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Begegnung zwischen klassischen Mittelwerten
und Kegelschnitten

Joachim Jiger

Joachim Jager wurde an der Universitit des Saarlandes in Mathematik promoviert.
Nach einer mehrjihrigen Titigkeit an einer pidagogischen Hochschule lehrte er iiber
30 Jahre Mathematik an der Hochschule fiir Technik und Wirtschaft in Saarbriicken.
Nach dem Eintritt in den Ruhestand interessierte er sich fiir Elementarisierung von
Mathematik mit einem Fokus auf die Mathematiklehre.

1 Einfiihrung
1.1 Fragestellung

Abbildung 1 zeigt eine wohlbekannte geometrische Darstellung der klassischen Mittel-
werte A (arithmetisch), G (geometrisch) und H (harmonisch) in einem Kreis [1, S. 74].

p+q 2pq
A(p,q)zT, G(p.q)=./p-q, H(p,q)zm, p,g>0 (1)

Die Anfinge der Theorie der Mittelwerte und der Kegelschnitte liegen in der griechi-
schen Antike. Aber erst Pappos publizierte eine geometrische Darstellung der klassi-
‘schen Mittelwerte (arithmetisch, geometrisch, harmonisch) in einem Kreis. In neuerer
~ Zeit kamen andere gemeinsame Darstellungen dieser Mittelwerte in einem Kreis hin-
zu. Diese Darstellungen sind Ausgangspunkt fiir Verallgemeinerungen auf beliebige
Kegelschnitte und eine Dynamisierung, die den Zusammenhang zwischen klassischen

- Mittelwerten und Kegelschnitten in einem neuen Licht erscheinen 1iBt. Gegeben ist
ein Kegelschnitt ¢, ein Punkt § auBierhalb ¢ und eine Halbgerade s, die sich um ihren
Endpunkt S dreht, auBerdem einer der klassischen Mittelwerte M. Falls s den Kegel-
_schnitt in den Punkten P und Q trifft, sei p = |SP| und g = |SQ|. Nun kann man die
Spur desjenigen Punktes M (P, Q) verfolgen, der zwischen P und Q liegt und von §
den Abstand M (p, q) besitzt. Der Artikel beschreibt diese Spur als Kegelschnitt, Gera-
de oder Doppelgerade Dabei werden geometrische (affin, pro;ektiv) und algebraische
Methoden eingesetzt und miteinander verglichen.
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S P H G A Q

Abbildung 1 Klassische Mittelwerte am Kreis

In Abbildung 1 werden von S aus die Abstinde |SP|, |SQ| und ihre Mittelwerte auf ei-
ner Zentralen s eines Kreises abgetragen. Die den Mittelwerten entsprechenden Punkte
bezeichnen wir der Einfachheit halber wieder mit A, G und /. Abbildung 1 ist Ausgangs-
punkt fiir Verallgemeinerungen:

e An die Stelle des Kreises tritt ein nicht entarteter Kegelschnitt ¢ (Ellipse, Parabel
oder Hyperbel).

e Die Zentrale s wird durch eine beliebige Sekante von c ersetzt, die durch einen fest
vorgegebenen Punkt S auBerhalb ¢ verladuft.

e Wir bestimmen die Bahnen, auf denen sich die Mittelwerte A, G und H bewegen,
wenn s sich um § dreht.

1.2 Generelle Voraussetzungen

In der reellen affinen Ebene seien ein nicht entarteter Kegelschnitt ¢, ein Punkt S auBer-
halb ¢ und eine Gerade s durch § gegeben. Ist ¢ Mittelpunktskegelschnitt (Ellipse oder
Hyperbel), so bezeichnen wir den Mittelpunkt mit O. Firc Ns # @ seic Ns = {P, Q}.
Dabei ist der Grenzfall P = Q erlaubt; s ist dann Tangente an c. Falls ¢ eine Hyperbel ist,
setzen wir voraus, dass P und Q auf demselben Hyperbelast liegen. Wir setzen p := |SP)|
und ¢ := |SQ|. M sei nun einer der Mittelwerte A, G oder H. Wir tragen M(p, q) von S
aus auf s ab und erhalten so einen Punkt Mg(P, Q) zwischen P und Q. Dreht sich s um
S und schneidet dabei ¢, so wandert Mg(P, Q) auf einer Bahn cys. Sie enthilt offenbar
die Beriihrpunkte H; und H; der Tangenten durch § an ¢, denn wenn s im Grenzfall zur
Tangente wird, fallen die Punkte P und Q und damit A, G und H in einem der Punkte H
oder H, zusammen. Fiir P # Q sei T der Schnittpunkt der Tangenten an ¢ in P und Q.
ImFall P = Q sei T := P = Q. Die Beriithrpunkte der zu s parallelen Tangenten an ¢
bezeichnen wir mit A; und A;. Im Fall einer Parabel entspricht, projektiv gesehen, einem
dieser Punkte ein Fernpunkt.

1.3 Ergebnisse

Abbildung 2 illustriert die Ergebnisse am Beispiel einer Ellipse. Dort gilt:

(a) Hs(P, Q) € HiH> = n+(S) (Polare zu S bzgl ¢), also cy = H{ Ha.
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Abbildung 2 Mittelwerte bei einer Ellipse

(b) As(P, Q) = s N AjAz; As(P, Q) bewegt sich auf einer Ellipse c4. Sie ist achspar-
allel und dhnlich zu ¢ und ihr Mittelpunkt O 4 ist der Mittelpunkt von SO. (A1 A2 ist
der zu s konjugierte Durchmesser x.(s) von s bzgl. c.)

(¢) Gs(P, Q) liegt auf einer Ellipse cg. Sie ist achsparallel und dhnlich zu ¢ und ihr
Mittelpunkt ist S.

(d) G := HiA, N HoAp und G := H{A| N HyA; liegen auf ¢g. Wenn G innerhalb
c liegt, ist G = Gg(P, Q) und es gilt GT = n.(G’). Liegt G’ innerhalb ¢, so ist
G’ =Ggs(P, Q) und es gilt G'T = n.(G). Der Mittelpunkt von GG’ ist S.

Fiir eine Hyperbel anstelle einer Ellipse sind die Ergebnisse vollig, und fiir eine Parabel
sinngemil analog (Abb. 3 und Abb. 4). Wir beweisen die Ergebnisse in Abschnitt 3 mit
algebraischen und geometrischen Methoden (affin bzw. projektiv) und beleuchten dabei
die Eignung der unterschiedlichen Beweismethoden. Abschnitt 2 stellt dazu Grundlagen
bereit.

2 Grundlagen

2.1 Geometrische Grundlagen

Der affinen ebenen Geometrie liegt die reelle affine Ebene zugrunde. Die strukturerhal-
tenden Abbildungen sind hier affine Abbildungen. Sie lassen sich als Verkettungen von
linearen Abbildungen mit Translationen beschreiben. Zwei Objekte heillen affin verwandt,
wenn es eine affine Abbildung gibt, die das eine auf das andere Objekt abbildet. Eigen-
schaften, die sich bei affinen Abbildungen nicht dndern, heillen affin invariant; z.B. sind
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Abbildung 3 Mittelwerte bei einer Hyperbel

7. (S)

Abbildung 4 Mittelwerte bei einer Parabel
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Geradlinigkeit und Parallelitit von Geraden affin invariant. Ellipsen, Parabeln und Hyper-
beln bilden jeweils eine Menge untereinander affin verwandter Objekte. Insbesondere sind
alle Ellipsen einem Kreis affin verwandt. Aussagen, die nur affin invariante Eigenschaften
eines Kegelschnitts betreffen, konnen daher an einem Reprisentanten des entsprechenden
Kegelschnitttyps bewiesen werden, Aussagen fiir Ellipsen folglich an einem Kreis.

In der projektiven Geometrie wird die reelle affine Ebene durch Fernpunkte und die Fern-
gerade zur reellen projektiven Ebene ergénzt. Jeder Richtung in der affinen Ebene wird
umkehrbar eindeutig ein Fernpunkt zugeordnet. Die Menge der Fernpunkte ist die Fern-
gerade. Hier sind die projektiven Abbildungen die Grundlage fiir die projektive Invarianz.
Z.B. ist Geradlinigkeit projektiv invariant, nicht jedoch die Parallelitit. Affin parallele Ge-
raden schneiden sich projektiv in dem ihrer Richtung zugeordneten Fernpunkt. Alle Ke-
gelschnitte sind zueinander und damit einem Kreis projektiv verwandt. Daher geniigt es,
projektiv invariante Eigenschaften an einem Kreis nachzuweisen.

Wir gehen davon aus, dass der Leser bzw. die Leserin mit Grundtatsachen der projektiven
Geometrie vertraut ist (siehe etwa [4, 5, 11]) und erinnern hier nur an einige wichtige
Begriffe und Aussagen in dem in 1.2 beschriebenen Kontext: Dort ist die Gerade HiH>
die Polare 7w (S) zu S bzgl. ¢, und T ist als Schnittpunkt der Tangenten in P und Q der
Pol n.(s) zur Gerade s bzgl. c. Es gilt der Hauptsatz der Polarentheorie ([7] S. 261):
X e n.(Y) & Y € m.(X). Insbesondere gehen die Polaren aller Punkte einer Gerade
durch den Pol der Gerade; z.B. ist T € n.(S). Der zu s konjugierte Durchmesser k.(s)
bzgl. ¢ ist die (wohlbestimmte) Gerade durch die Mittelpunkte aller zu s parallelen Sehnen
von ¢. Im Fall einer Ellipse oder Hyperbel ist in unserem Kontext x.(s) = A A2; zugleich
ist x.(s) die Polare des Fernpunktes in Richtung von s. Insbesondere ist A € x.(s).

Eine der wichtigsten projektiven Invarianten ist das Doppelverhdiltnis DV. Unter den Vor-
aussetzungen von 1.2 sei R ein Punkt zwischen P und Q und r = |SR|. Dann ist

DV(P,Q.R,§) = L— D)4
r—q)-p
Das Quadrupel (P, Q, R, S) heiit harmonisch, wenn DV (P, Q, R, S) = —1 ist. Eine
einfache Rechnung zeigt: DV (P, Q,R,S) = -1 & r = % = H(p,q),also
(P, Q, R, S) harmonisch <& R = Hg(P, Q). 2)

Zur Theorie der Kegelschnitte verweisen wir auf [2, 3, 6, 7, 8, 12]. Kegelschnitte sind
urspriinglich als Schnitte eines Doppelkegels mit einer Ebene definiert. Geht die Ebene
durch die Spitze des Doppelkegels, so heifit der Kegelschnitt entartet. Nicht entartet sind
Ellipse, Parabel und Hyperbel. Aus dieser Definition folgt, dass nicht entartete Kegel-
schnitte projektive Bilder eines Kreises sind. Die Menge aller Geraden der projektiven
Ebene durch einen Punkt Z heit Geradenbiischel Bz mit Zentrum Z. Einem Quadru-
pel (g1, ..., g4) von Geraden von Bz kann man ein Doppelverhiltnis wie folgt zuord-
nen: Schneidet eine Gerade g, die nicht durch Z geht, die Geraden g; in den Punkten
P;, so hingt DV (P, ..., P4) nicht von der Wahl von g ab. DV (P, ..., P4) heilit dann
Doppelverhiltnis DV (g1, ..., g4) von (g1, ..., g4). Eine Abbildung zwischen zwei Ge-
radenbiischeln, zwischen einer Gerade und einem Geradenbiischel oder zwischen zwei
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Geraden heilit Projektivitit, wenn sie das Doppelverhiltnis beliebiger vier zugeordneter
Punkte bzw. Geraden nicht dndert. Ein Spezialfall ist der folgende: Seien a eine Gerade,
Zund Z' Punkte mit Z, Z' ¢ a.Seinung € Bz, C := gNaund g’ := CZ'. Dann nennt
man die Abbildung By — By, g > g, eine Perspektivitiit mit Achse a. Nun gilt ([7],
S. 218 ff):

Satz von Steiner: Ist p : By — By eine Projektivitit, die keine Perspekivitit ist, so ist die
Menge der Schnittpunkte {g N ¢(g)|g € Bz} ein Kegelschnitt durch Z und Z’.

2.2 Mittelwerte

Ein (bivariater) Mittelwert ist eine Funktion M : R.g x R.o — R. mit der Eigenschaft
min(x, y) < M(x,y) < max(x,y). Gilt M(t - x,t-y) =1t M(x,y) firalle x, y,r > 0,
so heilt M homogen. A, G und H sind homogen. Ein homogener Mittelwert M ist in
folgendem Sinn affin invariant: Ist ¢ eine affine Abbildung, so gilt My (s) (¢(P), ¢(Q)) =
¢ (Ms(P, Q)). In unserem Kontext sei V ein Richtungsvektor vons, P = S + ip - V,
Q = S+ A¢ - V mit geeigneten Ap und Ag und M einer der Mittelwerte A, G oder H.
Dann folgt aus der Homogenitit:

Ms(P,Q) =S+ Ay -V mit iy =M (lp,Lg), 3)
B s 2Apd

aa=2120 G JTrdg und Ay = 2PAQ @)
2 Ap+ g

Da das Doppelverhiltnis projektiv invariant ist, ist das harmonische Mittel projektiv inva-
riant (nicht jedoch das arithmetische und geometrische Mittel).

2.3 Algebraische Grundlagen

Algebraisch gesehen ist ein Kegelschnitt ¢ die (nicht leere) Losungsmenge einer allgemei-
nen quadratischen Gleichung in zwei reellen Variablen x und y:

anx® + 2012xy + azny® + 2013% + 2a23y + a33 = 0 mita;j € R, S)

wobei a1, a2 oder azy # 0 ist. Hier sind entartete Fille moglich.

Man kann (5) mit K := ( Gl g ), e = ( a5 ), X = ( . ) und £ := a33 in
a2 A @23 ¥

der Form
X K-X42-L" X+4+e=0 (6)

notieren. K ist dabei symmetrisch. Das hochgestellte r markiert die Transposition. Falls ¢
Ellipse oder Hyperbel ist, ist K invertierbar. Der Mittelpunkt von ¢ ist dann gegeben durch
(91, S.77)

o=kKk"'-L. (7)

Die Polare z.(P) von P bzgl. ¢ hat fiir P # O die Gleichung ([9] S. 92 {f.)

P K-X+L-(X+P)+e=0. (8)
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Im Fall P € cist dies die Gleichung der Tangente an ¢ in P. Ist V Richtungsvektor von s,
so ist
X' K-V+L . Vv=0 9)
die Gleichung des zu s konjugierten Durchmessers x.(s) von ¢ ([9], S. 99).
Sei nun s eine Gerade durch § mit Richtungsvektor V,diecin X = S+ AV mit4 e R
schneidet. Dann gilt ([9], S. 88)
0=X'KX+2L'X +e=S+AVY K(S+AV)+2L' (S+ AV) + .

Das ist die quadratische Gleichung 224 +2Av+w = Omitu = VKV, v = SSKV+L'V,
w=S'KS+2L'S + ¢, die fiir A :=v? —u - w > 0 folgende Schnittpunkte P, Q von s
mit ¢ liefert:

—o - VA —_’”;‘/Z. (10)

P=S+4ipV, Q:S-i-/lQV; Ap = ——, AQ:

Wegenlp + Ag = —22 ynd Apig = 2 folgtaus (4)

u

u=—3,AG:J§,AH:—3 (11)
u u )]

Fiir unsere Fragestellung ist die Lage von ¢ in der Ebene ohne Bedeutung. Durch eine
Drehung und Verschiebung konnen wir ¢ in eine zum Koordinatensystem achsparallele
Lage bringen. Dann vereinfacht sich (5) mit neuen Koeffizientenbezeichnungen zu

ax? + By +2(yx +y) + &£ =0, Kz(g 0) Lz(g). (12)

3 Die Spur der Mittelwerte

Wir beweisen nun die Aussagen von 1.3 unter den Voraussetzungen in 1.2. Wir notieren
allgemein einen Punkt R in Koordinatenform so: R = (xg, yr)'.

3.1 Das harmonische Mittel

Seis Nc = {P, Q}. Dann gilt:

Satz 1. Sei H := s N x.(S). Dann ist H = Hs(P, Q), d.h. fiir Hs(P, Q) gilt: S'K H +
L'(S + H) + ¢ = 0, bzw. unter den Voraussetzungen von (12): axsxy + Bysyy +
d(xs +xu)+y (ys +yu) +e=0.

3.1.1 Algebraischer Beweis von Satz 1

Gemal (3) und (4) ist H = Hg(P, Q) = S + Ay V. Nun erfiillt wegen (11) X = H die
Gleichung (8) von 7 (), so dass H auf z.(S) liegt:

SK(S+AyV)+ L' 25+ AgV) +¢

= Ay (S'KV +L'V)+S'KS+2L'S+e=Apv+w=——v+w=0.
()

Die gesuchte Kurve ¢y ist also die Polare z.(S). O
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3.1.2 Geometrischer Beweis von Satz 1

Die harmonische Teilung bietet den natiirlichen Zugang zur Bestimmung von Hg(P, Q).
Es gilt ([8],S. 73): Ist H = s Nx.(S), soist (P, Q, H, S) harmonisch. Aus (2) folgt dann:
H = Hg(P, Q).

3.2 Das arithmetische Mittel

Unter den Voraussetzungen von 1.2 sei s eine beliebige Gerade durch S.

Satz 2. Fiir A := s Nk.(s) gilt:
(a) A liegt auf dem Kegelschnitt ¢4 mit der Gleichung (X'K + L') (X — S) = 0, bzw.
unter den Voraussetzungenvon (12): (ax +y)-(x —xs)+ (By +9)- (y — y5) = 0.
(b) FiirsNec={P, Q}ist A= As(P, Q).
(c) S, Hi, Hy € cx.

(d) Ist c Ellipse oder Hyperbel mit Mittelpunkt O, so liegt O auf ¢4, und der Mittelpunkt
04 von SO ist der Mittelpunkt von c .

(e) c und cp sind einander dhnlich und achsparallel.

3.2.1 Algebraischer Beweise von Satz 2

(a) Sei V ein Richtungsvektor von s. Wegen A € k.(s) gilt nach (9): A'KV + L'V = 0.
Wegen A € s hat A die Form A = § + AV. Also ist

(S+AVY KV + L'V =0.
Aus AV = A — § folgt dann nach Multiplikation mit A
0= (S+AV) K+ L)AV =(A'K + L") (A=),

so dass X = A die Gleichung (X’K . LI) (X — §) = 0O erfillt.

(b) Sei s N ¢ = {P, Q}. Zu beweisen ist nur Ag(P, Q) € x.(s). Nach (3), (10) und (11)
ist Ag(P, Q) =S+ AV mitly = —2,u = VIKV undo = S'KV + L'V. Wir setzen
X = Ag(P, Q) in die Gleichung (9) fiir x.(s) ein:

XKV ALV =+ AV KV+H L'V =58KV + L'V 4+ 1, VIKV

:u+&Au:v—2u:0.
u

Daher liegt As(P, Q) auf x.(s).
(c) Aus der Gleichung fiir c4 geht sofort § € c4 hervor. Dass Hy und Hp auf ¢4 liegen,
wurde bereits in Abschnitt 1 festgestellt.

(d) Sei ¢ Ellipse oder Hyperbel mit Mittelpunkt O. Nach (7) ist O = —K ~! L. Einsetzen
in die Gleichung von c4 in (a) zeigt sofort O € c4. Nach (a) ist die Normalform von
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ca wegen der Symmetrie von K gegeben durch X' KX + 2L, X + &4 = Omit Ly :=

3 (L" — KS) und e4 := —L'S. Nach (7) ist der Mittelpunkt von c4

1 1 1 1
0 :—K_]L :——K_l—' L—KS :——-K_IL - S=—(0 S ,
A A 2( ) 3 t3 2( +5)
also Mittelpunkt von SO.

(e) Weil ¢ und ca hinsichtlich der Matrix K iibereinstimmen, sind ¢ und ¢4 dhnliche
Kegelschnitte in achsparalleler Lage. O]

3.2.2 Affin-geometrischer Teilbeweis von Satz 2

Wir beweisen den geometrischen Teil von Satz 2 nur fiir Ellipsen. Da alle Ellipsen affi-
nes Bild eines Kreises sind und das arithmetische Mittel nach Abschnitt 2.2 unter affinen
Abbildungen invariant ist, geniigt es, die Aussagen fiir einen Kreis zu beweisen (Abb. 5).

-
-
-

il PO T L

~
-~
T

Abbildung 5 Mittelwerte am Kreis

Sei ¢ ein Kreis mit Mittelpunkt O und sei s N ¢ = {P, Q}. Der zu s konjugierte Durch-
messer k.(s) von c ist dann die Senkrechte zu s durch O. Er schneidet die Sehne P Q in
A und halbiert sie. Also ist A = Ag(P, Q). Das Dreieck SO A ist rechtwinklig. Folglich
liegt A auf dem Thaleskreis c4 mit dem Durchmesser SO. Der Mittelpunkt O4 von cy
ist also der Mittelpunkt von SO. Bei einer affinen Abbildung gehen die beiden Kreise ¢
und ¢4 in achsparallele und dhnliche Ellipsen iiber, der konjugierte Durchmesser und das
arithmetische Mittel in die entsprechenden Grolen der Bildellipsen.
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Bei Parabeln und Hyperbeln kann man dhnlich argumentieren. Man beweist die Aussagen
— am einfachsten analytisch — fiir eine spezielle Parabel (z.B. y = x?) bzw. Hyperbel (z.B.
x -y = 1) und schlieB3t mit Hilfe affiner Invarianz.

3.2.3 Projektiv-geometrischer Teilbeweis von Satz 2

Dass s Nk.(s) = Ags(P, Q) ist, sofern s N ¢ = {P, Q} ist, folgt wieder aus der Eigen-
schaft der Sehnenhalbierung des konjugierten Durchmessers. Nun zeigen wir fiir Ellipsen
und Hyperbeln mit Mittelpunkt O, dass s N x.(s) auf einem Kegelschnitt ¢4 durch § und
O liegt. Wir beweisen zunéchst mit Hilfe der Steinerschen Charakterisierung von Kegel-
schnitten ([2], Nr. 209):

Hilfssatz 1. Sei ¢ ein Kegelschnitt, g eine Gerade, T := n.(g). Weiter sei S ein Punkt
mit S ¢ gund S # T. Dann liegen die Punkte Y := SX N z.(X) fiir X € g auf einem
Kegelschnitt cx durch S und T.

Abbildung 6 Zu Hilfssatz 1

Beweis (Abb. 6): Sei Bs das Geradenbiischel mit Zentrum S. Die Abbildung Bs — g,
s — X := s N g, ist eine Projektivitit. Alle Polaren z.(X) mit X € g gehen durch
T = n.(g), bilden daher ein Geradenbiischel By mit Zentrum 7'. Die Abbildung ¢ — Br,
X +— m.(X), ist dann ebenso eine Projektivitit ([11], S. 334). Das gilt dann auch fiir die
Verkettung beider Abbildungen Bg — Br. Sie bildet fiir jedes X € g die Gerade SX auf
7.(X) ab. Sie ist jedoch keine Perspektivitiit, da sie ST nicht auf sich selbst abbildet. Nach
dem Satz von Steiner liegen dann die Schnittpunkte ¥ := SX Nz.(X) korrespondierender
Geraden von Bg und B auf einem Kegelschnitt durch die beiden Zentren Sund 7. [

Wir withlen nun fiir g die Ferngerade. Dann ist X := s N g der Fernpunkt in Richtung
von s und 7.(X) = k.(s). Nach Hilfssatz 1 liegen die Punkte A = s N k.(s) = SX N
7(X) auf einem Kegelschnitt ¢4 durch S und den Pol T der Ferngerade. Falls ¢ ein
Mittelpunktskegelschnitt ist, ist 7 der Mittelpunkt O von c. (]

Falls ¢ eine Parabel ist, ist 7 der Fernpunkt in Richtung der Hauptachse der Parabel. In
diesem Fall ist ¢4 selbst eine Parabel.
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3.3 Das geometrische Mittel

Satz 3.

(a) Das geometrische Mittel Gs(P, Q) liegt auf dem Kegelschnitt c mit der Gleichung
X' KX +2L;X +e6 =0mit Lg :== —KSund e := —2L'S — &; bzw. unter den
Voraussetzungen von (12): ax(x —2xg) + fy(y — 2ys) — 2 (y x5 + dys) —& = 0.

(b) Hy, H> € cg. Ist ¢ Ellipse oder Hyperbel, so sind c und cc achsparallel und dhnlich.
Mittelpunkt von cg ist dann S. Ist ¢ eine Parabel, so besteht cg aus einem Paar zur

Hauptachse von c paralleler Geraden, die durch Hy bzw. H, gehen. S liegt auf der
Mittelparallele dieser beiden Geraden.

3.3.1 Algebraischer Beweis von Satz 3

(a) Sei V ein Richtungsvektor von s. Nach (2), (3), (10) und (11) ist G = Gs(P, Q) =
S+ AcV mit Ag = \/Apig = J/w/u. Wirsetzen X = Gin X'KX +2L,X +e6 =0
ein. Unter Beriicksichtigung des Symmetrie von K gilt dann:

G'KG+2L;G +e6=G'KG—28'KG —2L'S — ¢
=S+ AV K (S +AgV) 25K (S+igV) —2L'S — ¢
= S'KS +24GS' KV +ALVIKV —28'KS —2A6S'KV —2L'S — ¢
=IgV'KV —S'KS—2L'S —e = Zu —w = 0.

G liegt also auf dem Kegelschnitt mit der Gleichung X'KX + 2L X + ¢ = 0. Da
¢ und ¢ hinsichtlich der Matrix K iibereinstimmen, sind ¢ und ¢ einander idhnlich und
achsparallel.

(b) Dass H; und H» auf ¢ liegen, wurde schon im 1. Abschnitt festgestellt. Der Mittel-
punkt von ¢ ist fiir eine Ellipse oder Hyperbel nach (7)

Og=—K ' Lg=—-K'.(-K-8)=5.

Wir gehen nun von achsparalleler Lage von ¢ und der Gleichung (12) aus. Bei einer Parabel
sei etwa @ = O und £ > 0. Die Hauptachse von c ist dann parallel zur x-Achse und die
Koordinatengleichung von ¢ reduziert sich auf

By(y —2ys) —2(yxs +dys) —e =0.
Die Losungen sind

2(yxs +dys)+e¢
3 )

Damit besteht ¢ aus zwei zur x-Achse parallelen Geraden, fiir die die Gerade mit der
Gleichung y = yg Mittelparallele ist. Daraus folgt fiir diesen Fall die Behauptung. Der
Fall @ > 0, p = 0 ist analog. U

y=ys++d und y=ys—+d mit d=yi+
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3.3.2 Affin-geometrischer Teilbeweis von Satz 3

Wir diskutieren nur den Fall einer Ellipse. Wie in 3.2.2 konnen wir uns auf einen Kreis
beschrinken, da auch das geometrische Mittel affin invariant ist. Sei also ¢ ein Kreis (Abb.
5). Mit p := |SP|, g := |SQ| ist nach dem Sehnen-Tangentensatz p - ¢ = |SH;|?, also
|\SHy| = \/pq = G(p,q). D.h.: Gg(P, Q) liegt auf dem Kreis ¢ um S durch Hy (und
H>). Bei Anwendung einer affinen Abbildung gehen die Kreise ¢ und ¢ in achsparal-
lele und einander dhnliche Ellipsen iiber, das geometrische Mittel in das entsprechende
geometrische Mittel der Bildellipse von c. (Il

Bei Parabel und Hyperbeln kann man analog argumentieren, muss aber wie in 3.2.2 die
Aussage zunichst fiir eine spezielle Parabel und eine spezielle Hyperbel beweisen (auch
hier am einfachsten analytisch).

3.3.3 Variante von Satz 3 — projektiv-geometrisch

Abbildungen 2, 3 und 4 zeigen, dass das geometrische Mittel eine in Satz 3 nicht genannte
Charakterisierung besitzt: Sei dazu wieder 7.(S)Nc = {H, H>}und k.(s)Nc = {A{, Az}.
Wir setzen G := H1A> N H,Ay und G’ := H1A1 N H2A» und der Kiirze halber A :=
As(P, Q), H := Hs(P, Q), wennsNc # . Wir nummerieren die H; so, dass G zwischen
P und Q (und daher G’ auBerhalb P Q) liegt.

Satz 4. Unter den obigen Voraussetzungen gilt:

(@) G und G’ liegen auf einem Kegelschnitt c; durch Hy und H.
(b) G,G" € sund (P, Q,G,GYund (H, A, G, G') sind harmonisch.
(c) G=Gs(P,Q)=Hg(P,Q)=Hg(H, A).

Beweis: (a) Dass G und G’ auf einem Kegelschnitt liegen, beruht wieder auf der Steiner-
schen Charakterisierung von Kegelschnitten und Hilfssatz 2.

Hilfssatz 2. Seien C, Cy verschiedene Punkte auf c. Sei weiter T ein Punkt, der weder auf
¢ noch auf C1C> liegt. Fiir X € c¢ sei Y der zweite Schnittpunkt von XT mit c. Dann gilt:
Die Schnittpunkte D :== C1 X N C2Y und E :== C1Y N Ca X liegen auf einem Kegelschnitt
cq durch Cy und C,.

Beweis (Abb. 7): Sei C der zweite Schnittpunkt von C;7 mit ¢. Sei X € ¢, zunichst
X # Cy. Sei weiter Y der zweite Schnittpunkt von X T mit ¢. Dann liegt Z := C; X N CY
auf 7.(T). Ist X = Cj, so tritt an die Stelle von C{X bzw. CY die Tangente an ¢ in Ci
bzw. C. Der Schnittpunkt dieser Tangenten liegt ebenso auf z.(T'). Seien By, By bzw. B¢
die Geradenbiischel mit Zentrum Cy, C2 bzw. C. Dann ist die Abbildung By — #.(T),
Ci1X — Z = C1 X Nn.(T), eine Projektivitit. Da aber C1 X Nz (T) = Z = CY Nz (T)
ist, ist auch die Abbildung z.(T) — B¢, Z +— CZ = CY, eine Projektivitit. SchlieBlich
ist die Abbildung Bc — Bz, CY +— C,Y eine Projektivitit ([11], S. 325). Daher ist die
Verkettung dieser drei Abbildungen By — #.(T) — B¢ — Bz, C1X +— (Y eine
Projektivitit. Da sie aber C1C> nicht auf sich selbst abbildet, ist sie keine Perspektivitiit.
Damit ist der Satz von Steiner anwendbar und es gilt: Die Schnittpunkte D := C; X NCyY
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Abbildung 7 Zu Hilfssatz 2

(und aus Symmetriegriinden E := C;Y N C2X) liegen auf einem Kegelschnitt ¢ durch
Ci und C». ]
(a) Sei c eine Ellipse oder Hyperbel mit Mittelpunkt O. Wir wenden Hilfssatz 2 mit C; =
Hi, Co = Hyund T = O an. Dann ist 7.(0O) die Ferngerade, und O liegt auf dem
konjugierten Durchmesser x.(s) = AjAz. Daher ist nach Hilfssatz 2 mit der dortigen
Notation ¥ = A, fiir X = Ay, Y = A fir X = A, und speziell liegen die Punkte
G' = HHA\NHyA>und G = H{ AN Hy Ay auf einem Kegelschnitt ¢ durch Hy und Hs.
Parabeln lassen sich als Grenzfall behandeln. Ist X = A (bzw. X = Aj),soist Y =
Ay (bzw. Y = Aj) der Fernpunkt in Richtung s und entsprechend HjA> (bzw. H>A1)
eine Parallele zur Hauptachse der Parabel durch H; (bzw. H3). Dann ist ¢ ein entarteter
Kegelschnitt, der aus den beiden Parallelen zu s durch H; und H; besteht.

(b) Sei T := m.(s), also auch s = 7.(T). Dann liegt 7 auf den Polaren der Punkte
von s, insbesondere auf 7.(S) und der Polare x.(s) des Fernpunktes zu s. Also ist T =
e (S) Nke(s) = HHy N AjAs. Nun gilt ([8], S. 74): Die Punkte H1A, N Ho Ay = G
und HiA{ N HyA = G’ liegen auf s und (P, Q, G, G') ist harmonisch; auBerdem: A =
sNAjAyund H = s N H{Hy und es gilt: (H, A, G, G’) ist harmonisch.

(¢c) Nach (b) ist G = Hg(P,Q) = Hg/(H, A). Wir setzen p = |SP|, g = |SQ|,
r:=|G'S|,h:=|SH|=H(p,q)unda := |SA| = A(p, g). Dann gilt

Hg(P,Q)=Hg(H,A) < H(rr+ p,r+q)=H(@ +h,r +a)
(p+r)g+r) (h+r)a+r)

2r+p+q  2r+h+a
S(p+rg+r@r+h+a)=h+r)a+r)2r+p+q)

@(pq+(p+q)r+r2)(2r—|—h+a)= (ha+(h+a)r—|—r2)(2r—|—p+q).

Nun gilth-a = H(p,q) - A(p, q) = p - q. Damit vereinfacht sich die Gleichung zu

(pg —r)(h+a—(p+q)) =0.
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Wir konnen p # g und damit & + a # p + ¢ voraussetzen. Dann ist pg = r2, d.h.
r=G(p,q). Aus |G'G| =r + |SG| = H(r + p, r + q) folgt nach einfacher Rechnung
20+ p)r +4q)

SG|=HE+ p,r+qg)—r = F =K
ISG| (r+p q) R—

Also ist |[SG| = G(p, g) und damit G = Gg(P, Q). Dariiber hinaus sehen wir nun, dass
S Mittelpunkt von G’G und damit bei Ellipsen und Hyperbeln Mittelpunkt von ¢ ist. [

4 Schlussbemerkungen

Die Untersuchung offenbart Stirken und Schwiichen der verwendeten geometrischen und
algebraischen Methoden.

Hinsichtlich des harmonischen Mittels ist die projektive Methode das Mittel der Wahl,
denn es steht in engem Zusammenhang zur harmonischen Teilung und damit zu projekti-
ven Eigenschaften der Kegelschnitte. Hier ist es einfach, das Ergebnis vorauszusehen und
zu beweisen, sowohl geometrisch wie algebraisch.

Anders beim arithmetischen und geometrischen Mittel. Als hilfreich erweisen sich hier
Experimente mit einer dynamischen Geometriesoftware, die Ergebnisse vermuten lassen.
Die algebraische Methode eignet sich nun zum Beweis, enthiillt aber naturgemil weniger
deutlich den geometrischen Hintergrund der Ergebnisse.

Die affin-geometrische Methode beruht auf der Tatsache, dass Ellipsen, Parabeln bzw.
Hyperbeln jeweils untereinander affin verwandt und dass die diskutierten Mittelwerte af-
fin invariant sind. Es geniigt daher, die Ergebnisse jeweils an einem Reprisentanten der
drei Kegelschnittarten zu verifizieren. Das ist bei Ellipsen besonders einfach, da man hier
lediglich etwas Kreisgeometrie benotigt. Bei Parabeln und Hyperbeln ist allerdings der
Zugang iiber analytische Geometrie einfacher. Beim harmonischen Mittel bringt die affin-
geometrische Methode keine Vorteile.

Mit der projektiv-geometrischen Methode profitiert man von der Tatsache, dass alle nicht
entarteten Kegelschnitte projektiv untereinander verwandt sind. Fiir das harmonische Mit-
tel liegt diese Methode, wie bereits erwihnt, besonders nahe. Da das arithmetische und
das geometrische Mittel allerdings nicht projektiv invariant sind, ist dort der projektiv-
geometrische Weg nicht in gleichem Mal geeignet. Zwar gelingt der Nachweis, dass die
Kurven ¢4 und ¢ Kegelschnitte sind, allerdings ohne sie so priizise zu beschreiben wie
mit der algebraischen bzw. der affin-geometrischen Methode. Die projektive Methode er-
fordert dariiber hinaus mehr theoretischen Hintergrund. Lediglich bei der Kennzeichnung
des geometrischen Mittels in Satz 4 ist die projektiv-geometrische Methode den anderen
deutlich iiberlegen.

Es stellt sich die naheliegende Frage, ob dhnliche Ergebnisse auch fiir andere Mittelwerte
als A, G und H erzielt werden konnen. Dafiir kommen z.B. Verallgemeinerungen wie
Lehmer-Mittelwerte, Potenzmittelwerte, gewichtete Formen oder Konvexkombinationen
von A, G und H in Frage. Unter diesen Mittelwerten scheinen A, G und H jedoch die
einzigen zu sein, fiir die ¢y wieder ein (evtl. ausgearteter) Kegelschnitt ist.

Das Thema kann noch in anderer Richtung verfolgt werden, z.B. im Hinblick auf eine
iterative Konstruktion von Lehmer-Mittelwerten ([10]).
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