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1 Introduction
Let p and q be two odd primes of the same size and n pq. Consider integers e, d with
1 < e,d < cp(n) such that ed 1 (mod </>(«)). Then (n, e) and d are the public and the

private key, respectively, for a typical RSA public-key cryptosystem. The encryption and

decryption algorithms are given by C Me mod n and M Cd mod n, respectively.
In order to accelerate the operations involving the private key d in some devices, like for

Nachdem 1976 Whitfield Diffie und Martin Hellman das Schlüsseltauschproblem der

Kryptologie gelöst hatten, folgte 1977 mit dem RSA-Kryptosystem von Rivest, Shamir
and Adleman das erste veröffentlichte asymmetrische Verschlüsselungsverfahren. Dieses

besitzt eine Reihe von praktischen Anwendungen, die z.B. in Web-Browsern und

Chip-Karten eingesetzt werden. Das RSA-Verfahren beruht auf dem Produkt n pq
von zwei ähnlich grossen Primzahlen und zwei ganzen Zahlen e und d für die 1 <

e,d < 4>{n) und ed 1 mod ij)(n) gilt, wobei cj) die Eulersche Phi-Funktion bezeichnet.

Öffentlich bekannt sind nur der Parameter n und der öffentliche Schlüssel e. Die
Nachricht M wird durch C Me mod n verschlüsselt, und mit dem privaten Schlüssel

dV\&M Cd mod n entschlüsselt. Um das Verfahren zu brechen muss ein Angreifer
die Faktoren von n finden. In der vorliegenden Arbeit wird der Fall betrachtet, wo e

und n von derselben Grössenordnung sind, und wo eine der Zahlen k {ed — 1 )/<p{n)
und e — k höchstens ein Viertel der Bitlänge von e hat. Die Anwendung des erweiterten
euklidischen Algorithmus' liefert dann ein effizientes und einfaches deterministisches
Verfahren um n zu faktorisieren und somit den privaten Schlüssel d in 0((log«)2)
Operationen zu bestimmen.
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example a smart card, one might use a short secret exponent. On the other hand, in 1990,

Wiener [16] proposed a polynomial time algorithm for breaking a typical RSA cryptosys-
tem provided that d < n l/4/3. In this case, d is the denominator of some convergent of the

continued fraction expansion of e/n. The computation of the continued fraction expansion
of e/n needs time 0((log«)2) bit operations and the total number of convergents is of
order O(logn). Since Wiener's approach for testing convergents requires time 0((logn)2),
the overall time complexity of Wiener's attack is 0((logn)3) bit operations (it is usually
needed to check the last convergents). In [8, Section 5], Wiener's attack is presented as a

bivariate linear equation problem and one can find d via a shortest vector computation in
a two-dimensional lattice in time 0((log«)2).
Extensions of Wiener's attack that allows the RSA cryptosystem to be broken when d
is a few bits longer than n1^4 are described in [4, 5, 13, 14], Furthermore, attacks based

on Coppersmith's lattice-based technique for finding small roots of modular polynomials
equations using the LLL-algorithm are proposed in [1, 3] in case where e is very close

to n. These lattice attacks are applicable provided that d < n0,292. Note however that
these attacks are not rigorous and so this bound is not strictly proved. Finally, some other
extensions of Wiener's attack are described in [1, 9, 10, 11, 15].

In 2004, Hinek [7] proved that, in case where \fb(cf>(n) — d) < n1/4, Wiener's attack
works. Furthermore, he showed that if the attacks in [1, 3] work for all d < n'\ then the

attacks also work for d > <f>(n) - nä.

In this note, we consider the case where the public exponent e has the same order of
magnitude as n and one of the integers k (ed — 1 )/</>(/;) and e — k has at most one-

quarter as many bits as e. Using the equation ed — kcp(n) 1 and the extended Euclidean

algorithm, we describe an efficient simple deterministic algorithm for the computation of
the factorization of n in time 0((log/?)2) bit operations. Since k has at most one-quarter
as many bits as e if and only if d has at most one-quarter as many bits as /t, we see that our
hypothesis is equivalent to that of Wiener's.

The paper is organized as follows. In Section 2 we present our results and we describe

our attack. Section 3 is devoted to the proof of our results. Finally, an example is given in
Section 4. Finally, Section 5 concludes the paper.

2 An attack based on Euclidean algorithm
Let p and q be two odd primes of the same bit-size C and n pq. Consider positive
integers e, d with 1 < e, d < such that ed 1 (mod</>(n)). Then (n,e) is the

public key and d the private key for an RSA cryptosystem. Set a n + 1 mod e and

A gcd(e, a). The extended Euclidean algorithm for e and a gives integers q, > 0

(i 1, m) and a (i 0,..., m + 1) such that ro e,r\ - a, rm A, rm+i 0

and

a-I - nqt + ri+1, o < n+i < r,-.

Further, there are integers .v,, with |/, | < e/r,-i and |s, | < ö/a-i satisfying

Sie + ati n, (/' — 2,..., m + 1)

(see [12]). Set gcd(t( r,) and t- r,V/A (' 0,..., m + 1). Our attack is based on
the following result:
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Theorem 1 Lete > n/c, where eis an integer > 1, and k (ed—\)/4>(n). Suppose that k

ore—kis<el^/6^/c.Then,wehaveA < e3/4, andk \t'j\, p+q (a + |^|-1) mod e

ork e — \t'j\, p + q (a + (e — |fj|) mod e, respectively, where j is such that rj

Theorem 1 yields the design of the following deterministic algorithm for the computation
of the factorization of n:

EUCLID-ATTACK
Input: An RSA public key (n, e) with e > n/c.
Output: The primes p and q.

1. Compute a — (n + 1 mod e.

2. Using the extended Euclidean algorithm for e and a, compute the biggest remainder

rj among them which are < e3/4 and the associated integers Sj, tj such that Sje +

3. Compute pj gcd(tj,rj) and next t'j tj/pj.
4. Compute ß\ — (a + mod e and next the solutions u\ and ui of equation

X2— ß\ X + n — 0. If i<i and v\ are positive integers, then output («i, ui). Otherwise,

go to the next step.

5. Compute/?2 (a + (e— \tj |)_l) mod e and next the solutions ui and V2 of equation
X2 — ßiX +n 0. If U2 and 02 are positive integers, then output (112, vi). Otherwise,

output FAIL.

Theorem 2 Let e > n/c, where c is a positive integer, andk (ed — \)/<p(n). Suppose
that k or e — k is < c'</4/6\/c. Then the above algorithm computes correctly the primes p
andq in time O((log e)2) bit operations.

In order to avoid the attacks to small decryption exponent, a class of RSA encryption
exponents e with corresponding k e — 1 is analysed in [6], In this case the decryption
exponent d is > 2<p(n)/3. Since k e — 1, Theorem 2 yields that the computation of the

factorization of «, and so the computation of d, can be easily achieved.

Suppose now that n/(c — 1) > e > n/c with c > 2. We have:

is the largest remainder < <?3/4.

k ek ek e

If k < e^ /6^fc, then we obtain:

d ed k(j>(n) + 1 n — 1 1

<

Thus, fore 10, we get d < h'^4/3. On the other hand, we have:

ed — 1 ed 2ed 2
k —-— < < < d.

(j> (n) (p(n) n c — 1
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ltd < h'/4/3. then we deduce:

2 2e1/4
k < d < 777,

c — 1 3(c — I)3/4

and so, for c > 19, we get k < ex^/6^/c. Thus, we see that the efficacy of our
approach is comparable with that of Wiener's method. Furthermore, as we have mentioned
in the Introduction, Wiener's method needs 0((log«)3) bits operations while our approach
0((logn)2).
The solutions of the linear Diophantine equation dx — ycp(n) 1 are.v(T) e + Tcf)(n)
and y(T) k + Td, where T e Z. Consider now the inequalities:

6\k + Td)4 < (e+Tf(n)) and 64(e - k + T(f(n) - d))4 < (e + T<f>(n)).

We remark that for T large enough, for instance T > <f>(n)1/ the above inequalities are

not satisfied. Thus, in case that we replace the public key e by x(T) e + Tcp(n) with
T > <f>(n)l/J our attack does not work. Note that Wiener's attack is not guaranteed to work
if e > n1'5 and the attack of [1J is effective as long as e < n1,875.

3 Proof of Theorems 1 and 2

ProofofTheorem 1. First, we give the proof of Theorem 1. The equalities ed - k<j>{n) 1

and </>(«) n — (p + <7) + 1 yield:

ed - 1 k(n - (p + q) + 1),

whence, we obtain:

k(n + 1 — (p + q)) + 1 0 (mod e).

Setting _yo h and xo P + we get:

1 + ayo - xoyo 0 (mod e).

Suppose that p < q. Then p < *Jn. Since p and q have the same size C, we have:

2f_l + 1 < p < q < 2f~' + •••+ 1.

Thus, we get:

q - p < 2e~2 + • • • + 2 < 2f_1 + l<p,
whence we obtain q <2p. Therefore, we have:

xo p + q < 3 \fn < 3 ^fce.

Suppose that yo < ex^If A > e3/4, then we have xoyo s 1 (mod A) and

|xoyo - 11 < ^3/4 5 A.
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It follows that xoyo 1, whence we get xo yo — 1 which is a contradiction. Hence
A < e3/4. Let rj be the bigger among the remainders which are < e3^4. Then, we have

rj-1 > e3^4 and \tj\ < e/rj-\ < e'^4. Further, we have:

0(1 + ayo - xoyo) + Sjeyo 0 (mod e),

whence we get:

0 fj + (tja + sje)yo - tjxoyo tj + rjy0 - tjxoyo (mod e).

Set f{x, y) tj + rjy — tjxy. Then, we have e \ f(xo, yo) and

\f(xo, yo)l < e1/4 + 7-7= + 1 <e-
6<Jc 2

It follows that f(x0, yo) 0, and so, we obtain:

t) + r'jyo - t'jxoyo 0.

It follows that t'j I Since gcd(/^,rj) 1, we obtain t'- \ yo- Furthermore, the

above equality implies that yo | t'j. Therefore, we have yo \t'j\. Thus, the congruence
1 + ayo — xoyo 0 (mod e) yields xo (a + \tj |~') mod e.

Set zo —yo mod e. Suppose that zo < ex^/6^fc. If A > é"3/4, then we deduce 1 +
xozo 0 (mod A) and

e3/4
Ixozo + 11 < 1 + — < A.

It follows that xozo +1=0 which is a contradiction. Thus, we get A < e3''4. Now,

working as previously, we have:

1 - azo + xozo 0 (mod e)

and we deduce that zo \tjI- Therefore e — yo \t'j\. It follows that xo (a + (e —

l^ir1) mod e.

Proof of Theorem 2. The proof of correctness of the algorithm EUCLID-ATTACK is a

simple consequence of Theorem 1. We shall compute its time complexity following [12],
The execution of the extended Euclidean algorithm in Step 2 needs 0((\oge)2) bit operations.

The computation of S and t'j in Step 3 requires 0((loge)2) bit operations. Similarly,
the computation of b\ and needs 0((loge)2) bit operations. Finally, the solution of the

quadratic equations in Steps 4 and 5 requires also 0((loge)2) bit operations. Therefore
the time complexity of the algorithm EUCLID-ATTACK is 0((loge)2) bit operations.

4 A toy example

In this section we give an example of application of our algorithm. Let

p 9223372036854777017 and q 9224497936761618437
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be two 64-bits primes. Their product is the number

n 85080976323951696719635578579671062429.

We compute:

4>(n) (p- 1 ){q - 1) 85080976323951696701187708606054666976.

We select:

d <f>(n) - 212 - 214 - 26 - 23 - 1 85080976323951696701187708606050456215

and compute:

e d~] mod <f>{n) 61100559406251463256709716070302151015.

Thus (n, e) and d is the public and private key for an RSA scheme. We shall use the

algorithm EUCLID-ATTACK in order to compute the factorization of n.

First, we compute

a (n + 1) mod e 23980416917700233462925862509368911415.

We apply the Euclidean algorithm for ro e and r\ a, and we compute the remainders

r2, r2, The biggest remainder which is smaller than e2^ is

r13 55785270375887536485564215.

The corresponding pair ($13, to) is the pair (—1186820, 3023941).

Further, we have gcd(ro, to) 1
• Following the steps of the algorithm, we compute:

b\=a + mod e 47960833835400466907403855045121427376.

We solve the equation x2 - b\x + n 0 and we see that their solutions are not integers.
Next, we compute

b2 a + (e - to)"1 mod e 18447869973616395454.

The solutions of the equation x2 — b2x + n 0 are the primes p and q. Note that le > n
and so, c 2. Furthermore, we have n — k < e'/4/6\/2.

5 Conclusion
In this paper, we have presented a new attack on the RSA cryptosystem based only on
the extended Euclid algorithm. It computes the factorization of n in deterministic time

0((log«)2) bit operations, in the case where the public exponent e has the same order of
magnitude as n and one of the integers k — (ed - \)/<p(n) and e - k has at most one-

quarter as many bits as e. Comparing with Wiener's classical attack and its presentation
as a bivariate linear equation problem, our attack is quite simpler, since it avoids the use

of continuous fractions and lattices. Its efficiency is comparable to that of Wiener's attack,
and its time complexity the same as that of the solution of the corresponding bivariate
linear equation problem but better than that of the classical Wiener attack.
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