
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 75 (2020)

Heft: 3

Artikel: A proof of the Schwarz theorem on mixed partial derivatives via
elementary approximation theory

Autor: Camargo, André Pierro de

DOI: https://doi.org/10.5169/seals-880890

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-880890
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Elem. Math. 75 (2020) 125- 128

(X) 13-6018/20/030125-4
DOI 10.4171/EM/413

© Swiss Mathematical Society, 2020

I Elemente der Mathematik

Short note A proof of the Schwarz theorem on
mixed partial derivatives via
elementary approximation theory

André Pierro de Camargo

Abstract. We show that the equality of the mixed second-order partial derivatives holds for functions

that can be well approximated by linear combinations of functions whose variables separate
and that this is the case for functions satisfying the hypothesis of Schwarz' theorem.

1 Introduction

A fundamental theorem of multivariate Calculus states that if a function fix, y) has partial
derivatives fx and fy, and mixed derivatives fxy and fyx in a neighborhood Q of a point
(*0> yo) and if fxx and fyx are continuous at (xo, yo), then1

fxy(x0, w) fyx(x0, Vo)- (1)

According to [5], many outstanding mathematicians, among them Euler, Lagrange and

Cauchy, offered proofs of (1), but none of them without a fault. In fact, in 1867, Lindelöf
published an article criticizing all those proofs in detail. The first satisfactory proof of (1)
appeared only six years later in an article by Schwarz.

All proofs of 1 we found in a collection of Calculus textbooks [1,2,7,8,9, 10,11] mainly
reproduce Schwarz' original proof [12], which proceeds by showing that the function

f(xo + hx, yp + hy) - f(xo, y0 + hy)
_

fjxp + hx, y0) - /(xp, yo)

Hhx, hy) — —
h y

(2)
has a limit as (hx, hy) —> (0,0) and that this limit is equal to both fxy(0,0) and fyx (0, 0).
The reader can also find lightly different proofs in [3] and [4]; and [5] also points a proof
of (1) based on Lebesgue integration.

What we found curious about this theorem is that none of the proofs presented in the

references explores the obvious fact that (1) holds whenever / is a polynomial in the

'a few refinements can be found in the literature [6], but we shall not discuss it here.
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variables x and y or, more in general, if / is of the form

n

^ Uj(x)uj(y), (3)
1=1

for some differentiable functions u\, 112,..., u„, ui,«2> • • •. vn-

Actually this hypothesis can be somewhat relaxed and (1) also holds for functions / that

can be well approximated by functions g of the form (3) in the sense that

f(x,y)~ g(x,y)
hm — 0. (4)

(x,y)M*o,yo) (x - xo)(y - yo)

This is true because

Lemma 1. Iff and g satisfy (4) and have partial derivatives and mixedpartial derivatives

ofsecond order in LI, then both first partial derivatives and mixed partial derivatives of
second order off and g coincide at the point (xo, yo).

In this note we show that, for each function / satisfying the hypothesis of Schwarz'
theorem, there is a function g of the form (3) such that Lemma 1 holds for / and g and this

proves (1).

Remark 1. We emphasize that, although a little bit longer than the usual argument for
proving Schwarz' theorem, our strategy is based on the largely employed technique of
reducing the problem to a simpler one (just as in the case of the analysis of local extrema
by the analysis of quadratic approximations). Therefore, our reasoning is totally coherent
and it is somewhat surprising that no one explored it before (at least according to our
records).

Proof of (1)

To simplify the notation, let us assume that (xo,yo) (0,0). We start with the initial
approximation gi(x, y) := /(0, y) + /v(0, y) x obtained by means of the partial derivative

fx :

fix, y) /(0, y) + fx(0, y) x + R(x, y), (5)

with lim R(-X,y) 0 for every fixed y. Wc want to check whether / and g\ satisfy the
jt—>0 *

hypothesis of Lemma 1. In this vein, we note that (5) is not sufficient for our purpose and

we must also analyze how

ß(x, y) /(x, y) — /(0, y) — /v(0, y) x

varies with respect to y.

This expression shows that R is differentiable with respect to y and we have

Ry(x, y) fy (x, y) - fy(0, y) - fxy(0, y) x,



Short note: A proof of Schwarz Theorem on Mixed Partial Derivatives 127

or, by the mean value theorem,

Ry(x, y) [fyx(r(x, y), y) - fxy(0, y)] x,

with |r(x, y)| < |x|. Once again by the mean value theorem, we obtain

R(x, y) R{x, 0) + Ry(x, Ç(x, y)) y

R(x, 0) + [fyxir(x, f(x, y)), f(x, y)) - fxy{0, <f(x, y))] x v

R(x, 0) + [/VA(0,0) - fxy{0,0)] x y (6)

+ [/v.v(r(x, £(x, y)), £(x, y)) - fyx(0, 0)] x y

+ [fxy(P, 0) — fxy(0, <f(x, y))] x y,

with |£(x, y)| < |yI.
The expression above shows that / and gi do not satisfy the hypothesis of Lemma 1 in

general, but (5) and (6) and the continuity of fxy and fyx at (0,0) shows that Lemma 1

holds for / and

g(x, y) /(0, y) + fx{0, y) x + R(x, 0) + [fyx{0,0) - fxy(0,0)] x y

/(0, y) + fÄ0, y) X + /(x, 0) - /(0, 0) - fx(0,0) x

+ l/v.v(0,0) — fxy(0,0)] x y.

In fact, we have

u nx,y)-g(X,y) lim [/VA(r(x,<f(x,y)),«f(x,y))-/VA(0,0)]
(x,y)-*(0,0) xy (x,y)-*(0,0)

+
i üm,n Jfxy(0,0)) — fxy(0,Ç(x, y))]
(x,y)-> (0,0)

0.

In addition, note that g is of the form (3) for n 4 and

ftOO f(0,y); u i(x) l;
V2(y) fx(0,y); u2(x)=x;
v3(y) 1; i/3(x) /(x,0)-/(0,0)- A(0,0)x;
n(y) y; "4(x) [fyx (o, 0) - fxy(o, 0))] x.

Because all these functions are differentiable (some of them by the assumptions on / and

other simply because they are polynomials), the proof is complete.

Remark 2. We emphasize that, while \ fyx(0,0) — /ÏV(0,0)] appears explicitly in the

definition of g, our argument does not depend on any previous knowledge about its value.

Proof of Lemma 1

Again, assume that (xo, yo) (0, 0). Let h(x, y) /(x, y) — g(x, y). By assumption,
given any positive number e there is a number <5 > 0 such that

\h(x,y)\ < e|x| |y|, (7)
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for 0 < \x\ < ô and 0 < \y \ < ô. Hence, we obtain

h(x, 0) 0 for |a | < ô and h(0, y) 0 for |y| < <5.

This is true because li(x,.) and y) are differentiate (and therefore continuous) for
every x and y. In particular,

M0,0)=0. (8)

Moreover, for 0 < \x\ < ô and 0 < |y| < ô we have

h(x,y)-h(0,y) h(x,y)
X x

and this shows that |/t.v(0, y)| <e|y|for0 < |y| < J. Combining this inequality with (8),

we obtain
h AO, y) — hx(0,0) MO, y)

y y

forO < |_y| < <5 and, therefore,

Mo.°)| < e-

Because e can be chosen arbitrarily small, we have that hxy(0, 0) 0.

By symmetry, we also have that /z vv (0, 0) 0.
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