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1 Introduction

Letmj, my, ..., m; be asequence of positive integers, pairwise relatively prime and m; >
2foralli = 1,2,...,t.Set M = mymz---m, and M; = M foralli = 1,2,...,t

m;
(notations introduced here will be used throughout the paper).

Ist p eine Primzahl, so folgt aus dem kleinen Satz von Fermat, dass 1271 geppel
37-1 4 ... 4 (p — 1)P71 = —1 (mod p). Giuseppe Giuga vermutete 1950, dass
umgekehrt aus dieser Kongruenz folgt, dass p prim ist. Giugas Vermutung ist bis
heute offen. In der vorliegenden Arbeit werden nun Modulo-Eins Folgen studiert:
Das sind paarweise teilerfremde Zahlen m, ma, ..., m; mit der Eigenschaft, dass
mumy---mi—ymjy1---my = 1 (mod m;) firallei = 1,2,...,¢. Es wird gezeigt,
dass diese Folgen charakterisiert werden durch die Eigenschaft dass 1/m1 + 1/m2 +
++++1/m; — 1/M eine natiirliche Zahl ist, wobei M = mm3 - - - m;. Somit sind diese
Folgen Spezialfille von Giuga-Folgen, die bei der Untersuchung der Giuga-Vermutung
eine zentrale Rolle spielen. Die Autoren klassifizieren die Modulo-Eins Folgen basie-
rend auf deren Linge und stossen auf interessante Eigenschaften. Insbesondere existie-
ren Modulo-Eins Folgen beliebiger Lénge.
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The notion of working simultaneously with modulo m; to speed up computer arithmetic is
an old idea that goes back to the 1950s and some problems of this type are solved with the
use of the Chinese Remainder Theorem and structure theory for finite Abelian groups. For
example, to multiply two positive integers A and B, AB = ¢; (mod m;) can be computed
simultaneously for each i. Then the Chinese Remainder Theorem gives back A B as

1
ABEZc,-M,-LMiJ“ (mod M) (1)

m;
i=1

where LM,J,;J_' denotes the inverse, modulo m; of M;. If M is sufficiently large, then AB

in fact equals the right side of (1) and computation would be quicker if each [M,-j,;i' =1,
Based on this idea, we will give the following definition of the modulo one sequence.

Definition. Let m,my, ..., m; be a sequence of positive integers, pairwise relatively
prime, m; > 2 foralli and m| < my < --- < m,. Suppose

M;=1 (modm;) forall i =1,2,...,1. (2)

Thenmy,my, ..., m, is called a modulo one sequence of length 7.

For example, it can be easily seen that the sequences 2, 3, 5 and 2, 3, 11, 13 satisfy the
conditions in the definition and hence are modulo one sequences of length 3 and 4 respec-
tively.

Several studies were done on the solutions of the congruence system (2) ([1, 5, 10]) but
more attention was received on the solutions to the system satisfying M; = —1 (mod m;)
foralli =1,2,...,1 (|24, 6,7, 9]). In Section 2, we give the necessary and sufficient
conditions for the existence of a modulo one sequence. Based on the work done by Giuga
[8], Borwein [1] introduced the Giuga sequences. From our necessary and sufficient con-
dition, it can be concluded that Giuga sequences overlap with the modulo one sequences.
Theorem 2 in [1] gives a similar necessary and sufficient condition for the existence of
a Giuga sequence but it is proved only for integer sequences consisting of prime num-
bers whereas our proof is for sequences with any positive integers. Section 3 discusses
the classification of modulo one sequences based on its length. Brenton and Joo in 1993
[5] and Borwein et al. [1] gave a complete list of modulo one sequences of lengthn < 7
determined by computer algorithms. The propositions given in this section give analytical
proofs for the classification of length 3, 4 and 5 modulo one sequences not only confirming
Brenton’s discoveries but also proving that these are the only modulo one sequences of the
given lengths. Brenton & Hill [4] and Janak & Skula [9] discussed some characteristics of
sequences based on the congruence system M; = —1 (mod m;). In Section 4, we prove
similar interesting characteristics for modulo one sequences. In Section 5, we will discuss
the category of negative sequences based on the congruence system M; = —1 (mod m;),
giving the necessary and sufficient condition for their existence. Besides explaining the
relationship between sequences following the two congruent systems, we will also use the
negative sequences in proving that there are modulo one sequences of arbitrary length 7.
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2 Necessary and sufficient condition

Theorem 1. Letm |, m2, ..., m; be a sequence of positive integers such that (m;, mj) = 1
fori # jandm; > 2 for all i. The sequence is a modulo one sequence iff there exists a
positive integer N such that

1 | 1 |
— . = i e — SN e,
mp  my m; mimsy...ny

Proof. Suppose the sequence m, ma, ..., m; satisfies

| 1 1 1
—+—+4+---+—=N+———— forsome N €N. 3)
mi (%) ny; mipmjp---m;

Then by multiplying both sides of (3) by M gives,

My+My+-+M =NM+1. 4)

Forl <i <rtandi # j, M; = m;k; for some k; € N. Then by (4),
miky +miky + - +miki—y + M; + mikjs1 + - +mik, = NM + 1.

This implies M; = | (mod m;) and hence the sequence is a modulo one sequence.

Conversely, assume m, my, ..., m, is a modulo one sequence. Hence M; = | (mod m;)
for each i implies that (1 — M;) = m;l; for some l; € Z~. Hence

t !
[1a-m) =]]mi:
i=] i=1

3
=Hm1-K where K <0
1=1
= MK.
This implies,

t

[ -M)=0 (mod Mm). (5)

i=1

Since M | M;M; fori # j, expansion of the left of (5) gives 1 — > i_, M; =0 (mod M)
and hence 1 — >"i_| M; = MK for some negative integer K.

1
1 — MK = ZMi
=1
1
1+ MN = ZM,- where N = —K.
i=l1

i=1 m;

Therefore, ﬁ +N=3_, —AA';—' =3 ij which proves the result. 0
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Remark. Borwein et al. in [1] defined the Giuga sequences (a finite increasing sequence
of integers [n1, na, ..., ny) is a Giuga sequence if > 7., n; = | ; e N) related to a
conjecture of Giuga [8] on primality. Combining this definition with Theorem | here shows
that a modulo one sequence is a Giuga sequence. Theorem 2 in [1] gives a necessary and
sufficient condition for the Giuga sequence which is only proved when the terms of the
sequence are primes. Looking at the different modulo one sequences of length t < 7 given
in Appendix 1 [9], it can be noticed that the N in Theorem 1 is always equal to 1. In
Section 3, we will show that this N € N is always 1 for modulo one sequences of length

t < 59.

3 Classification of modulo one sequences based on its length

Brenton and Joo gave a complete list of modulo one sequences of length n < 7 in Ap-
pendix 1 in [5] that were determined using computer algorithms. The following proposi-
tions will confirm some of their results using analytical methods.

Proposition 2. The only length 3 modulo one sequence is 2, 3, 5.

Proof. Suppose m|, mp, m3. If m; > 3, then since m; < mz < mg3 by definition, —- — +

% + n:} < % + % -+ % < | which contradicts Theorem 1. Hence m| = 2. If m, > 4, then

FzIT + E + W < :Iz 31 it 1 < | contrary to Theorem 1. Hence my = 3. From a similar
argument, it can be proved that m3 = 5 and therefore this proves that the only length 3

modulo one sequence is 2, 3, 5. O

In classifying the length 4 modulo one sequences, an approach similar to Proposition 2
can be used but the following proof of Proposition 4 is less tedious. We will first prove the
following lemma:

Lemma 3. Letmy, ma,...,m; be a modulo one sequence andt < 59. Then Z, j == m, =
I+ [T lm,

Proof. Let m|,mo, ..., m; be a modulo one sequence of length 7. Then by Theorem 1,
there existsan N € N such that Z, Ui T 1T i — = N. Let p; be the ith prime number.
] =1 i
Since m;’s are pairwise relallvely prime, m; > p; for all i. Hence Z, = Zle ;)17.

t .
Therefore, N = >i_, m’ S & <> & <>u_ 3 o < 2forr <59asr=58is
the largest for which >°;_, % is less than 2. Hence the result is obtained. u

Proposition 4. The only length 4 modulo one sequences are 2,3,7,41 and 2,3, 11, 13.

Proof. Suppose mj, ma, m3, my is a mod one sequence. From a similar argument to the
proof of Proposition 2, it can be proved that m| = 2 and m, = 3. Considering the congru-
ence system (2),

miniams — 1 = myx (6)

mymaymy — 1 = m3y (7)
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for some positive integers x, y where x < y (since by definition of a modulo one sequence,
mp <my < msz < my). Set
A =m%m%—xy. (8)

Then m3 = Mf—ﬂ and my = %’1. Multiplying (6) and (7),

2
me%m3m4 —mmaym3 —mmams + 1 = mamaxy

mymomsz +mpmaymyg — 1 = mymyA

1 1 |
mima (—+— - ———) = A.
ms4 M3 MM2M3Mg

Using Lemma 3, mmy (1 — % — é) = Aand hence A = mym> —m; —m»o. As m; and
my are 2, 3 respectively, A = 1 and hence by (8), xy = 35. Whenx = 1 and y = 35, using
the definitions for m3 and my4 above in terms of A give m3 = 7 and m4 = 41. Similarly
when x = 5and y = 7, m3 and m4 take 11, 13 respectively. This concludes that the only

length 4 modulo one sequences are 2, 3, 7,41 and 2, 3, 11, 13. d

If my, map, m3, my, ms is a mod one sequence of length 5, using Theorem | with a similar
argument to the proof of Proposition 2, it can be proved that m, m» are 2, 3 respectively.
In a similar approach to the proof of Proposition 4 by considering mymom3myg — 1 =
msx, mimamsms — 1 = may and A = mim3m3 — xy, the following proposition on the

classification of length 5 sequences can be proven.

Proposition 5. 2, 3, 7, 43, 1805; 2, 3, 7, 83, 85 and 2,3, 11, 17, 59 are the only length 5
modulo one sequences.

Remark. A similar method can be applied to find the exact modulo sequences of length
6 and upwards but the computations get very tedious as the length gets higher.

4 Other characteristics

Proposition 6. Let my, ma, ..., m, be a mod one sequence. Suppose M; = 1 + m,. Then
mi,ma,...,m—1,2M; — 1,2M,; + 1 is a mod one sequence.
Proof. Let1 <1, j <t —1.Since my, ma,...,m, is amod one sequence, m; and m are

relatively prime for i # j. From the definition of M;, m; is relatively prime to 2M, — 1
and 2M, + 1. Also 2M; — 1 and 2M, + 1 are relatively prime and hence all terms of the

sequence my, ma, ...,m;—1,2M; —1,2M,; + 1 are pairwise relatively prime.
Since 1 = —m; (mod m;) and M; = 1 (mod m;),
MM MMy, M| = —mMmy - MMty ---m_1m,; (mod m;)
=—-M; (mod m;)

=—1 (mod m;).
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We also know that 2M; — 1 = —1 (mod m;) and2M, + 1 =1 (mod m;), forall 1 <i <
t — 1. Therefore,

mimp---mi—iMmixr1---m_ 1M, — D2M,; + 1) =1 (mod m;). 9)
As2M? + M, =1 (mod 2M, — 1),
mimy---m_12M, + 1) =M, 2M, + 1) =1 (mod 2M; — 1). (10)

Similarly as 2M? — M, = 1 (mod 2M, + 1),

mymy---m_12M, — 1) = M,2M, — 1) =1 (mod 2M; + 1). (11)

Therefore by equations (9), (10) and (11), the terms of the sequence m, m, ..., m;_y,
2M, — 1, 2M, + 1 satisfy the congruence system (2) required for a modulo one sequence.
g

Example 4.1. The sequence 2, 3, 7, 47, 395, 779729 is a modulo one sequence of length
6 (Appendix 1, [5]). Here Mg = 779730 = 1 + mg. Hence using Proposition 6, we
can construct 2, 3, 7, 47, 395, 1559459, 1559461 which is one of length 7 modulo one
sequences given in Appendix 1, [5].

Proposition 7. There are no modulo one sequences with all composite terms.

Proof. Suppose there exists a modulo one sequence m, my, . .., m; such that m; = r;s;
forall | <i <t wherel <r; <s; <m,. Hence,

{ 1 t l 1] l (o ¢] 1
iy = Ly = g S diim

2

and 3°°°, ;li =¢(2)— 1 = %= — 1 < 1 where ¢ is the Riemann Zeta function. Therefore

S % < 1, contradicting Theorem 1. Hence there is at least one prime term in every
S 1
modulo one sequence. U

The next proposition characterizes the number of even and odd terms in a modulo one
sequence of length ¢ < 58.

Proposition 8. Let m|, ma, ..., m, be a modulo one sequence where t < 59. Let X ; be
the number of terms in the sequence which are congruentto j (mod 4), for j =0, 1, 2, 3.
Then

(1) IfXo+ X2=0thent > 8andt =2 (mod 4).

(ii) If X2 = 1 then X is odd (i.e., there is at least one term congruent to 1 (mod 4)).

(iii) If X4 = | then X3 is even and X | is even iff the length of the sequence is odd.
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Proof. Let X| = r. By Theorem | and Lemma 3,

4

!
ZLZIJF%@ZMi:MJrL (12)

3=y M1 il
Case (1): If Xo + X2 = 0 (i.e., no even terms in the sequence).

If all terms of the sequence are odd then m; > pi+1 where p; denotes the ith prime fori =
1,2,....Then 3}_, = < 3% 4 p— and the largest value of 7 for which >"}_, er <1
is 8. Hence by Theorem 1, ¢ > 8. That is, there are no modulo one sequences of length less
than or equal to 8 with all odd terms. If X| = (i.e., all terms are congruentto 1 (mod 4)),
then M and M; for each i is congruentto 1 (mod 4) and hence by equation (12), 1 = 2
(mod 4). If X3 =1 (i.e., all terms are congruentto 3 (mod 4)), then M = 3’ (mod 4) and
M; = 3" (mod 4) for each i. Hence by equation (12),

&3 '=3 41 (mod4)
&3 M r=3)=1 (mod4)
&3 e+ D=1 (mod4).

As | and 3 are the only units in Zg4, ¢ should be even and t = 2 (mod 4).

Now assume that the first r terms of the sequence are congruentto 1 (mod 4). Then

3’7" (mod 4), for 1<i<r

Mi=1 3111 (modd), forr+1<i<t

and M = 37" (mod 4). Hence by (12),

er3d T+ (-3 =37 =1 (mod4)
37 M2r+r+1)=1 (mod4). (13)

Since the only units in Z4 are 1 and 3, by equation (14), 1 = 2 (mod 4) when r is even
or odd. Therefore, if all terms of a modulo one sequence are odd thens > 8 and 1 = 2
(mod 4).

Case (i1): If X, = 1.

Assuming the terms of the sequence m, m», ..., m, are of the form

2 (mod4), fori=1
m; = Il (mod4), for2<i<r+1
3 (mod4), forr+2<ic<t

and hence,
3=l (mod 4), for i =1

Mi=1{ 2371 (mod4), for2<i<r+1
2.37""2 (mod4), forr+2<i<t
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and M =231 (mod 4). Then by (12),
-l p ¥l —r-1)3"2=2.3%"141 (mod4)
3 "2Ur+2t—5) =1 (mod4)
37221 +3) =1 (mod 4). (14)

If ¢ is even, then by (15), 3t—r-l =1 (mod 4) which implies r is odd. If ¢ is odd, 34+2¢ = |
(mod 4) and hence by (15), 3'~""? = | (mod 4) implying r to be odd. Hence when
X1 = 1, there is at least one odd term congruent to 1 (mod 4) and the number of such
terms would be odd.

Case (iii): X4 = 1.
Assume the terms of the sequence m, ma, ..., m; are of the form
0 (mod4), fori=1

I (mod4), for2<i<r+1
3 (mod4), forr+2<i<t

If

m[

where X| =r and X3 =t —r — 1. Hence,

o 3=l (mod 4), fori=1
"7 1 0 (mod4), for 2<i <t

and M = 0 (mod 4). Then by (12), 37! = 1 (mod 4) which implies t — r — | is even

and hence the number of terms congruent to 3 (mod 4) should be even. Also t — r — 1

being even results that ¢ and r are of opposite parity. (]

S Negative one sequence

As explained in the introduction, several studies discussed about the solutions for the con-
gruence system M; = —1 (mod m;) fori = 1,2, ...,t. The following definition explains
that the sequence of positive terms that are solutions to this congruence system forms a
negative one sequence. Janak et al. in [9], Brenton et al. in [4] and Zhenfu et al. in [7] gave
the lists of all such sequences of length r < 9 and discussed some characteristics of the
collection of negative one sequences. We will not go into details about the characteristics
but explain the connection between modulo one sequences and negative one sequences
and hence prove that there exists a modulo one sequence of any arbitrary length 7.

Definition. Let m, m>, ..., m; be a sequence of positive integers, pairwise relatively
prime and m| > 2. Suppose

M;=—-1 (modm;) forall i=1,2,...,¢. (15)
Thenm |, ma, ..., m; is called a negative one sequence of length z.

Using an approach similar to the proof of Theorem 2, the following theorem which gives
a necessary and sufficient condition for the existence of a negative one sequence can be
given,
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Theorem 9. Let m|, m2, ..., m, be a sequence of positive integers such that (m;, m;) = 1
fori # j. The sequence is a negative one sequence iff there exists a positive integer N

such that
| | 1 1
-+ +—=N-—
mj ma ny mipmsz---my;

This necessary and sufficient condition helps to explain several characteristics of the nega-
tive one sequences using the previous studies ([3, 4] and [7]) that discuss solutions for the

. 1 1 1 _
equation i -+ e + -4+ — -+ e, 1.
Lemma 10. [fm,ma, ..., m; is a modulo one sequence with m; = M; — 1 then m|, m»,

..o My_1, m; + 2 is a negative one sequence.

Proof. Consider m; where | <i <1t — 1.

Claim 1: m; and m, + 2 are relatively prime.

If (mj,m; +2) =dthend | m; + 2 which impliesd | M; + 1. Also sinced | M,,d = 1.
Claim 2: my -+ -mj—_ymjy1---my_1(m; +2) = —1 (mod m;) forl <i <t — 1.

By the definition of M; and since m;, = M, — 1 ,if M, = 0 (mod m;) then 1 +m, =0
(mod m;) and M; =1 (mod m;) for 1 <i <t — 1. Therefore,

& M;i+m; =0 (mod m;)
Smumy---mi—ymigy---my+m; =0 (mod m;)
& mimmy---mi—ymipy---m_1+1)=0 (mod m;).
Since (m;, m;) =1,
mymy---mi_miq1---m—1=—1 (mod m;). (16)
Hence,

mymy - -mi_1miyy---me—1(mg +2)+ 1
=mymy---mi—1mjyp---me—1(My + 1)+ 1
=mmy - MMyl MMy +myma---mi—ymjqp---mp—1 + 1
=0 (mod m;) by (17).

This implies myma---m;_ym;41---m;—y(m; +2)=—1 (mod m;) that proves Claim 2.
Claim 3: mymy---m,—; = —1 (mod m, + 2).
Proving Claim 3 is quite straightforward as

My+1=m;+2 implies M, =—-1 (mod m,; + 2).

Therefore by Claims 1, 2 and 3, my, m2, ..., m,—1, m;+2 is a negative one sequence. [J

Lemma 11. Ifm,my, ..., m, is a negative one sequence thenmy,my, ..., m;, M — 1 is
a modulo one sequence.
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Proof. Since m, ma, ..., m, is a negative one sequence and by the definition of M, for
i#jandl <i,j <t ,(mj,m;)=1land (m;, M—1) = landalsom,my, ..., m; = —1
(mod M — 1).Let1 <i < t. Then

mymy - -mi_ Mgy ---m(M —1)

=mmy---mi— My ---mM—mymy---mj_ymjyy---nmy

=1 (modm;),
proving the result. g
Theorem 12. For each t > 3, there exists a modulo one sequence m,mo, ..., m; of

length t where m; = M, — 1.

Proof. In proving the result, we will use mathematical induction on ¢. For t = 3, the
sequence 2, 3, 5 meets the requirements. Suppose the result is true for k > 3. Hence there is
a modulo one sequence my, ma ..., my where my = My — 1 and then by Lemma 10, there
exists a negative one sequence m, my ..., mg—1, my+2. Hence by Lemma [ 1,m,m3 .. .,
my—1, mg+2, M—1is amodulo one sequence where M = mm3 - - - my—1(my+2) proving
the existence of a modulo one sequence of length k + 1 satisfying the given condition.
Therefore the result is proved for any ¢ > 3. O

The following proposition explains that the well-known Sylvester sequence which is a pos-
itive integer sequence that begins with 2 and 3 where each term afterwards is determined
by adding 1 to the product of the previous terms, is also a negative one sequence.

Proposition 13. Let m|, mo, ..., m; be the first t terms of the Sylvester sequence. That is
my, my are 2 and 3 respectively and

i—1
m; = (H mk)+ |
k=1

for3 <i <t. Then the sequence forms a negative one sequence.

Proof. From the definition of the Sylvester sequence, all terms are pairwise relatively
prime. Now we will show that the terms satisfy the congruence system in equation (16).
Forallr > i,m, = mymy---m;---my_1 + 1 and hence m, = 1 (mod m;). Therefore
foralli,if M; + 1 =mmy---mj—1 + 1 (mod m;) then M; + 1 = m; (mod m;), which
implies M; = —1 (mod m;), proving the result. U

Remark. Proposition 13 together with Lemma 11 will construct a new modulo one se-
quence my,mz, ..., m;—1, M — 1 where the first t — | terms gives the Sylvester sequence
of length t — 1 and M = mmj---m,_,. For example, the sequence 2, 3, 7, 43, 1807,
3262443, 10650056950805 which is a modulo one sequence of length 7 (see Appendix I,
[5]) can be obtained using this idea as the first 6 terms gives the Sylvester sequence of
length 6.
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