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1 Introduction

1.1 Irrationality measure

An irrational number a is considered to be well approximated by rational numbers iff for
any v € IN, there are infinitely many choices of rational numbers p /g that satisfy

|a — (p/q)’ < 1/q“, for some v € N. (1)
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The idea is that if the set

p
a_._

U(a,v):[-ee(Q:0<
q q

1
7l @
is infinite for a fixed v, then U(a, v) contains rationals with arbitrarily large denomina-
tors and so one can find a sequence of rationals 22 € U (a, v) which converge to a. One
could say that this sequence converges to a “at rate v”. When this can be accomplished
for any v € IN, the number a can be approximated by sequences with arbitrarily high rates
of convergence. Such numbers are called Liouville numbers after Joseph Liouville who
proved that all such numbers are transcendental, thereby giving the first proof of the exis-
tence of transcendental numbers [5]. See Appendix A for a proof of the transcendentality
of Liouville numbers.

When the number « is not well approximated by a sequence of rationals, one can grade
“how approximable” a is in terms of the optimal exponent for which an approximating
sequence of rationals may be found, and this leads to the notion of irrationality measure
(also variously called the Liouville—Roth irrationality measure, irrationality exponent, ap-
proximation exponent, or Liouville-Roth constant); cf. [3, 9].

Definition 1.1 (Irrationality Measure). The irrationality measure of & € R\ Q is
i(a) =inf{v : |U(a,v)| < 00}.

This means, for example, that except possibly for at most finitely many “lucky” choices of
g, every rational approximation ;{[5 that gives n 4 1 correct decimal digits of @ must satisfy

1
108 —

Ble 2
ql - qy(a)+1:

forany & > 0.

Example 1.2. Liouville numbers are precisely those numbers a with u(a) = oc; cf. [3].
The most well-known example is Liouville’s Constant [10], defined as:

o0
& = Z 10°% = 0.110001 . . . .
k=1

One can see by inspection that the partial sums in the 10-ary expansion of a (more com-
monly called the decimal expansion) of a approach the true value extremely quickly. If
s, denotes the nth partial sum, we have the first few rational approximations and their
corresponding error bounds

nll 2 3 4
sn | 0.1 0.11 0.110001 | 0.11000100...001
a—sp|<|2x1072 [2x10°]|2x10724 | 2x 107120




154 S.E. Chen and E.P.J. Pearse

Observe that the number of decimal places for which s, agrees with a increases much
faster than n. In terms of Definition 1.1, we have found that U (a, 2) contains infinitely
many points.

In contrast, for v/2 (whose irrationality measure is equal to 2), no such patterns exist in the
10-ary expansion, or indeed, in the g-ary expansion of /2 for any g € Q7.

It is clear that there exists a deep underlying meaning and complexity to the irrationality
measure of a number, and thus any efforts towards determining the exact values of the
irrationality measures of different numbers would yield considerable insight.

It can be shown that u(a) = 1 for any rational number a € Q, and that u(a) = 2, for
every algebraic number a of order greater than 1, from Roth’s theorem on arithmetic pro-
gressions; cf. [4]." However, transcendental numbers may have any irrationality measure
greater than or equal to 2. There is no known method to compute or determine the ex-
act value of the irrationality measure of any transcendental number, or even estimate the
value. Upper bounds have been proven for many interesting transcendental constants, for
example, i (7) < 7.6063 [7] and u(In3) < 5.125 [6]. Proofs of exact values are rare, and
one such gem is e, for which it is known that g (e) = 2 [3]. This is perhaps not surprising
in light of the fact that almost all numbers have irrationality measure 2.

An exact value for the irrationality measure of the most famous of mathematical constants,
7, has evaded us thus far, though it is widely believed that x4 () = 2. Using Corollary 1.4,
we provide further numerical evidence that x(7) = 2 in §4.

Our main result concerns the following set:

O = {y ZO:limsup{lcosk|ky}k€]N =] 3)
Theorem 1.3. For @ as defined in (3), we have sup ® = 2u(n) — 2.
Corollary 1.4. Ifsup® = 2, then u(x) = 2.

Remark 1.5 (The relation of 4 (x ) to the end behavior of special sequences). The value of
w(7) is closely tied to the behavior and convergence of special sequences of transcendental
numbers. For example, Alekseyev proved that the convergence of the Flint Hills series
directly implies u(7) < 2.5,in [1].

The investigation in the present paper began with a question raised by a student regarding
the behavior of the sequence a, = cos(n)". Since | cosn| < 1, one might expect that rais-
ing this number to a large power would cause @, — 0. However, preliminary numerical
investigations revealed that this is not the case. Indeed, while most values of this sequence
are extremely close to 0, certain subsequences form oscillations with amplitude 1. The top
of Figure 1 shows the first million terms of the sequence, and the bottom shows a magnifi-
cation of just the first 100,000 terms, which reveals several rapidly decaying subsequences.
In this note, we examine the sequence a,, = cos(n)”y ,fory > 0, and show that it is closely
related to the value of (7).

I'This is a deep result, and Roth’s work in this area earned him the 1958 Fields Medal.
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Figure 1 The top plot shows the first 20,000 terms of a, = cos(n)"; the bottom figure shows the first 1,000,000.
Two subsequences, even and odd k are plotted. Note: each peak actually corresponds to a different subsequence,
an arithmetic progression of the form ny = 355k + 22j; see §5 for details.

2 Proof of the main result

Definition 2.1. We define a function Q(n) : Z + Z such that for any integer n, Q(n)
maps to the integer minimizing |n — Q(n)x|. In other words, if [x] denotes the nearest
integer to J\c,2 then

n

0(n) = [;] = argmin{|n — mz | : m € ). @)

Qutline of the proof of Theorem 1.3

We prove Theorem 1.3 by establishing
s y <2u(w)—2, (5a)
0, y > 2u(r) —2. (5b)

The proof will require a couple of technical lemmas, which we state and prove before
proceeding. From Lemma 2.2, it follows that Q(n) = O(n), n — oo, and this is the
observation used to show (5a).

For (5b), we establish a bound of the form

; 1 é1(p)
|cos p|”" < (1 — )

lim sup({| cosklky heN = [

¢o(p)

for

24Q(p)4(;1(7r)—l+).)

¢o(p) = 120(p) 2@ 10 | and  ¢1(p) = p’,

and then apply Lemma 2.3.

2Note that [x] is not the same as the floor or ceiling function.
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Lemma 2.2. lim,,_, a0 ”Q—’(I:T) = .

Proof. This is immediate from Definition 2.1 by Diophantine approximation. O
Lemma 2.3. Let ¢po(x) and ¢1(x) be R-valued functions satisfying
lim ¢p(x) = o0 and lim ¢ (x) = oc.
X—>00 X—>00

If go(x) # O for all x € R and ¢g = o(¢1), as x — o, then

) 1 ¢I (X)
L (1 B ¢0(X)) -0 2

Proof. Observe thatr(r — 1)(r —2)...(r —n + 1) <r", so comparing the Taylor series
for (1 + x)" and e"* gives

(1+x) <e™*.

Now making the substitutions x = —%lﬁ and r = ¢1(x), we obtain

1 ¢1(X) ¢1 (x)
(1 B ¢o<x)) = (_qso(x))’

and the right side tends to 0 as x — o0 because ¢g = o(¢y). ]

Proof of Theorem 1.3. Step 1: we prove (5a). By Definition 1.1, there are infinitely many
integers p, g > 0 such that:

0 < > 0.

p 1
& E N qﬂ(’r)—ﬂ’

We will make repeated use of the following Taylor approximation:
+2
|cosx|21—7, for x € R. (7)

Choosing arbitrary integers p and Q(p) satisfying the above inequality and combining the
above inequalities, we have:

(7o) | !
2 QQ(p)Z(H(E)*"l-f-‘)'

|cos p| = |cos(p —m Q(p))| = 1 — (8)

Raising (8) to p” and applying the Bernoulli inequality we have:

P’ 1 ¥ p’
joospl™ 2 (1 - 2Q(p)2(y(n)—1—c)) " eppem s @

Observe lim sup | cosk|¥ < 1.

Lety < 2(u(w)—1—¢&). We have p? = o(Q(p)*#®)~1-8)) because Q(p) = O(p) by
Lemma 2.2. Since we can choose arbitrarily large p and Q(p) satisfying (1), we can bring
| cos p|P" arbitrarily close to 1 by (9). This establishes (5a).
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Step 2: we show (5b). First, observe that |cosx| < | — "72 } % for x € [—%, £]. Here,

the interval [—%, 5] is chosen arbitrarily; any interval which is small enouéh to ensure
the inequality would suffice (the inequality does not hold for all x). Fix ¢ > 0 and let
y = 2(u(zx) — 1 + ¢). Then for arbitrary integers p and Q(p), |[p — 7 Q(p)| < 5, we

have:
_ 2 N AN
Iwwﬂys(b-w )’ | an») | ¢t}

5]

2 24

By Definition 1.1, for any real number 4 > 0, there exists an integer N such that
1
lp —qrm| > Z]m’ forall p,g > N. (11)

Since | — % + ’2‘—1 is monotonically increasing on [— 7, 0) and monotonically decreasing
on (0, 51, for p, Q(p) > N, we have:

y P -10@” . (p—70e)*Y
| cos p|? 5(1— 2 + 4 )

1 1 r’
<f(1-— 4
B ( 2Q(p)* =144 24Q(p)4(,u(rr)—1+/l))

14

12Q(p)2um=1+4 _ 1\’

N Q(p) 1 . (12)
24Q(p)4(/4(7r)—1+1)

Observe that if we define a function ¢ (p) such that:

1 IZQ(‘D)Z(#(%)—H-A) —1
pp) ~ 24Q(py W@ TED

then ¢(p) = O(Q(p)>“ @)=+ If y > 2(u(n) — 1 + A), then we have $(Q(p)) =
o(p’). Since we can choose arbitrarily large p and Q(p) satisfying (11), by Lemma 2.3
we can bring (10) arbitrarily close to 0.

Thus lim sup{| cosk|¥’ }yew = O forall y > 2(u(x) — 1 + ). Since our choice of 4 is
arbitrary but greater than zero, this establishes (5b). By (5a)—(5b) the proof is complete.

O
3 Further investigations
Theorem 3.1. lim sup | cosnl”2 > exp(—m2/2) ~ 0.007192.
Proof. By Diophantine approximation and (7), (8) becomes:
(p — 7 Q(p))* I
|cospl =|cos(p—7 QP> 1 - —F—— (13)

2 ' T 200y
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Raising (13) to the p2, we obtain

2

2 1 3
|cos p|P” = (1_W) : (14)

2
— p 2 |
E<gpRE <7 + ¢ for all

2

Fix ¢ > 0. Since %p) — m by Lemma 2.2, we have 7
sufficiently large p, whence

rl—g pz p2 pz zite [22
] — —2 (11— —2 ) >(1--2 .
p? 2p?Q(p)? p?

It follows that the limit of the right side of (14) is exp(—x2/2). 1

3.1 Cosine identities

We manipulate the following identity to obtain insight on the sequence:

n l
kli[lcosﬁk = 2008(6131 + ot enly), (15)

ecS
where § = {1, —1}".
Theorem 3.2. We have the estimate
nA—2u(@)

cos(n)” > 1 — —— (16)

Proof. Choosing &y = n and S = {I, —l}”2 in (15), the identity becomes:
.1 1w {n _
cos(n)" = — Zcos((el +---+eyn) = 7 Z ; cos ((2i —n)n).

Toon
eesS i=0

2
Observe that for cos(n)", we have:

n? 2
cos(n)"2 o L (nl ) cos ((21' - nz)n) . (17)

— AA2
n
2 i=0

Applying the cosine approximation (7) and writing Q(n) = [2], for large choices of n
which satisfy (1), we have:

. ) 22 — 2 [2T)2
Cos(n)n‘zzr%z“(nl)(l_(zl n)(; [n]))

i=0
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_ i 3 n? n\ (2 — n?)* n1n2
- 2(()- ()5 we)

(n— 7 0m)? & (2 .
n2(n — & Q(n))?
2

=1- (18)

where we have used the identity Z?io (”;)(2;’ — n2)2 = 22" in the last step. Defini-
tion 1.1 then yields
2

P g
cos(n)" > 1 S22

and (16) follows. OJ

From (16), we can see that the existence of a lower bound (as we pick larger n which better
approximate multiples of ) is determined by the growth rate of the second term. If the
rate is (1), then there is a positive lower bound. If the growth rate is o(1), then the lower
bound is 1, and the limsup is also 1.

Additionally, we can get a more precise lower bound of (16) by adding more terms to the
Taylor expansion (note that we continue choose large values of n which satisfy (1)):

n’(n—z0m)*>  n*Gn’ —2)(n —zQ(n)*
B 2! i 41
n2(16 + 1512 (n* — 2))(n — 7 Q(n))° o
6!

cos(n)”2 =

(19)
. . n2 n2 . 2N\a .

where all of the identities of the form > 7, (l. )(21 — n°)% were computed with Mathe-

matica. Thus, we have shown the following.

Corollary 3.3. The bound in Theorem 3.2 can be improved to

n’ n2(3n% —2)  n*(16+ 1502 (n? —2))

5
n e
cos(n)" =1 2p2u()=2 A\ptu(r)—4 6!n6u(7)—6

(20)

Now it is clear from (20) that if we assume u(7) = 2, then only the highest coefficient of
the numerator will remain when we take the lim sup:

2 1 3 IS5 105 945
li "I>l——=4+———+ — — — - &~ 0.60065 21
msupleos() 1= 1=or+ 5~ e T % T 1o 1)

Note that the numerator coefficients we use in (21) were from identities found using Math-

ematica. A full table of these coefficients up to denominator 16! is shown below:
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Denominator | Numerator
2! —1

4! 3

6! —15

8! 105

10! —945

12! 10395

14! —135135

16! 2027025

Since we are determining these coefficients through Mathematica, we do not know the
growth rate of the coefficients. It is possible that the series could diverge, but as long as we
truncate the series at a negative term, the lower bound holds.

Corollary 3.4. limsup|cosn|™ > 0.6065. ...

Proof. pu(m) > 2, by transcendentality of =. If u(z) = 2, then lim sup|cosn|”2 >

0.6065... by (21). If u(z) > 2, then lim sup | cosnl"2 = 1 by Theorem 1.3. This com-
pletes the proof. O

4 Numerical results

Computationally, we find values of | cos k|¥" very close to one for values of k on the order
of 108, with values of y very close to 2. When we set y = 2, we do not find values of
k close to one. This is evidence that x () = 2, but a proof has evaded us so far. Various
values of y are plotted in Figure 2 and Figure 3.

We see that for larger values of y, points near one get more sparse but still reach values
very close to 1. In the case of y = 1, there are interesting subsequences, some of which
persist quasiperiodically or die out entirely. Investigations of these subsequences are an
interesting subtopic which is open to exploration. Figure 4 shows plots of y near and
above 2.

1.0 1.0
A
0.81 ¢ % . Y 0.8
! i ) . -
:? 4 Gamma = 1
0.6 ?; ¥ * 4+  Gamma = 1.2 0.6
4 A i «  Gamma =15
> 2o £ = ¢ Gamma=18
0.4 g{e E'- .‘._ :‘ ; x Gamma = 2.0 0.4
s’ L I

0.2

0.0

00 02 04 06 08 10
le5 leb

1.5

Figure 2 Left: Varying values of y, plotted from 0 to 170000. Right: y = 1 plotted from O to 10
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0.5

1.0

15 2.0

le5

1.0

0.8

0.67 -

0.4] i

0.2

0.0

0.0

0.8 1.0
le8

1.0

0.8

0.6

0.41°

0.21

0.0

0.0

0.2

04 06

¥ =2.0

0.8 1.0

1e8

1.01
0.8

0.6

0.2

0.0

1.04

0.8

0.6

0.4‘ ',.

0.2

0.0

0.4] =

i

i H 2 L

0.0

02 0.4 06

0.8

Figure 3 Left: y = 1 plotted from 0 to 200000. Right: y = 1.5 plotted from 0 to 109.

1.0

le6

d peme e e

0.0

02 04 06

y =19

0.8

1.0
le8

1.07:

0.8

0.61 -

041"

0.21 .

0.0

0.0

02 04 06

y =21

Figure 4 Plots of (cos n)"  fory ~ 2.

0.8

1.0

le8

When y is just below two, we still see subsequences that are close to 1, but they become
more sparse as y is closer to 2. In the case where y = 2.1, we see that the values approach
zero, and do not appear to take on values close to one in the range sampled, which is
expected if u(7) = 2.
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5 Subsequences of (cos n)"

Various interesting subsequences appear in (cosn)”, and the following theorems shed
some light on the topic.

Theorem 5.1. For all 0 < y < 2(u(x) — 1), for any real number a € (0, 1), there
exist infinitely many arbitrarily long arithmetic progressions S such that for all a, € S,
|cosa,,|a’y' > a.

Proof. The proof relates closely to the proof of (5a). We modify (9) to obtain:

1
w(p—70(p*\"™" n?*2p?
B 2 7T 20(p)Pwm 10

| cos(np)| "7 > (l

By (1), for any n € N, we can bring | cos(np)| ")’ arbitrarily close to 1, which is greater
than a. Also observe that forany a € IN, a < n we have:

ny+2 ay+2

p? p}’
20(p2EE®-1-6 7 29 (p)2u@-1-9

Thus for any series of length n € IN, there exist infinitely many integers p such that
the sequence {| cos(kp)|*P" | k = 0,1,2,...,n} is bounded below by a € (0, 1). This
completes the proof. U

Definition 5.2. We refer to the subsequences which Theorem 5.1 guarantees to exist as
persistent subsequences.

The terminology of Definition 5.2 stems from the idea that these values of cos(ny) are
sufficiently close to 1 that not even raising them to the (typically extremely large) number
ny will result in a number near 0.

Numerical experimentation reveals that each peak in Figure 1 corresponds to a separate
persistent subsequence

cos(ng)"™, where ny = 355k + (3 +22j), k€N, (22)

for some fixed j € IN. The appearance of p = 355 is due to its role in the continued

fraction expansion of 7 and the fact that ?—?g is the best rational approximation of z with

denominator less than 16604, and the appearance of 22 1s also likely due to = = 27—2 This

suggests that other persistent subsequences may be found by looking at other exceptionally
accurate fractional approximations to z, for example: {’éégi, ggg;g and ﬁigg‘gg?. Indeed,

we find persistent subsequences for ny = 833719k and ny = 833719k + 42208400, as in
Figure 5.

Each persistent subsequence appears to have a single peak, of a shape very similar to
a Gaussian distribution (for those whose peak is not too close to 0). Curve matching in
MATLAB reveals that these peaks match well. For example, the persistent subsequence
cos(ng )™ with ny = 644 + 355k has a coefficient of determination R? = 0.9983 with the
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1.0 1.0
\ =

0.8{ 0.8 \/\

0.6 0.6

0.4 | 0.4

0.2 0.2

0.0{ \ : : ' ‘ 0.0] \
00 02 04 06 08 0 1 3

le9

le8

Figure 5 Left: the persistent subsequence for ny = 833719k. Right: the persistent subsequence for ny =

833719k + 42208400. Notice: the scale on the horizontal axis is x 108 (right) and x 107 (left).

1.0

0.8

0.6

0.4

0.2

g,
e

g
"B,
g,
"
o aor e

0.0 —/

4.0

4.2

4.4
le5

2 :
Figure 6 | cos(8.49137 - 10~8x — 0.0353982)* ~ plotted against the sequence | cos(an)|% .

2
[ x-260.8
Gaussian 0.9978 ¢ ( St ) . However, these curves are not truly Gaussian; the follow-

ing theorem derives the general peak shape we observe in persistent subsequences and is
matched against a sample subsequence in Figure 6.

. . ¥ ¥
Theorem 5.3. For any arithmetic progression a, = pn + d, the sequence {|cosa,|*" }
lies on the curve

) =lcos((p — 7 Q(p))a(x) +d — z Q)" . (23)

Proof. The proof begins similarly to the proof of Theorem 5.1. Let S be an arithmetic
progression of the form §,, = pn + d, where p,d € 7. Then we have:

| cos(pn + d)|(Pn+d) — lcos(n(p—nQ(p)+(d—n Q(a’)))l(f””d)y,

The domain can be extended into the reals via the transformation a(x) = % and this
yields (23). 0
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Appendix: Irrationality measure of rational and algebraic numbers

Theorem A.1 ([3, Thm. E.2]). Ifa € Q, then u(a) = 1.

Proof. Since [ga — [qa]| < 1 for every g € N, we have u(a) > 1. If & = 7 in lowest
terms, and a # g, then |a — gl > ﬁ, whence u(a) = 1. O

Using continued fraction expansions, one can prove that u(a) > 2 whenevera € R \ Q,
but that is beyond the scope of this paper. However, we can show that all Liouville num-

bers are transcendental. It suffices to prove the following result; our treatment is adapted
from [8].

Theorem A.2. For all irrational algebraic numbers a of degree n, there exists a constant
¢ > 0 such that: ‘a — g

> o forany p,q € Zwith q > 0.

Proof. Let P(x) = D>/, a;x* be a polynomial of degree n such that P(a) = 0, and
denote the set of rational roots of P by R = {¢ € Q : P(¢) = 0}. For a given rational
r= g, we consider the following three cases: (i) la —r| > 1, (ii) r € R, and (iii) r ¢ R
but |a — r| < 1.

Case (1). For any r = g satisfying |a —r| > 1, we have |a — r| > qln, and ¢ = 1 would
work.

Case (ii). Forr € R, we can define & > 0 by

minf{la —r|:r € R}, R#*D
&=

1, R =0,

and we immediately have o —r| > ¢ > qin

Case (iii). Forr ¢ R, we know that P(r) is some multiple of an Since r ¢ R, this implies

1
IP(a)—P(f)IZIP(F)IZ"q—n- (24)

Observe that
k—1
af —rk = (a —r) Zriak_l_i.
i=0

Solving this identity for 7¥ and substituting it into the definition of P leads to

n

B~
P(a) — P(r) =(a—r) Zak Zriak‘lﬂ'.
k=1 i

Recall that for this case we have also assumed | —r| < 1. Forsuchr, we have |r| < |a|+1,
and so for ¢, defined by

n
ca = D larlk(al + DT,
k=1
we get |P(a) — P(r)| < |a — r|cq by the triangle inequality.
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In combination with (24), this gives

= |P(a) — P(r)l s 1

Ca Caq"

la —r|

For ¢ = min (1, &, i), all cases are covered. ]
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