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Mean value theorems and convexity: An example
of cross-fertilization of two mathematical items

Jean-Baptiste Hiriart-Urruty

Jean-Baptiste Hiriart-Urruty is professor emeritus of Mathematics at the Paul Sabatier
University in Toulouse. His interests include Variational Analysis and all aspects of
Optimization. He also takes an active interest in issues of mathematics education and
popularization of science.

1 Introduction

The topic of mean value theorems for (real-valued or vector-valued) functions has been
and still is one of my favorite ones in mathematics. During my career, I have written a
lot on the subject: Mean value theorems for convex or locally Lipschitz functions, witness
the papers [3, 4]; variants of the classical mean value theorems, like that of CAUCHY,
POMPEIU, FLETT, etc. (see the first exercises in [8] for example).

As far as I remember, my first encounter with a mean value theorem goes back to my
high school period. I remember a calculation integrated in the lesson itself: The first step
was to prove ROLLE’s theorem, followed by the classical mean value theorem (also called
LAGRANGE’s theorem): For any @ < b in R, there exists ¢ in the open interval (a, b) such

that
fb) - f(a)
b—a
immediately followed the determination of such ¢ for quadratic functions f : x = f(x) =
ax® + fx 4y, with a # 0. It happens that finding out such ¢ for quadratic functions is
an easy calculation: A unique ¢ pops up, itis ¢ = "%” One must confess that the result is

= ek (1

Die Begriffe Mittelwert und Konvexitdt sind eng miteinander verkniipft. In der vor-
liegenden Arbeit wird dieser Zusammenhang fiir skalare und fiir vektorwertige Funk-
tionen ausgeleuchtet. So charakterisiert der Autor konvexe respektive konkave Funk-
tionen mithilfe von Zwischenwerten aus dem Mittelwertsatz der Differentialrechnung.
Fiir vektorwertige Funktionen auf einem Intervall kann der Mittelwert als Konvexkom-
bination von Ableitungen an geeigneten Zwischenpunkten geschrieben werden.
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somehow surprising for a beginner: For a, b close to 0 or not, for a, b far apart or not, the
answer for ¢ is always the midpoint of @ and b. For a mathematician, a natural question
which then arises is: What about the converse? In other words,

Q1 : What are the functions for which the ¢ in the mean value result (1) is always ‘—’—;ﬁb?

A question akin to the one above is as follows. Consider p > 0 and ¢ > 0 such that
p +q = 1. We generalize (Q)) with

Q> : What are the functions for which the (unique) ¢ in the mean value result (1) is always
pa+ qb?

The above recalled LAGRANGE’s mean value theorem is an existence result, it does not
mention uniqueness or not of ¢. So, it is natural to ask the question

Q3 : What are the functions for which the ¢ in the mean value result (1) is unique for all
a,b?

Answers to these three questions are more or less known, they are part of folklore in
Calculus; we recall and prove them in the next section; we provide an original proof of the
answer to the question (Q3).

The main result in the first part of the present paper aims at identifying the functions for
which the set of ¢ satisfying (1) is always an interval (whatever a and b are); the broached
question, generalizing (Q3) therefore is

Q4 : What are the functions for which the set of ¢ satisfying the mean value result (1) is
an interval for all a, b?

To the best of our knowledge, the result (Theorem 3 below) is new.

The second part of the paper deals with vector-valued functions X : I — R". Mean
value theorems for such functions are usually derived in inequality forms, some authors
like J. DIEUDONNE even claimed that they are the only possible®. This is not true. We
present a simple result, with its proof, showing how the mean value &”,%E%(—‘Q could be
expressed as a convex combination of some values X'(#;) of the derivative of X at interme-
diate points ¢; € (a, b). This result is not new, apparently not well known, especially as no
integral of any kind is called, only values of derivatives X’ at points are used. Moreover,
the kinematics interpretation of the result is very expressive.

2 The case of real-valued functions

Let f : I — R be a differentiable function on the open interval /. There is no loss of
generality in assuming that I is the whole of R, which we do henceforth. Fora < b in R,
let C, p denote the set of ¢ € (a, b) for which %ﬂ = f’(c). The basic mean value
theorem tells us that Cy, p is nonempty for all @ and b. In the next subsections, we intend
to characterize functions f for which C, 5 is the same fixed intermediate point between
a and b, or always reduces to a single point between a and b, or always is an interval for

alla, b.
*“The classical mean value theorem (for real-valued functions) is usually written as an equality f(b) — f(a) =

f(¢)(b — @). The trouble with that classical formulation is that there is nothing similar to it as soon as f has
vector values...”. In J. Dicudonné, Foundations of Modern Analysis, Academic Press (1960), Section VIII.
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2.1 Case where C, j is the same fixed intermediate point between a and b

Theorem 1. Let p > 0 and q > 0 such that p + q = 1. Suppose that C, p = {pa + qb}
forall a and b. Then:

O Fp= % the function is necessarily quadratic, that is to say f : x — f(x) =
ax®>+ fx +y, witha # 0.
(i) If p # % there is no function f with the required property on Cq p.

Proof. Written in another form, the assumption made on f writes: There exists p € (0, 1)
such that
fx+h)= f(x)+hf'(x + gh) forall x and h in R. (2)

First point. Due to the functional relationship (2), it is easy to derive that f is twice dif-
ferentiable, even of class C*.

Second point. We differentiate the relationship (2) with respect to £, so that we get at

f'(x+h)= f'(x+qgh)+hgf"(x +qh) forall xandh in R. (3)

We therefore have: Forall x and 4 # O in R,

C]f”(x‘FC]h'): f(x+h)_hf(x+qh)

_ St - ) fxtgh) - )
B h g gh '

Passing to the limit 4 — 0, since f” is continuous, we get

af" () = f"(x) —qf" (x)
or
(1 =29)f"(x) =0 forall x in R. (4)

We here examine two situations.

. Then it comes from (4) that

1] —

Situation (ii): g (or, equivalently, p) is different from
f"(x) = 0forall x in R. Consequently, f is affine,

f(x)=px+y forall x in R.

But, in that case, we would have C, = (a, b) for all a and b, which contradicts the
assumption made on Cy p.

Situation (1): g (or, equivalently, p) equals ’]Z In such a case, (3) rewrites as

" , h h h\ )
fx+h)=f x+§ +§f x+§ for all x and h in R. (5)
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Changing into the new variables u = x + %, r = % we get from (5):

fu+r)y= f(u)+rf'(u) forall uandr in R. (6)

We take the derivative with respect to the variable r in (6), so that
f"(uw+r)y= f"(u)forall uinR.

Consequently, f” is constant on IR, therefore f is a quadratic function. Here again, since

Ca.p 1s assumed to reduce to one point ¢ = ‘“2”’, affine functions are excluded. ]

Remarks. We indeed have proved a little more than what is stated in Theorem [, namely:

f‘fzﬂl € Cy p forall a, b” happens only in two cases:
e for affine functions, in which case C, = (a, b) for all a, b;

e for quadratic functions, in which case C, = {"#’} forall a, b.

Given p > 0, p £ %, and g > Osuchthat p +¢q = 1, “pa +gb € C,p forall a,b”
happens only in one specific situation:

e for affine functions, in which case C, » = (a, b) for all a, b.

2.2 Case where C, j is a singleton for all a and b

We consider in this subsection the case where C, p is a singleton for all ¢ and b, i.e.,
Cup = {c,,,,:,} for all a, b. It clearly covers the case of quadratic functions seen in the
previous subsection (¢, p = "JZF” for all a, b). However, in the considered present case,
cq.p 18 not “rigidified” via a formula, but varies with a, b. The answer to the question
“What are the functions for which the ¢ in the mean value result is unique for all a, b?”
is known; it consists of strictly convex functions or strictly concave functions; this is even
a characterization of such functions. The result is mentioned as early as in BOURBAKI’S
text (1958, [1, page 54]), where it is proposed as an exercise (without proof). One proof
that we know, at the first year of Calculus level, consists in proving that the derivative f” is
monotone (either increasing or decreasing). For that, knowing that “a derivative function
does not create any hole”, i.e., DARBOUX’s theorem stating that the image of an interval
by f' is again an interval, helps a lot. Other proofs start by contradiction: “Suppose that
f is not convex and f is not concave”, or “Suppose that f” is not increasing and f” is
not decreasing”, but the sequel of reasonings is “laborious” or “tortuous” (several cases
and subcases to treat) and even flawed. We propose below an alternate proof, based on an
argument from a more advanced level in Analysis.

Theorem 2. The following statements are equivalent:

(1) Cy.p is a singleton for all a, b.
(i1) There are not three (distinct) points aligned on the graph of f.

(iii) Either f is strictly convex or f is strictly concave.
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Proof. (i) = (ii). Suppose that there are three points aligned on the graph of f, namely
(x1, f(x1)), (e, f(x2)), (x3, f(x3)), with x; < x2 < x3. According to the mean value
theorem, applied on the line-segments [x|, x2] and [x2, x3], there exists ¢; € (x1, x2) and
¢o € (x2, x3) such that

f(xz)—f(xl):f,(cl) and f(x3) — f(x2)

X2 — X1 X3 — X2

= f(c2). (7)

But, since the three points (x1, f(x1)), (x2, f(x2)), (x3, f(x3)) are on the same line,

fem) = fen) _ fa) = f(2) _ ) = fx)

X3 — X} X3 — X2 X2 — X

In view of (7), that would induce that there are two different points ¢ and ¢> such that

flx3) — flx)

A3 — X

= f(e1) = f(c).

That would mean that Cy, \, contains at least two points, therefore contradicting the as-
sumption (1).

(ii) = (iii). Consider the following open set in R?
=0, 1) x [(x, y) € R? with x < y]
and the next function
F:(hx,y)€Qr> F(x,y)=flix+ (1 =)yl = [Af(x)+ (1 =21 f)].

Clearly, F measures the “default of convexity” or “default of concavity” of the function f.
Here are two clear properties: € is an open connected (even convex) set; F is a continuous
function. Hence, the image F(€2) is a connected set, that is to say an interval of R. But,
according to the assumption (ii), F(€2) does not contain 0. We therefore have only two
possibilities:

e cither F(QQ) C (—o0, 0), which amounts to having f strictly convex,

e or F(Q) C (0, +oc), which amounts to having f strictly concave.

(iii) = (i). Under the assumption (iii), the derivative f’ is strictly increasing or decreasing;

whence the equation £2—L9 — /(¢ has only one solution ¢ for any a, b. O
4 b—a b4 ¥

2.3 Case where C, j is an interval for all « and b

This subsection contains the newest part of Section 2. The theorem that we present below
generalizes Theorem 2, although the way of proving it is not the same.

Theorem 3. The following statements are equivalent:

(1) Cy.pis aninterval forall a, b.

(it) The level-sets of f' are intervals.
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(ili) f' is monotone (either increasing or decreasing).

(iv) Either f is convex or f is concave.

The proof combines the contributions of the author and that proposed in [10] as an an-
swer to a posed question by the author. As usual in dealing with a derivative function,
DARBOUX’s theorem stating that the image of an interval by f’ is again an interval is
instrumental.

The equivalence [(ii) < (iv)] makes echo to another property of f’: Following ROWE’s
theorem (1926) (see [6]), f” is continuous if and only if its level-sets are closed.

In the proof of Theorem 3 appears, in a hidden form, an equivalence with a further state-
ment,

(v) Ifthere are three (distinct) points aligned on the graph of f, for example (x1, f(x1)),
(x2, f(x2)), (x3, f(x3)) with x| < x2 < x3, then f is affine on | x|, x3],

in the same vein as (ii) in Theorem 2.
Proof of Theorem 3. (i) = (ii). Letu < v inthe level-set I, = {x » Flx) = r}; we intend

to prove that the whole line-segment [u, v] is contained in I',, that is to say f’ is constant
on u,v].

Like in the proof of the mean value theorem from ROLLE’s one, we call the auxiliary

function
f)— f(u)x_
l

) — U

gixr> glx)= f(x)—

We have g(1) = g(v), as also g'(u) = g'(v) (since f'(«) = f'(v)). Changing g into —g
if necessary, we can assume that g’(u) > 0. Since g is a “tilted” version of f by a linear
function, it is clear that property (ii) in Theorem 3 transfers to g: The level-sets of g’ are
intervals.

Let d = {x : gx) = ()}. It is nonempty according to ROLLE’s theorem, and an interval
since it is the level-set of g" at level 0. Define u = infJ and & = sup J. By construction,
¢’ does not vanish neither on [u, g) nor on (v, v]. DARBOUX’s property of the derivative
¢’ allows us to deduce that g’ is of a constant sign on [u, u) and on (v, v]. But g'(u) =
g'(v) = 0, hence g is increasing on [u, u) and on (3, v]. Consequently, g is constant on
[u,v], g’ =0o0n[u,v],sothat f"is constant on [u, v].

(i) = (iii). The reasoning is by contradiction. Changing f” into — f’ if necessary, one may
suppose that there exists x; < x2 < x3 such that f'(x;) < f'(x2) and f'(x2) > f'(x3).
Let us choose a real value a such that

fx) <a < fl(x);

Fl(x2) > a> fl(x3).

Since f’ transforms intervals into intervals (DARBOUX’s property), there exists y; in
(x1,X2) and yp in (x2, x3) such that

/o= f(n)=a
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Then, because the level-sets of f” are intervals (assumption (ii)), we have
f'(x) =aforall x €[y, y21.

Consequently, for the “intermediate™ point x», we get f'(x2) = a. We therefore have
arrived at a contradiction since f'(x2) > a.

(i11) = (iv) is classical.

(iv) = (i) or even (iv) = (iii) = (ii) = (i) does not offer any difficulty. O

To summarize this Section 2, here is a table offering characterizations of classes of convex
(or concave) functions via the properties of the sets Cy p.

[Cap = {4E2} forall a and b] & | quadratic functions]

For some % #p>0and g >0
suchthat p+qg =1, & |affine functions]
pa—+qb e Cyyp forall a and b

. ) ) strictly convex or
[C,,J, is a singleton for all @ and b] [ Y ]

strictly concave functions

[Cu,,, is an interval for all a and b] < |convex or concave functions] .

3 The case of vector-valued functions

In this section, we consider vector-valued differentiable functions X : I — R"; here again
there is no loss of generality in assuming that / = R. The first thing we learn concerning
mean value theorems for such functions X is that a result like %j{(“) = X'(c) for
some ¢ € (a,b)” is hopeless... Usually, a mean value theorem for vector-valued X is
presented in the following form ([2]):

H S0 < s [xo)

cela,b)

P . (8)

a way of bounding from above the norm of the mean value —X(blz:f(“)

weak. However, it is indeed possible to exactly express %‘Q in terms of convex com-
binations of derivatives X'(c;), ¢; € (a, b). Even when the image space of X are normed
vector spaces, there are powerful results on the subject, by MCLEOD ([9]) for example.
Here, with X taking values in the finite-dimensional space R”, we give a short proof of
a mean value theorem for X, in an equality form. In doing that, convexity enters into the
picture very naturally. Our arguments are merely based on simple techniques from convex

analysis.

which can be fairly

Given a nonempty set § C R", we denote by:

coS (resp. coS) the convex hull of § (resp. the closed convex hull of S);
d € R" > ag(d) = sup,. g (s, d) the support function of S.

(-, denotes the usual inner product in R".
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When C is convex, there is a unique smallest affine set containing C; this set is called
the affine hull of C. The relative interior of C, which is denoted by riC, is defined as the
interior which results when C is regarded as a subset of its affine hull. The properties of
support functions, of relative interiors of convex sets, are expounded in ROCKAFELLAR’S
book ([11]) or in our texbook (|7]).

Theorem 4. Let a < b. Then

X (b) — X (a)

P €ri C(){X (¢c):ce (a,b)}. 9)

As a consequence, there are n + 1 elements ¢; € (a, b), n + | nonnegative coefficients 1;
summing up to 1, such that

n+1

X(b)— X(a) ;

=]

Proof. Itis divided into three steps.

%‘Q belongs to the closed convex

Step 1. We intend to prove that the mean value
hull of the image-set {X'(c) : ¢ € (a, b)}.

Ford € R", let f; be the “scalarized version of X in the d direction”, that is
Ja it € R fylx) = (X (1), d).

The function fy is real-valued and, according to the classical mean value theorem for such
functions, there exists ¢y € (a, b) such that

X(b)—X(a) /
<ﬁ,(l) = (X (Cll)ad)-

The difficulty comes here from the fact that the intermediate point ¢y depends on the d
direction. Never mind. We deduce from above

<X(b) — X(a)

P ,d>g sup (X'(c),d). (11)

ce(a,b)
We recognize in the right-hand side of (11) the support function of the image-set
{X'(¢c):c€(a,b))

or, which amounts to the same, of its closed convex hull co {X’(c) (¢ € (a, b)}. The left-
hand side in (11) is a linear form, “directed” by the vector w A consequence on

sets of the inequality (11) on support functions is that ([7, Theorem 2.2.2 in p. 137])

X(h) — X(a)

P eco{X'(c):c€ (a,b)}. (12)
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Step 2. For the sake of simplicity, we denote

X(b) — X(a)

= X, 1 CO {X’(c) cc € (a, b)} =T,
b—a

By the result of Step 1, X,, belgngs to C. We intend to prove here that X,, cannot be on
the relative boundary rbd C = C \ ri C of C.

Suppose that X,, € rbd C. There then exists a non-trivial supporting hyperplane to C
at X,,, that is one which does not contain C itself ([11, p. 100]). Written with the help
of support functions a¢ of C (see |11, Section 13] or [7, Section 4 of Chapter A]), there
exists d € R" such that

(x,d) < oc(d) forall x € C; (13)
(Xm,d) = oc(d). (14)
(x,d) <ac(d) forall x eri C. (15)

Let now g4 : R — R be defined by
gd(t) = (X(f)~d> - (Xrnsd> I.

According to (13) and (14), remembering that {X'(¢) : ¢ € (a,b)} C C, we have: g/, (1) =
(X’(r),a’) — (Xm,d) < O forallr € (a,b). Moreover, according to (15) and the mere
definition of C, there is at least one t* € (a, b) for which g(’,(t*) < 0. As a consequence,

8a(b) — gala) = (X (b) — X(a),d) — (Xm,d) (b —a) <0,

a contradiction. We therefore have proved (9).

Step 3. According to the classical CARATHEODORY theorem in convex analysis, each
element in § C IR" can be expressed as a convex combination of n + | terms in the
image-set {X"(c) : ¢ € (a, b)}. Hence (10) is proved. O

At the first glance, Theorem 4 does not seem to retrieve the classical mean value the-
orem for real-valued functions, that is when n = 1. But it does. Indeed, according to
DARBOUX’s theorem, {f’(c) 1c € (a, b)} is an interval for real-valued f; therefore, (9)

infers that B
IO=I@ ey e i), )

This subsumes two situations: Either f is affine on (a, b), in which case

{fl©)ce@b)=ri{f(c):ce@b)={s}
(a singleton), or _
1(_’);:# cint {f(c):c e (ab). (17)

There is a slight improvement of Theorem 4 when, for example, X is continuously dif-
ferentiable. This relies on a very fine result in convex analysis, called FENCHEL-BUNT
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theorem, which states the following (|7, page 30]): If aset S C R" has no more than n con-
nected components (in particular, if S is connected), then any x € coS can be expressed
as a convex combination of n elements in S.

Corollary 5. Suppose that the image-set S = {X ") : t € (a, b)} of the derivative of X
has at most n connected components, which is the case if X is continuously differentiable
(in that case, S is a connected set in R"). Then, there are n elements ¢; € (a,b), n
nonnegative coefficients A; summing up to 1, such that:

X(b)—X@) ~~,
‘—“]‘)':—a— —;LX(Q)- (18)

We end by giving a very simple example which illustrates Theorem 4 and Theorem 5.

Let X : t € R — R be defined by X () = (%, 2,13 and choose a = 0,b = 1. Then,
S = {X’(r) ot € (0, l)} = {(u, u, %) cu € (0, 2)] is a connected curve whose affine
hull is two-dimensional. Consequently, the mean value (I, 1, 1) of X on [0, 1] can be
expressed as a convex combination of two elements lying on the curve S.

Final remarks

. A mean value result in an equality form like (10) immediately induces an inequality
like (8).

2. Mean value theorems indeed have nice kinematic interpretations. Think of X () as
the position of a moving bicycle at time ¢, while X'(¢) represents its instantaneous
velocity at time . We suppose that the cyclist leaves a starting point at fp = 0 and
goes back there at t = ;.

e If the cyclist moves on a straight road, there necessarily is a time t* € (19, 1y)
at which its instantaneous velocity is null, X'(t*) = 0.

e If the cyclist moves on a plane, he could make his whole trip with a non-null
velocity X'(r) all the time. However, at least assuming that X is continuously
differentiable, it comes from (18) that there are two times 1], £} € (fo, 1) and
some r > 0 for which

X'(1y) = —rX'(1]),
i.e., the velocity vectors are in opposite directions.

3. There are some extensions of Theorem 4 and Corollary 5 to the case where X is not
differentiable, but not for any nondifferentiable (or nonsmooth) function X. Here is
an example. Suppose that X : R — R” is locally Lipschitz, that is to say satisfying
a Lipschitz property on each bounded interval of R. According to an old theorem
by RADEMACHER (1919), such functions are differentiable almost everywhere, i.e.,
except on a set of LEBESGUE measure zero. Moreover, on the other points, the be-
havior of the derivative X’(¢) can be “controlled”. For such functions, a mean value
result analogous to (9) is as follows ([4, Theorem 7]):

X(b)— X(a)

. € rico{X'(c) : ¢ € (a, b\A}, (19)
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where A is the set of points in (a, b) where the derivative fails to exist. Beware how-
ever that the image-set {X’(c) :c € (a, b)\/\} may have as many connected compo-
nents as desired.

4 Conclusion

“Taking a mean value” is a mathematical operation which immediately makes echo to
convexity; there therefore is no surprise that the two concepts mix harmoniously in state-
ments of results as well as in proofs. In this note we have shown, on two different contexts
(Theorem 3 for real-valued functions, Theorem 4 for vector-valued functions), how they
cross-fertilize each other.
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