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Drittes Hilbertsches Problem und Dehn-Invariante —
Eine Elementarisierung mit Kugeldreiecken

Max Leppmeier

Max Leppmeier studierte Mathematik und Physik fiir das Lehramt an Gymnasien
an der Ludwig-Maximilians-Universitit Miinchen und war dann in unterschiedlichen
Funktionen als Pidagoge titig. Er verfasste das Buch , Kugelpackungen von Kepler bis
heute™ und promovierte bei Prof Dr. Ulm und Prof. Dr. Dr. h.c. Beutelspacher an der
Universitit Bayreuth tiber ,Mathematische Begabungsforderung am Gymnasium®.

1 Einleitung

Das dritte Hilbertsche Problem lautet im Original:

,;Gauss spricht in zwei Briefen an Gerling sein Bedauern dariiber aus, dal gewis-
se Siitze der Stereometrie von der Exhaustionsmethode, d.h. in der modernen
Ausdrucksweise von dem Stetigkeitsaxiom (oder von dem Archimedischen
Axiome) abhiingig sind. G auss nennt besonders den Satz von Euklid , dafl

Der Satz von Wallace, Bolyai und Gerwien besagt, dass flichengleiche Polygone in
der Ebene zerlegungsgleich sind. Ob sich zwei dreidimensionale Polyeder in paarwei-
se kongruente Teilpolyeder zerlegen lassen, stellte sich dagegen als eine bedeutend
schwierigere Frage heraus, die lange offen blieb: In einem Briefwechsel mit GauBl
spitzte Gerling die Fragestellung zu. GauB legte die Thematik 1844 zur Seite, Gerling
ein gutes Jahr spiter — ungeldst. Hilbert hob sie 1900 wieder aufs Tableau, Dehn griff
das Problem auf und ldste es, noch bevor Hilbert die Liste seiner beriihmten Probleme
verdffentlicht hatte. Aigner und Ziegler nahmen 1998 das dritte Hilbertsche Problem
in ihr Buch der ,,perfekten Beweise auf. Ein solch ,perfekter Beweis, nimlich dass
die Zerlegungsgleichheit von Polyedern gleichen Volumens an eine weitere Bedingung
gekniipft ist, geht anfangs auf Dehn und Boltjanski zuriick, spiter griindet er auf Ideen
Benkos und Bricards. Der Autor der vorliegenden Arbeit gibt nun einen elementa-
ren Beweis mit sphérischen Vielecken, der die Ansitze der Dehn-Invariante und der
Bricard-Bedingung zusammenfiihrt und vereinheitlicht.
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dreiseitige Pyramiden von gleicher Hihe sich wie ihre Grundflichen verhal-
ten. Nun ist die analoge Aufgabe in der Ebene vollkommen erledigt worden;
auch ist es Gerling gelungen, die Volumengleichheit symmetrischer Poly-
eder durch Zerlegung in congruente Teile zu beweisen. Dennoch erscheint mir
der Beweis des eben genannten Satzes von Euklid auf diese Weise im all-
gemeinen wohl nicht als moglich und es wiirde sich also um den strengen
Unmoglichkeitsbeweis handeln. Ein solcher wiire erbracht, sobald es gelingt,
zwel Tetraeder mit gleicher Grundfliche und von gleicher Hohe anzugeben, die
sich auf keine Weise in congruente Tetraeder zerlegen lassen und die sich auch
durch Hinzufiigung congruenter Tetraeder nicht zu solchen Polyedern ergiinzen
lassen, fiir die ihrerseits eine Zerlegung in congruente Tetraeder moglich ist.”
[1,S.266f.]

Dahinter steht eine interessante Ideengeschichte [1-12]. Dehn konnte als erster zeigen,
dass ein Wiirfel und ein volumengleiches regulires Tetraeder nicht zerlegungsgleich sind
[3], und gab wenig spiiter zwei Tetraeder mit gleicher Grundfliche und gleicher Hohe an,
die nicht zerlegungsgleich sind [4].

Mit anderen Worten: Es gibt keine endliche Zerlegung eines Wiirfels in ein Sortiment
aus Polyedern, aus dem man ein regulires Tetraeder aufbauen kann und umgekehrt. Das
gleiche gilt fiir Tetraeder 77 und Tetraeder T// (Abbildung 5).

2 Elementarisierung der Dehn-Invariante

Dehn fiihrte fiir Polyeder folgende Grobie ein [8, S. 391f.], die fiir zelegungsgleiche Poly-
eder den gleichen Wert annimmt:

Definition (Dehn-Invariante). Gegeben sei ein Polyeder P. Fiir jede Kante k bezeichne
[(k) die Linge der Kante k und « (k) den Kantenwinkel' zu k, d.h. den Winkel zwischen
den beiden an £ angrenzenden Flichen. Die Menge aller Kantenwinkel von P einschlieB-
lich = sei M p. Fiir eine beliebige, reelle Obermenge M zu Mp sei V(M) die Menge aller
Linearkombinationen von Zahlen aus M mit rationalen Koeffizienten und die Funktion f
eine beliebige Q-lineare Funktion f : V(M) — Q, die die Bedingung f(7) = O erfiillt.
Dann heibt der Term m 7 (k) == [(k) - f(a(k)) Masse der Kante k (bzgl. f) und

Ds(P):= Z m (k)

keP

Dehn-Invariante von P (bzgl. f).

Wir fiihren nun eine gedankliche Klonierung eines Kantenwinkels in zwei Kantenwinkel
durch, die wir jeweils an die Ecken schieben (Abbildung 1).

'In der Literatur findet man dafiir auch den Begniff , Diederwinkel” [10, 11].
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Abbildung 1 Ubergang Kantenwinkel — Kugeldreieckswinkel

Die Kantenwinkelbdgen bilden somit an den Ecken sphirische Vielecke, die den Weg zum
einfacheren und neuen Begriff der L-Invariante bereiten.

Definition. Gegeben sei ein Polyeder P mit Kantenwinkeln a (k). Fiir jede Ecke e be-
zeichne K. die Menge der Kanten, die e enthalten. Dann heift

tei= > ak)— (K| —2)

kekK,
sphdrischer Exzess an der Ecke e und
LLP) = Z Ee
ecP

L-Invariante von P.

Aus der sphirischen Trigonometrie wissen wir, dass bei einer Einheitssphiire der sphiiri-
sche Exzess an der Ecke ¢ genau der Fliche des sphirischen Vielecks entspricht, das durch
die Kantenwinkelbogen an der Ecke e gebildet wird. Denn es gilt:

Satz (Flicheninhalt eines sphirischen Vielecks). Auf der Einheitssphdre sei ein sphdiri-
sches Vieleck gegeben. Es bezeichne K die Menge der Ecken des sphdrischen Vielecks, fiir
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eine Ecke k € K sei a(k) der dazu gehorige spharische Innenwinkel. Dann gilt fiir den
Flédcheninhalt A des sphéirischen Vielecks:

A=c¢ ::Za(k)—(lKl—2)-7r.

kek

Beweis. Einen schonen, direkten Zugang findet man in [ 13, S. 3ff.]. Ein weiterer Beweis ist
in [14, S. 22ff.] ausgefiihrt. Allein wegen der auf Kupfertafeln angefertigten Abbildungen
lesenswert ist der historische Beweis in [ 15]. (]

In geometrischer Hinsicht bezeichnet die L-Invariante eines Polyeders daher die Flichen-
summe der sphiirischen Vielecke an den Ecken. Wir betrachten zwei Beispiele.

L-Invariante eines Wiirfels W.  Wir erhalten an jeder Ecke e den sphiirischen Exzess

Die sphiirischen Exzesse an den acht Ecken ergeben also genau eine Kugel(oberfliche).

Abbildung 2 L-Invariante eines Wiirfels

L-Invariante eines reguliren Tetraeders TIII (Abbildung 1). Wir erhalten als sphiiri-
schen Exzess an einer beliebigen Ecke e

Eoe=3-a—m.

Eine elementargeometrische Uberlegung ergibt a = arccos(%) und damit

1
Go =3 arccos(i) -7
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und fiir die L-Invariante

L{THI) = Z e =4 (3 . arccos(%) — n) = lZarccos(%) —4r.

eeTill

Hier ist fiir die Frage der Zerlegungsgleichheit von entscheidender Bedeutung, dass

arccos(3) ein irrationales Vielfaches von 7 ist [8, S. 33ff.], [9, S. 669], [10, S. 50].

3 Polyederzerlegungen und Eigenschaften der L-Invariante

Wir betrachten eine beliebige Zerlegung eines Polyeders in Teilpolyeder. Hier gibt es Zer-
legungen, die keine neuen Teilpolyederecken generieren, aber auch Zerlegungen, die neue
Ecken im Inneren (oder auf einer Facette oder auf einer Kante) des Ausgangspolyeders
erzeugen.

Definition. Gegeben sei ein Polyeder P und eine Zerlegung in endlich viele Teilpolyeder
Py, P2, ..., P,. Eine Zerlegung heilit einfach, wenn jede Ecke eines Teilpolyeders auch
Ecke des Polyedersist.e €¢ P —> ec P

Eine Zerlegung heilt ziemlich einfach, wenn keine Ecke eines Teilpolyeders P; im Inneren
einer Kante des Polyeders P liegt und wenn jede Ecke eines Teilpolyeders P; auch Ecke
eines jeden angrenzenden Teilpolyeders ist.

Abhingig von der Art der Polyeder-Zerlegung haben wir unterschiedlich starke Invarian-
zen der L-Invariante. Wir beginnen mit der stiirksten Invarianz.

Lemma 1 (Additivitit und starke Invarianz der L-Invariante). Gegeben sei ein Polyeder
P und eine einfache Zerlegung in endlich viele Teilpolyeder Py, Pa, ..., P,. Dann gilt:
L(P)=L(P\)+ L(P)+ -+ L(Py)

Beweis. (Der Beweis ist anschaulich klar.) Wir betrachten eine Ecke e des Polyeders P und
das von den dazugehorigen Kantenwinkeln bestimmte Kugelvieleck mit der Oberfliche &,.
Wir betrachten die Teilpolyeder P,; mit der gemeinsamen Ecke e.

P,

Abbildung 3 Additivitiit und Invarianz
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Diese erzeugen an der Ecke e auf natiirliche Weise eine Zerlegung des Kugelvielecks mit
Oberfliiche ¢, in die Teilkugelvielecke mit Oberfliiche ¢,,, also €, = > ; &, .

Mit der Definition der L-Invariante erhalten wir:

L{P) = Zf:e = ZZ“‘""

eeP eeP i
L(P)+ L(P)+---+L(P) = Z e + Z N T Z By, = Z Z Ee; -
e1eP) ereP en€Py i eeb;

Wir gruppieren die Summe mit Blick auf die betrachtete Ecke ¢ um und erhalten

L(P) + L(P2) + -+ L(Pe) = D D £, = L(P). O

eeP i

Die Invarianz wird etwas schwiicher, wenn eine zusiitzliche Ecke im Inneren oder auf einer
Facette entsteht. Dann gilt:

Lemma 2 (Ziemlich starke Invarianz der L-Invariante). Gegeben sei ein Polyeder P und
eine ziemlich einfache Zerlegung in endlich viele Teilpolyeder Py, Ps, ..., P,. Es sei n,
die Summe aus der doppelten Anzahl der Ecken auf den Facetten von P und der vierfachen
Anzahl der Ecken im Inneren von P. Dann gilt: L(P)+ny, -7 = L(P))+ L(P2)+---+
L(Pn)-

Beweis. Da jede Ecke der ziemlich einfachen Zerlegung auch Ecke eines jeden angren-
zenden Teilpolyeders ist, konnen wir den Beweis wie in Lemma | fiihren. Dabei ist zu
beachten, dass eine zusitzliche Ecke im Inneren von P zu einer Vollkugel mit Oberfliche
47 und eine Ecke auf einer Facette von P zu einer Halbkugel mit Oberfliche 2z fiihrt
(Abbildung 4, links bzw. Mitte). L

Die Invarianz wird noch einmal schwiicher, wenn zusitzliche Ecken auf deri Kanten zuge-
lassen werden. ‘

Lemma 3 (Schwache Invarianz der L-Invariante). Gegeben sei ein Polyeder P und eine
Zerlegung in endlich viele Teilpolyeder Py, P2, ..., P,. Jede Ecke eines Teilpolyeders P;

sei auch Ecke eines jeden angrenzenden Teilpolyeders. Fiir jede Kante k € P sei a (k) der
Kantenwinkel. Dann gilt:

L(P) = ZZ-a(k) (mod 7).

keP

Und es gibt gerade Zahlen my € 2N, so dass gilt:

L(P)+ L(P) + -+ L(Py) = Y mg-ak) (mod ).
keP

Beweis. Die Zerlegung des Polyeders P in die Teilpolyeder Py, P2, ..., P, ergibt zu den
Ecken e von P noch weitere Ecken; wir nennen sie Zerlegungsecken. Wie im Beweis fiir
Lemma 2 ist jede Zerlegungsecke auch Ecke aller angrenzenden Teilpolyeder.
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Die erste Aussage ergibt sich folgendermaBen aus der Definition: Es ist

LPY=>e.=> D atk)— (K| -2) =

eepP ceP kek,
und damit
L(P)=> > a(k) (mod ).
ceP kek,

Da jede Kante zu zwei Ecken gehort, haben wir
L(P)=) 2-a(k) (mod ).
kepP

Die zweite Aussage konnen wir folgendermalien zeigen: Hinsichtlich der Lage der Zer-
legungsecken im Inneren von P unterscheiden wir drei Fille. Sie sind in Abbildung 4
skizziert.

Abbildung 4 Zerlegungsecke im Inneren, auf einer Facette und auf einer Kante

1. Fall: Die Zerlegungsecke liegt im Inneren von P (Abbildung 4, links). Wir nennen
sie ¢

Dann ergeben die Kugelvielecke eine Kugel mit Mittelpunkt ¢’. Thre Oberfliche ist 47 und
ihr Beitrag zur L-Invariante ist mod 7 also nicht zu beriicksichtigen.

2. Fall: Die Zerlegungsecke liegt auf einer Begrenzungsfliche (Facette) von P, jedoch
nicht auf einer Kante (Abbildung 4, Mitte). Wir nennen sie ¢”.

Dann ergeben die Kugelvielecke eine Halbkugel mit Mittelpunkt ¢”. Ihre Oberfliiche ist
27 und ihr Beitrag kann wieder mod = vernachlissigt werden.

3. Fall: Die Zerlegungsecke liegt im Inneren einer Kante & von P (Abbildung 4, rechts).

Wir nennen sie ¢”’.

Hier ergeben die Kugelvielecke zur Ecke ¢ gerade ein Kugelzweieck. Seine Oberfliche
ist % -4r = 2a(k). Da auf jeder Kante hochstens endlich viele Ecken vom Typ ¢””
Iiegén konnen, ist ihr Beitrag zur L-Invariante my - a(k) (my € 2N). Daraus folgt die
Behauptung. UJ

Lemma 3 ist entscheidend fiir den folgenden Gedankengang.
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4 Zerlegungsgleichheit

Wir vergleichen die Zerlegungen von zwei Polyedern.

Definition (Zerlegungsgleichheit). Zwei Polyeder P und Q heillen zerlegungsgleich,
wenn es je eine Zerlegung fiir P und fiir Q gibt mit P = PLU P, U ... U P, und
Q=Q UQyU...UQ,,sodass P; kongruentist zu Q; fiiralle | <i <n,n € N.

Ohne einfache und ziemlich einfache Zerlegungen im Detail zu betrachten, wenden wir
uns unmittelbar der allgemeinen Situation zu.

Die Untersuchung erfordert zunichst eine Voriiberlegung, die auch Bestandteil einer ziem-
lich einfachen Zerlegung ist: Wir betrachten ein Teilpolyeder P; und eine Ecke ¢ eines
anderen Teilpolyeders, die auf dem Rand von P; liegt, jedoch nicht Ecke von P; ist. Dann
liegt ¢ im Inneren einer Fliche von P; oder im Inneren einer Kante von P;. In beiden
Fillen kann man eine Zerlegung von P; in endlich viele Teilpolyeder angeben, so dass e
nur noch Ecke eines jeden Teilpolyeders von P; ist. Da die Zerlegungsungleichheit einer
feineren Zerlegung auch die Zerlegungsungleichheit der Ausgangszerlegung impliziert,
konnen wir im Folgenden ohne Einschrinkung annehmen, dass jede Ecke der Zerlegung
auch Ecke eines jeden angrenzenden Teilpolyeders ist.

Proposition 1. Gegeben sind zwei volumengleiche Polyeder P und Q. Wenn alle Kanten-
winkel von P gleich und irrationale Vielfache von mr sind, und wenn alle Kantenwinkel von
Q gleich und rationale Vielfache von &t sind, dann sind P und Q nicht zerlegungsgleich.

Beweis. Wir nehmen an, die beiden Polyeder P und Q sind zerlegungsgleich mit den
Zerlegungen P =P U P,U...UP,undQ =Q,UQ2U...UQ,.

Die Kantenwinkel von P seien pr (p € R\ Q), diejenigen von Q seien gz (g € Q).
Dann haben wir mit Lemma 3

L(P)+ L(P)+---+L(P)= ka -pr (mod 7), my € 2N

kepP
LQ)+L(Q2)+ -+ L(Qw) =D ng-qn (mod z), ny € 2N,
keQ
Daraus folgt
ka - pw = an qn +ngzm, (ng €7Z)
ke P keQ
und
ka p= an -q +ng.
keP keQ

Auf der linken Seite der Gleichung steht eine irrationale Zahl, auf der rechten Seite eine
rationale Zahl. Dies ist ein Widerspruch und die Behauptung folgt. OJ

Proposition | zeigt, dass Wiirfel und regulires Tetraeder nicht zerlegungsgleich sind.
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Proposition 2. Gegeben sind zwei volumengleiche Polyeder P und Q. Wenn das Kan-
tenwinkelsortiment von P neben rationalen Vielfachen von m mindestens ein irrationales
Vielfaches von & enthdlt, und wenn alle Kantenwinkel von Q rationale Vielfache von ©
sind, dann sind P und Q nicht zerlegungsgleich.

Beweis. Wir nehmen an, die beiden Polyeder P und Q sind zerlegungsgleich mit den
Zerlegungen P=PiU P U ... UP,uind Q=01 UQ2U.,,..LUQy, .

Der zu # irrationale Kantenwinkel von P sei ap = pr(p € R\ Q), die zu = rationalen
Kantenwinkel von P seien Vielfache von g, (g, € Q).

Die Kantenwinkel von Q seien Vielfache von g7 (¢ € Q).
Aus Lemma 3 haben wir

L(P)+ L(P) + -+ L(P) = D mg-ak) (modx), my e 2N
keP

LQ1) + L(Q2) + -+ L(Qy) = D i -alk) (mod w), ng € 2N
keQ

und damit fiirein n, € 7

ka k) = an ~o(k) +npm.

keP keQ

Unter Beriicksichtigung der gegebenen Winkelsortimente erhalten wir

mo - oo + Z my - a(k) = an calk)+n,m, (mge2N)
kep,*8 e keQ

mop - ap = an ~a(k) — Z my - a(k) +nym

keC ., > a(k)
Q keP, 2 eQ
und mitn, m € 2N

moy-pn =H-gqu —m - -GpT + Ny

mo-p=n-q—m-qp+ng.

Auf der linken Seite der Gleichung steht eine irrationale Zahl, auf der rechten Seite eine
rationale Zahl. Dies ist ein Widerspruch und die Behauptung folgt. (]

Mit Proposition 2 konnen wir zwei Tetraeder angeben, die gleiche Grundfliche und gleiche
Hohe haben, aber nicht zerlegungsgleich sind (Abbildung 5):

Das Tetraeder T7 heilit auch Roger’s Simplex oder pieh-nao und ist der sechste Teil eines
Wiirfels; die Kantenwinkel sind 7, ’_%, Z (8, 16].

Das Tetraeder 77/ hat als Kantenwinkel % und arccosﬁ [8, 16]. Ebenso wie arccos % ist

auch arccos —= ein irrationales Vielfaches von 7 [8, S. 33ff.].

V3

Da mit 77 und 71l die Voraussetzungen der Proposition 2 erfiillt sind, erkennen wir hier
die elementare Losung des dritten Hilbertschen Problems.
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5 Vereinheitlichung des Satzes von Dehn-Hadwiger und
der Bricard-Bedingung

Wir setzen den Gedankengang iiber die Proposition 2 hinaus fort.

. : % ‘ ) 3 ; ;

Satz (Dehn-Hadwiger, ,Bricard“-Bedingung“). Es seien P und Q zwei Polyeder mit Kan-
tenwinkeln ay,az,...,ap bzw. By, f2, ..., By. Wenn P und Q zerlegungsgleich sind,
dann gibt es natiirliche Zahlen my,m», ...,mpund ny,na, ..., ng, so dass

Zmi-a; - an-/ij = HgT
J

i
fiir ein ganzzahliges ny giiltig ist.

Beweis. Da P und Q zerlegungsgleich sind, gibt es Zerlegungen P = PfU P, U ... U P,
und Q = QU Q2 U...U Q,. Nach Lemma 3 gibt es gerade Zahlen m;, n; € 2N mit

L(P)+ L(P) 4+ L(P) =Y mi-a; (mod )

LQN) + L(Q2) + -+ L(Q) =D _nj-f;  (mod 7)

J

Daraus folgt die Behauptung. 0

Diese Formulierung des Satzes von Dehn—Hadwiger in der elementarisierten Version ist
hochinteressant: Sie erscheint als sog. Bricard-Bedingung, die in der historischen Genese
des dritten Hilbertschen Problems auch eine hohe Bedeutung erlangte. Bereits 1896 wur-
de sie von Bricard angegeben und fiir einen Beweisversuch der Nichtzerlegbarkeit von
regulidrem Tetraeder und Wiirfel verwendet.

Wir bekommen hier die Bricard-Bedingung nicht in einem eigenstindigen Elementarisie-
rungsversuch wie bei Benko, Aigner/Ziegler oder Wittmann [9-11], sondern als kugelgeo-
metrische Interpretation des Ansatzes von Dehn und Hadwiger [3-7]. Insofern fiihrt die

2Dieser Satz heiBt in [11,S.75] nicht mehr Dehn-Hadwiger, sondern ,,Bricard”-Bedingung. Die Beweisfiihrung
erfordert dort ein Perlenlemma und ein Kegel-Lemma, sie wurde bereits in [10] elementarisiert.
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kugelgeometrische Elementarisierung der Dehn-Invariante mit Hilfe der einfacher kon-
struierten L-Invariante beide zuniichst getrennten Ansiitze zusammen und legt das ihnen
zugrundeliegende allgemeinere Prinzip offen.

Zusammenfassend erhalten im dargestellten Gedankengang die Bricard-Bedingung eine
geometrisch-anschauliche Elementarisierung mit Hilfe von Kugelzweiecken an den Poly-
ederkanten und die Dehn-Invariante eine Elementarisierung mit Kugeldreiecken.

Danksagung. Herrn Prof. Dr. Dr. h.c. Albrecht Beutelspacher und Herrn Prof. Dr. Ulm
danke ich fiir wertvolle Hinweise und Anregungen. Den Gutachtern danke ich fiir die
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