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I Elemente der Mathematik

Begegnung zwischen klassischen Mittelwerten
und Kegelschnitten

Joachim Jäger

Joachim Jäger wurde an der Universität des Saarlandes in Mathematik promoviert.
Nach einer mehrjährigen Tätigkeit an einer pädagogischen Hochschule lehrte er über
30 Jahre Mathematik an der Hochschule für Technik und Wirtschaft in Saarbrücken.
Nach dem Eintritt in den Ruhestand interessierte er sich für Elementarisierung von
Mathematik mit einem Fokus auf die Mathematiklehre.

1 Einführung
1.1 Fragestellung

Abbildung 1 zeigt eine wohlbekannte geometrische Darstellung der klassischen Mittelwerte

A (arithmetisch), G (geometrisch) und H (harmonisch) in einem Kreis [1, S. 74].

Hp,q) P tG(p,q) Jp-q, n(p,q)
2pq

p,q> o (l)2 p + q

Die Anfänge der Theorie der Mittelwerte und der Kegelschnitte liegen in der griechischen

Antike. Aber erst Pappos publizierte eine geometrische Darstellung der klassischen

Mittelwerte (arithmetisch, geometrisch, harmonisch) in einem Kreis. In neuerer
Zeit kamen andere gemeinsame Darstellungen dieser Mittelwerte in einem Kreis hinzu.

Diese Darstellungen sind Ausgangspunkt für Verallgemeinerungen auf beliebige
Kegelschnitte und eine Dynamisierung, die den Zusammenhang zwischen klassischen
Mittelwerten und Kegelschnitten in einem neuen Licht erscheinen läßt. Gegeben ist
ein Kegelschnitt c, ein Punkt S außerhalb c und eine Halbgerade s, die sich um ihren
Endpunkt S dreht, außerdem einer der klassischen Mittelwerte M. Falls s den Kegelschnitt

in den Punkten P und Q trifft, sei p |SP| und q |SQ|. Nun kann man die

Spur desjenigen Punktes M{P, Q) verfolgen, der zwischen P und Q liegt und von S

den Abstand M (p, q) besitzt. Der Artikel beschreibt diese Spur als Kegelschnitt, Gerade

oder Doppelgerade. Dabei werden geometrische (affin, projektiv) und algebraische
Methoden eingesetzt und miteinander verglichen.
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Abbildung 1 Klassische Mittelwerte am Kreis

In Abbildung 1 werden von S aus die Abstände \SP\, \SO\ und ihre Mittelwerte auf
einer Zentralen s eines Kreises abgetragen. Die den Mittelwerten entsprechenden Punkte
bezeichnen wir der Einfachheit halber wieder mit A, G und H. Abbildung 1 ist Ausgangspunkt

für Verallgemeinerungen:

• An die Stelle des Kreises tritt ein nicht entarteter Kegelschnitt c (Ellipse, Parabel

oder Hyperbel).

• Die Zentrale s wird durch eine beliebige Sekante von c ersetzt, die durch einen fest

vorgegebenen Punkt S außerhalb c verläuft.

• Wir bestimmen die Bahnen, auf denen sich die Mittelwerte A, G und H bewegen,

wenn s sich um S dreht.

1.2 Generelle Voraussetzungen

In der reellen affinen Ebene seien ein nicht entarteter Kegelschnitt c, ein Punkt S außerhalb

c und eine Gerade s durch S gegeben. Ist c Mittelpunktskegelschnitt (Ellipse oder

Hyperbel), so bezeichnen wir den Mittelpunkt mit O. Für cfli / 0 sei c fl ,v {P, O).
Dabei ist der Grenzfall P Q erlaubt; s ist dann Tangente an c. Falls c eine Hyperbel ist,
setzen wir voraus, dass P und Q auf demselben Hyperbelast liegen. Wir setzen p := \SP\
und q |£<2|. M sei nun einer der Mittelwerte A, G oder H. Wir tragen M(p, q) von S

aus auf s ab und erhalten so einen Punkt M$(P, Q) zwischen P und Q. Dreht sich s um
S und schneidet dabei c, so wandert Ms(P, Q) auf einer Bahn cm Sie enthält offenbar
die Berührpunkte H\ und Hj der Tangenten durch S an c, denn wenn s im Grenzfäll zur
Tangente wird, fallen die Punkte P und O und damit A, G und H in einem der Punkte H\
oder PI2 zusammen. Für P ^ Q sei T der Schnittpunkt der Tangenten an c in P und O.

Im Fall P Q sei T := P — Q. Die Berührpunkte der zu s parallelen Tangenten an c
bezeichnen wir mit A\ und Â2- Im Fall einer Parabel entspricht, projektiv gesehen, einem
dieser Punkte ein Fernpunkt.

1.3 Ergebnisse

Abbildung 2 illustriert die Ergebnisse am Beispiel einer Ellipse. Dort gilt:

(a) Hs(P, 0) £ H\H2 nr(S) (Polarezu S bzgl c), also ch H\Pi-
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(b) As(P, Q) — s fl A1A2; As(P, Q) bewegt sich auf einer Ellipse ca- Sie ist achspar-
allel und ähnlich zu c und ihr Mittelpunkt 0\ ist der Mittelpunkt von SO. (A\A2 ist

der zu s konjugierte Durchmesser kc(s) von s bzgl. c.)

(c) Gs(P, Q) liegt auf einer Ellipse cg Sie ist achsparallel und ähnlich zu c und ihr
Mittelpunkt ist S.

(d) G := H\A2 D Hi A1 und G' H\A\ fl H2A2 liegen auf cq- Wenn G innerhalb
c liegt, ist G Gs(P, Q) und es gilt GT — kc(G'). Liegt G' innerhalb c, so ist
G' — Gs(P, Q) und es gilt G'T Jtc(G). Der Mittelpunkt von GG' ist S.

Für eine Hyperbel anstelle einer Ellipse sind die Ergebnisse völlig, und für eine Parabel

sinngemäß analog (Abb. 3 und Abb. 4). Wir beweisen die Ergebnisse in Abschnitt 3 mit
algebraischen und geometrischen Methoden (affin bzw. projektiv) und beleuchten dabei
die Eignung der unterschiedlichen Beweismethoden. Abschnitt 2 stellt dazu Grundlagen
bereit.

2 Grundlagen
2.1 Geometrische Grundlagen

Der affinen ebenen Geometrie liegt die reelle affine Ebene zugrunde. Die strukturerhaltenden

Abbildungen sind hier affine Abbildungen. Sie lassen sich als Verkettungen von
linearen Abbildungen mit Translationen beschreiben. Zwei Objekte heißen affin verwandt,

wenn es eine affine Abbildung gibt, die das eine auf das andere Objekt abbildet.
Eigenschaften, die sich bei affinen Abbildungen nicht ändern, heißen affin invariant, z.B. sind
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Geradlinigkeit und Parallelität von Geraden affin invariant. Ellipsen, Parabeln und Hyperbeln

bilden jeweils eine Menge untereinander affin verwandter Objekte. Insbesondere sind
alle Ellipsen einem Kreis affin verwandt. Aussagen, die nur affin invariante Eigenschaften
eines Kegelschnitts betreffen, können daher an einem Repräsentanten des entsprechenden
Kegelschnitttyps bewiesen werden, Aussagen für Ellipsen folglich an einem Kreis.

In der projektiven Geometrie wird die reelle affine Ebene durch Fernpunkte und die
Ferngerade zur reellen projektiven Ebene ergänzt. Jeder Richtung in der affinen Ebene wird
umkehrbar eindeutig ein Fernpunkt zugeordnet. Die Menge der Fernpunkte ist die
Ferngerade. Hier sind die projektiven Abbildungen die Grundlage für die projektive Invarianz.
Z.B. ist Geradlinigkeit projektiv invariant, nicht jedoch die Parallelität. Affin parallele
Geraden schneiden sich projektiv in dem ihrer Richtung zugeordneten Fernpunkt. Alle
Kegelschnitte sind zueinander und damit einem Kreis projektiv verwandt. Daher genügt es,

projektiv invariante Eigenschaften an einem Kreis nachzuweisen.

Wir gehen davon aus, dass der Leser bzw. die Leserin mit Grundtatsachen der projektiven
Geometrie vertraut ist (siehe etwa [4, 5, 11]) und erinnern hier nur an einige wichtige
Begriffe und Aussagen in dem in 1.2 beschriebenen Kontext: Dort ist die Gerade /ff 7/2

die Polare 7tc(S) zu S bzgl. c, und T ist als Schnittpunkt der Tangenten in P und Q der
Pol nc(s) zur Gerade s bzgl. c. Es gilt der Hauptsatz der Polarentheorie ([7] S. 261):
X e Jtr(Y) 4» Y e ttc(X). Insbesondere gehen die Polaren aller Punkte einer Gerade

durch den Pol der Gerade; z.B. ist T e 7ic(S). Der zu s konjugierte Durchmesser kc(s)
bzgl. c ist die (wohlbestimmte) Gerade durch die Mittelpunkte aller zu 5 parallelen Sehnen

von c. Im Fall einer Ellipse oder Hyperbel ist in unserem Kontext kc(s) A1Ä2; zugleich
ist kc(s) die Polare des Fernpunktes in Richtung von s. Insbesondere ist A e tcc(s).

Eine der wichtigsten projektiven Invarianten ist das Doppelverhältnis DV. Unter den

Voraussetzungen von 1.2 sei R ein Punkt zwischen P und Q und r |S/?|. Dann ist

(r — p) q
DV(P,Q,R,S)

(r - q) p

Das Quadrupel (P, Q, R, S) heißt harmonisch, wenn DV(P, Q, R, S) —1 ist. Eine

einfache Rechnung zeigt: DV(P, Q, R, S) —1 44> r — H(p, q), also

(P, Q, R, S) harmonisch 4» R HS(P, Q). (2)

Zur Theorie der Kegelschnitte verweisen wir auf [2, 3, 6, 7, 8, 12]. Kegelschnitte sind

ursprünglich als Schnitte eines Doppelkegels mit einer Ebene definiert. Geht die Ebene
durch die Spitze des Doppelkegels, so heißt der Kegelschnitt entartet. Nicht entartet sind

Ellipse, Parabel und Hyperbel. Aus dieser Definition folgt, dass nicht entartete
Kegelschnitte projektive Bilder eines Kreises sind. Die Menge aller Geraden der projektiven
Ebene durch einen Punkt Z heißt Geradenbüschel Bz mit Zentrum Z. Einem Quadrupel

(gi,..., g4) von Geraden von Bz kann man ein Doppelverhältnis wie folgt zuordnen:

Schneidet eine Gerade g, die nicht durch Z geht, die Geraden g,- in den Punkten

Pi, so hängt DV(P\,, P4) nicht von der Wahl von g ab. DV (P\,..., P4) heißt dann

Doppelverhältnis DV(g\,..., g4) von (gi,..., g4). Eine Abbildung zwischen zwei
Geradenbüscheln, zwischen einer Gerade und einem Geradenbüschel oder zwischen zwei
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Geraden heißt Projektivität, wenn sie das Doppelverhältnis beliebiger vier zugeordneter
Punkte bzw. Geraden nicht ändert. Ein Spezialfall ist der folgende: Seien a eine Gerade,

Z und Z' Punkte mit Z, Z' ^ a. Sei nun g e Bz, C := g fia und g' CZ'. Dann nennt
man die Abbildung Bz —> Bz', g g', eine Perspektivität mit Achse a. Nun gilt ([7],
S. 218 ff):

Satz von Steiner: Ist <p : Bz —>• Sz' eine Projektivität, die keine Perspekivität ist, so ist die

Menge der Schnittpunkte {g PI <p(g)\g e Bz} ein Kegelschnitt durch Z und Z'.

2.2 Mittelwerte

Ein (bivariater) Mittelwert ist eine Funktion M : R>o x U>o —»• R>o mit der Eigenschaft
min(x, y) < M(x, y) < max(x, y). Gilt M(t x,t • y) t • M(x, y) für alle x,y,t > 0,

so heißt M homogen. A, G und H sind homogen. Ein homogener Mittelwert M ist in

folgendem Sinn affin invariant: Ist tp eine affine Abbildung, so gilt Mv(s) (<p(P), <p(Q))

ip (Ms(P, Q))- In unserem Kontext sei V ein Richtungsvektor von s, P S + Xp V,

0 S + À.Q V mit geeigneten kp und kg und M einer der Mittelwerte A, G oder H.
Dann folgt aus der Homogenität:

Ms(P, Q) S + k\i V mit kM — M [kp, kg), (3)

kp kn r-—-— 2kpko
Xa kc — s/kp kg und kn -———. (4)

z ~ Âp + ÀQ

Da das Doppelverhältnis projektiv invariant ist, ist das harmonische Mittel projektiv invariant

(nicht jedoch das arithmetische und geometrische Mittel).

2.3 Algebraische Grundlagen

Algebraisch gesehen ist ein Kegelschnitt c die (nicht leere) Lösungsmenge einer allgemeinen

quadratischen Gleichung in zwei reellen Variablen x und y:

a\\x2 + 2a\2xy + any1 + 2a\2,x + 2any + «33 0 mit ag e M, (5)

wobei ai 1, a 12 oder 022 7^ 0 ist. Hier sind entartete Fälle möglich.

Man kann (5) mit K :=
011 ß12 V L ß13 X :=

X ^ und s := 033 in
V «12 «22 / \ ß23 / V y

der Form
X' K X + 2 L' X + e 0 (6)

notieren. K ist dabei symmetrisch. Das hochgestellte t markiert die Transposition. Falls c

Ellipse oder Hyperbel ist, ist K invertierbar. Der Mittelpunkt von c ist dann gegeben durch

(L9], S. 77)
O — K~x L. (7)

Die Polare 7tc(P) von P bzgl. c hat für P / O die Gleichung ([9] S. 92 ff.)

P' • K X + L' (X + P) + s 0. (8)
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Im Fall P e c ist dies die Gleichung der Tangente an c in P. Ist V Richtungsvektor von 5,

so ist
X' K V + L' V — 0 (9)

die Gleichung des zu .v konjugierten Durchmessers k, (s) von c ([9], S. 99).

Sei nun s eine Gerade durch S mit Richtungsvektor V, die c in X S + X V mit let
schneidet. Dann gilt ([9], S. 88)

0 X'KX + 2L'X + s (S + XV)' K (S + XV) + 2V (S + XV) + e.

Das ist die quadratische Gleichung X2u+2Xd + w — 0 mit u V' KV, u S' KV + L'V,
w S'KS + 2L'S + e, die für A v2 — u w > 0 folgende Schnittpunkte P, Q von s

mit c liefert:

—v — v^A —v -f \/~K
P S + XpV, Q S + XqV\ Xp XQ (10)

Wegen Xp + Xq — — ^ und XpXq j folgt aus (4)

Für unsere Fragestellung ist die Lage von c in der Ebene ohne Bedeutung. Durch eine

Drehung und Verschiebung können wir c in eine zum Koordinatensystem achsparallele
Lage bringen. Dann vereinfacht sich (5) mit neuen Koeffizientenbezeichnungen zu

ax2 + ßy2 + 2(y x + Sy) + e 0, K (12)

3 Die Spur der Mittelwerte
Wir beweisen nun die Aussagen von 1.3 unter den Voraussetzungen in 1.2. Wir notieren

allgemein einen Punkt R in Koordinatenform so: R (xp, yp)'.

3.1 Das harmonische Mittel

Sei s De [P, Q\. Dann gilt:

Satz 1. Sei H := s Fl 7rc(S). Dann ist H Hs(P, Q), d.h. für Hs{P, O) gilt: S'K H +
L'(S + H) + s — 0, bzw. unter den Voraussetzungen von (12).' axsxp/ + ßysyH +
ä (xs +xH) + y (ys + yh) + e 0.

3.1.1 Algebraischer Beweis von Satz 1

Gemäß (3) und (4) ist H — Hs(P, Q) S + XhV. Nun erfüllt wegen (11) X H die

Gleichung (8) von 7ic(S), so dass // auf 7tc(S) liegt:

S'K(S + XHV) + L'(2S + XhV) + e

w
XH (S'KV + L'v) + S' KS + 2L'S + e XHv+w v + w 0.

\ / v

Die gesuchte Kurve ch ist also die Polare izc(S).
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3.1.2 Geometrischer Beweis von Satz 1

Die harmonische Teilung bietet den natürlichen Zugang zur Bestimmung von H$(P, Q).
Es gilt ([8], S. 73): Ist H sC\nc(S), so ist (P, Q, H, S) harmonisch. Aus (2) folgt dann:

H HS(P, Q).

3.2 Das arithmetische Mittel

Unter den Voraussetzungen von 1.2 sei s eine beliebige Gerade durch S.

Satz 2. Für A : s fl kc (s gilt:

(a) A liegt auf dem Kegelschnitt c,\ mit der Gleichung (X' K + L'j (X — S) 0, bzw.

unter den Voraussetzungen von (12): (ax + y • (x — xs) + (ßy + S) (y — _ys) 0.

(b) Für s D c={P,0} ist A AS(P, Q).

(c) Hi, H2 e cA.

(d) Ist c Ellipse oder Hyperbel mit Mittelpunkt O, so liegt O aufca, und der Mittelpunkt
Oa von SO ist der Mittelpunkt von Ca-

(e) c und c,\ sind einander ähnlich und achsparallel.

3.2.1 Algebraischer Beweise von Satz 2

(a) Sei V ein Richtungsvektor von s. Wegen A e kc(s) gilt nach (9): A'KV + L'V — 0.

Wegen A e s hat A die Form A S + AV. Also ist

(S + 2V)' KV + L'V 0.

Aus XV — A — S folgt dann nach Multiplikation mit X

0= ((S + XV)' K + L') XV (A'K + L') (A — S),

so dass X A die Gleichung (X' K + L') (X — S) — 0 erfüllt.

(b) Sei s PI c {P, O). Zu beweisen ist nur A$(P, Q) e kc(s). Nach (3), (10) und (11)
ist As(P, Q) — S + Xa V mit Xa —\,u — V' KV und v — S' KV + L'V. Wir setzen

X As(P, Q) in die Gleichung (9) für/cc(s) ein:

X'KV + L'V (S + XAV)' KV + L'V S'KV + L'V + XAV'KV
v

— v + Xau d u 0.
u

Daher liegt As(P, Q) auf kc(s).

(c) Aus der Gleichung für ca geht sofort S e ca hervor. Dass H\ und H2 auf Ca liegen,
wurde bereits in Abschnitt 1 festgestellt.

(d) Sei c Ellipse oder Hyperbel mit Mittelpunkt O. Nach (7) ist O — K~x L. Einsetzen
in die Gleichung von ca in (a) zeigt sofort O e Ca Nach (a) ist die Normalform von
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Ca wegen der Symmetrie von K gegeben durch X'KX + 2L'aX + t:,\ 0 mit La '=
2 (Z7 — KS) undent := —L'S. Nach (7) ist der Mittelpunkt von Ca

Oa ~K~X La ~K~X\(L - KS) L + l-S l-(0 + S),

also Mittelpunkt von SO.

(e) Weil c und Ca hinsichtlich der Matrix K übereinstimmen, sind c und Ca ähnliche
Kegelschnitte in achsparalleler Lage.

3.2.2 Affin-geometrischer Teilbeweis von Satz 2

Wir beweisen den geometrischen Teil von Satz 2 nur für Ellipsen. Da alle Ellipsen affines

Bild eines Kreises sind und das arithmetische Mittel nach Abschnitt 2.2 unter affinen

Abbildungen invariant ist, genügt es, die Aussagen für einen Kreis zu beweisen (Abb. 5).

Sei c ein Kreis mit Mittelpunkt O und sei 5 fl c {P, O). Der zu 5 konjugierte Durchmesser

kc(s) von c ist dann die Senkrechte zu 5 durch O. Er schneidet die Sehne PO in

A und halbiert sie. Also ist A — As(P, Q). Das Dreieck SO A ist rechtwinklig. Folglich
liegt A auf dem Thaieskreis Ca mit dem Durchmesser SO. Der Mittelpunkt Oa von ca
ist also der Mittelpunkt von SO. Bei einer affinen Abbildung gehen die beiden Kreise c
und Ca in achsparallele und ähnliche Ellipsen über, der konjugierte Durchmesser und das

arithmetische Mittel in die entsprechenden Größen der Bildellipsen.
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Bei Parabeln und Hyperbeln kann man ähnlich argumentieren. Man beweist die Aussagen

- am einfachsten analytisch - für eine spezielle Parabel (z.B. y x2) bzw. Hyperbel (z.B.
x y 1) und schließt mit Hilfe affiner Invarianz.

3.2.3 Projektiv-geometrischer Teilbeweis von Satz 2

Dass s fl kc(s) — As(P, Q) ist, sofern 5 fl c — {P, Q) ist, folgt wieder aus der Eigenschaft

der Sehnenhalbierung des konjugierten Durchmessers. Nun zeigen wir für Ellipsen
und Hyperbeln mit Mittelpunkt O, dass s PI kc(s) auf einem Kegelschnitt c,\ durch S und
O liegt. Wir beweisen zunächst mit Hilfe der Steinerschen Charakterisierung von
Kegelschnitten ([2], Nr. 209):

Hilfssatz 1. Sei c ein Kegelschnitt, g eine Gerade, T := nc(g). Weiter sei S ein Punkt
mit S £ g und S ^ T. Dann liegen die Punkte Y := SX fl nc(X) für X e g auf einem

Kegelschnitt Ca durch S und T.

Abbildung 6 Zu Hilfssatz 1

Beweis (Abb. 6): Sei Bs das Geradenbüschel mit Zentrum S. Die Abbildung Bs -» g,
s M" X := s fl g, ist eine Projektivität. Alle Polaren kc{X) mit X e g gehen durch
T xc (g), bilden daher ein Geradenbüschel Bj mit Zentrum T. Die Abbildung g -> Bj,
X i-> nr{X), ist dann ebenso eine Projektivität ([11], S. 334). Das gilt dann auch für die

Verkettung beider Abbildungen B$ -> ß / Sie bildet für jedes X g die Gerade SX auf
nc(X) ab. Sie ist jedoch keine Perspektivität, da sie ST nicht auf sich selbst abbildet. Nach
dem Satz von Steiner liegen dann die Schnittpunkte Y := SX fl xc(X) korrespondierender
Geraden von Bs und Bj auf einem Kegelschnitt durch die beiden Zentren S und T.

Wir wählen nun für g die Ferngerade. Dann ist X := s fl g der Fernpunkt in Richtung
von s und nc(X) — kc(s). Nach Hilfssatz 1 liegen die Punkte A s fl kc(s) SX D

7tc(X) auf einem Kegelschnitt Ca durch S und den Pol T der Ferngerade. Falls c ein

Mittelpunktskegelschnitt ist, ist T der Mittelpunkt O von c.

Falls c eine Parabel ist, ist T der Fernpunkt in Richtung der Hauptachse der Parabel. In
diesem Fall ist Ca selbst eine Parabel.
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3.3 Das geometrische Mittel

Satz 3.

(a) Das geometrische Mittel Gs(P, Q) liegt aufdem Kegelschnitt cG mit der Gleichung
X' KX + 2 L'qX + eg 0 mit Lg '= —KS und sc := —2L' S — s; bzw. unter den

Voraussetzungen von (12): ax{x — 2xf) + ßy(y — 2ys) — 2 (yxs + dys) — e 0.

(b) H\,Hi e cg- Ist c Ellipse oder Hyperbel, so sind c und cG achsparallel und ähnlich.
Mittelpunkt von cg ist dann S. Ist c eine Parabel, so besteht cq aus einem Paar zur
Hauptachse von c paralleler Geraden, die durch H\ bzw. Ip gehen. S liegt auf der
Mittelparallele dieser beiden Geraden.

3.3.1 Algebraischer Beweis von Satz 3

(a) Sei V ein Richtungsvektor von s. Nach (2), (3), (10) und (11) ist G — Gs(P, Q)
S + kGV mit lg jlpXq *Jw/u. Wir setzen X — G in X' KX + 2 L'gX + eg — 0

ein. Unter Berücksichtigung des Symmetrie von K gilt dann:

G' KG + 2L'gG + sg G'KG - 2S'KG - 2L'S - s

(S + )iGV)' K {S + XGV) - 2S'K (S + XGV)~ 2L'S - e

S'KS + 22aS'KV +L2gV'KV - 2S'KS - 2àgS'KV - 2L1 S - s

22gV'KV - S'KS - 2L'S - e f h - to 0.

G liegt also auf dem Kegelschnitt mit der Gleichung X' KX + 2L'gX + eG =0. Da

cg und c hinsichtlich der Matrix K übereinstimmen, sind cg und c einander ähnlich und

achsparallel.

(b) Dass H\ und H2 auf cG liegen, wurde schon im 1. Abschnitt festgestellt. Der Mittelpunkt

von cg ist für eine Ellipse oder Hyperbel nach (7)

Og -K-1 • Lg —K~l (-K S) S.

Wir gehen nun von achsparalleler Lage von c und der Gleichung (12) aus. Bei einer Parabel
sei etwa a 0 und ß > 0. Die Hauptachse von c ist dann parallel zur x-Achse und die

Koordinatengleichung von cq reduziert sich auf

ßy (y ~ 2ys) ~2(yxs+ dys) - e 0.

Die Lösungen sind

n a H r a 2 2{yxs+8ys) + s
y ys + vd und y ys-s/d mit d y| H

Damit besteht cg aus zwei zur x-Achse parallelen Geraden, für die die Gerade mit der

Gleichung y ys Mittelparallele ist. Daraus folgt für diesen Fall die Behauptung. Der
Fall a > 0, ß 0 ist analog.
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3.3.2 Affin-geometrischer Teilbeweis von Satz 3

Wir diskutieren nur den Fall einer Ellipse. Wie in 3.2.2 können wir uns auf einen Kreis
beschränken, da auch das geometrische Mittel affin invariant ist. Sei also c ein Kreis (Abb.
5). Mit p := ISTI, q := |SQ| ist nach dem Sehnen-Tangentensatz p q — |5//i |2, also

|SH\ | ^fpq G(p, q). D.h.: Gs(P, Q) liegt auf dem Kreis cG um S durch H\ (und

Hi). Bei Anwendung einer affinen Abbildung gehen die Kreise c und cG in achsparallele

und einander ähnliche Ellipsen über, das geometrische Mittel in das entsprechende
geometrische Mittel der Bildellipse von c.

Bei Parabel und Hyperbeln kann man analog argumentieren, muss aber wie in 3.2.2 die

Aussage zunächst für eine spezielle Parabel und eine spezielle Hyperbel beweisen (auch
hier am einfachsten analytisch).

3.3.3 Variante von Satz 3 - projektiv-geometrisch

Abbildungen 2, 3 und 4 zeigen, dass das geometrische Mittel eine in Satz 3 nicht genannte
Charakterisierung besitzt: Sei dazu wieder kc (5)00 {H\, Hf\ undKf(j')nc (Ai, A?}.
Wir setzen G := H\Ai H H2A1 und G' H\A\ n H1A2 und der Kürze halber A :=
As{P, Q), H Hs(P, Q), wennsflc ^ 0. Wir nummerieren die Hj so, dass G zwischen
P und Q (und daher G' außerhalb PO) liegt.

Satz 4. Unter den obigen Voraussetzungen gilt:

(a) G und G' liegen aufeinem Kegelschnitt cg durch H\ und IE-

(b) G, G' e s und (P, Q, G, G') und (H, A, G, G') sind harmonisch.

(c) G Gs(P, Q) HG'(P, Q) Hg,(H, A).

Beweis: (a) Dass G und G' auf einem Kegelschnitt liegen, beruht wieder auf der Steiner-
schen Charakterisierung von Kegelschnitten und Hilfssatz 2.

Hilfssatz 2. Seien C\, C2 verschiedene Punkte aufc. Sei weiter T ein Punkt, der weder auf
c noch auf C\C2 Hegt. Für X c c sei Y der zweite Schnittpunkt von XT mit c. Dann gilt:
Die Schnittpunkte D C\X C\ C2Y und F. := Ci Y n C? X liegen aufeinem Kegelschnitt

cg durch C] und Cz-

Beweis (Abb. 7): Sei C der zweite Schnittpunkt von C\T mit c. Sei X e c, zunächst

X C1. Sei weiter Y der zweite Schnittpunkt von XT mit c. Dann liegt Z := C\ X fl CY
auf kc(T). Ist X — C\, so tritt an die Stelle von C\X bzw. CY die Tangente an c in C\
bzw. C. Der Schnittpunkt dieser Tangenten liegt ebenso auf nr(T). Seien B1, Ih bzw. B(
die Geradenbüschel mit Zentrum C\, C2 bzw. C. Dann ist die Abbildung B\ Kc(T),
C\X h>• Z — C\X f)nc{T), eine Projektivität. Da aber C\X Otzc(T) Z= CY C\nc(T)
ist, ist auch die Abbildung nc(T) -> Bc, Z CZ CY, eine Projektivität. Schließlich
ist die Abbildung Bc -» B2, CY CoY eine Projektivität ([11], S. 325). Daher ist die

Verkettung dieser drei Abbildungen B\ -> Xc(T) Bc —> B2, C\X h-> C2Y eine

Projektivität. Da sie aber CjCb nicht auf sich selbst abbildet, ist sie keine Perspektivität.
Damit ist der Satz von Steiner anwendbar und es gilt: Die Schnittpunkte D := C\ X fl C2 Y
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(und aus Symmetriegründen E C\Y D C2X) liegen auf einem Kegelschnitt cg durch

C\ und C2.

(a) Sei c eine Ellipse oder Hyperbel mit Mittelpunkt O. Wir wenden Hilfssatz 2 mit C\ —

H1, C2 H2 und T O an. Dann ist nc O die Ferngerade, und O liegt auf dem

konjugierten Durchmesser kc(s) A1A2. Daher ist nach Hilfssatz 2 mit der dortigen
Notation Y A2 für X A\, Y A\ für X — A2, und speziell liegen die Punkte
G' H\ A1 n H2 A2 und G — //1A2 Fl F/2 A1 auf einem Kegelschnitt cq durch H\ und /C
Parabeln lassen sich als Grenzfall behandeln. Ist X — A \ (bzw. X Ä2), so ist Y —

Â2 (bzw. Y A\) der Fernpunkt in Richtung 5 und entsprechend H\A2 (bzw. //2A1)
eine Parallele zur Hauptachse der Parabel durch H\ (bzw. H2). Dann ist cq ein entarteter

Kegelschnitt, der aus den beiden Parallelen zu s durch H\ und H2 besteht.

(b) Sei T := 7tc(s), also auch s 7tc{T). Dann liegt T auf den Polaren der Punkte

von s, insbesondere auf nc(S) und der Polare kc(s) des Fernpunktes zu 5. Also ist T
7£>(,S) Fl kc(s) H\H2 n A\A2- Nun gilt ([8], S. 74): Die Punkte H\A2 Fl //2A1 G

und H\ A\ H H2A2 G' liegen aufs und (P, 0, G, G') ist harmonisch; außerdem: A

s n A]A2 und H s D H\H2 und es gilt: (//, A, G, G') ist harmonisch.

(c) Nach (b) ist G — HG'(P, Q) Hc{H,A). Wir setzen p := |5P|, q := |SQ|,
r := IG'S), h := \SH\ H (p, q) und a := |SA| A(p, q). Dann gilt

Hg'(P, Q) A) 4» H(r + p, r + q) H(r + h, r + a)

(p + r)(q + r) _
(h + r)(a + r)

2r + p + q 2r + h + a

O (p + r)(q + r)(2r + h + a) (h + r)(a + r)(2r + p + q)

O (pq + (P + q)r + r2^j (2r + h + a) (ha + (h + a)r + r2^j (2r + p + q)

Nun gilt h a H (p, q) A(p, q) — p q. Damit vereinfacht sich die Gleichung zu

(pq - r2)(h +a-(p + q)) 0.
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Wir können p q und damit h + a ^ p + q voraussetzen. Dann ist pq r2, d.h.

r G(p, q). Aus \G'G\ — r + |SG[ H(r + p,r + q) folgt nach einfacher Rechnung

1^1
2(r+p)(r+q)

|SG| H(r + p, r + q) - r —-— r r.
2r + p + q

Also ist |SG| G(p, q) und damit G Gs(P, Q)- Darüber hinaus sehen wir nun, dass

S Mittelpunkt von G'G und damit bei Ellipsen und Hyperbeln Mittelpunkt von cq ist.

4 Schlussbemerkungen
Die Untersuchung offenbart Stärken und Schwächen der verwendeten geometrischen und

algebraischen Methoden.

Hinsichtlich des harmonischen Mittels ist die projektive Methode das Mittel der Wahl,
denn es steht in engem Zusammenhang zur harmonischen Teilung und damit zu projektiven

Eigenschaften der Kegelschnitte. Hier ist es einfach, das Ergebnis vorauszusehen und

zu beweisen, sowohl geometrisch wie algebraisch.

Anders beim arithmetischen und geometrischen Mittel. Als hilfreich erweisen sich hier
Experimente mit einer dynamischen Geometriesoftware, die Ergebnisse vermuten lassen.

Die algebraische Methode eignet sich nun zum Beweis, enthüllt aber naturgemäß weniger
deutlich den geometrischen Hintergrund der Ergebnisse.

Die affin-geometrische Methode beruht auf der Tatsache, dass Ellipsen, Parabeln bzw.

Hyperbeln jeweils untereinander affin verwandt und dass die diskutierten Mittelwerte affin

invariant sind. Es genügt daher, die Ergebnisse jeweils an einem Repräsentanten der
drei Kegelschnittarten zu verifizieren. Das ist bei Ellipsen besonders einfach, da man hier
lediglich etwas Kreisgeometrie benötigt. Bei Parabeln und Hyperbeln ist allerdings der

Zugang über analytische Geometrie einfacher. Beim harmonischen Mittel bringt die
affingeometrische Methode keine Vorteile.

Mit der projektiv-geometrischen Methode profitiert man von der Tatsache, dass alle nicht
entarteten Kegelschnitte projektiv untereinander verwandt sind. Für das harmonische Mittel

liegt diese Methode, wie bereits erwähnt, besonders nahe. Da das arithmetische und
das geometrische Mittel allerdings nicht projektiv invariant sind, ist dort der projektiv-
geometrische Weg nicht in gleichem Maß geeignet. Zwar gelingt der Nachweis, dass die
Kurven Ca und cq Kegelschnitte sind, allerdings ohne sie so präzise zu beschreiben wie
mit der algebraischen bzw. der affin-geometrischen Methode. Die projektive Methode
erfordert darüber hinaus mehr theoretischen Hintergrund. Lediglich bei der Kennzeichnung
des geometrischen Mittels in Satz 4 ist die projektiv-geometrische Methode den anderen
deutlich überlegen.

Es stellt sich die naheliegende Frage, ob ähnliche Ergebnisse auch für andere Mittelwerte
als A, G und H erzielt werden können. Dafür kommen z.B. Verallgemeinerungen wie
Lehmer-Mittelwerte, Potenzmittelwerte, gewichtete Formen oder Konvexkombinationen
von A, G und H in Frage. Unter diesen Mittelwerten scheinen A, G und H jedoch die

einzigen zu sein, für die cm wieder ein (evtl. ausgearteter) Kegelschnitt ist.

Das Thema kann noch in anderer Richtung verfolgt werden, z.B. im Hinblick auf eine
iterative Konstruktion von Lehmer-Mittelwerten ([10]).
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