |a|+l,
and so for ca defined by

}T|fli|*(|a|+l)t-1,ca

k= 1

we get IP(a) — P{r)\ < \a — r\ca by the triangle inequality.
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In combination with (24), this gives

\P{a)-P(r) I 1

a — r > >
caq"

For c — min ^1, <f, all cases are covered.
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