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I Elemente der Mathematik

Drittes Hilbertsches Problem und Dehn-Invariante -
Eine Elementarisierung mit Kugeldreiecken

Max Leppmeier

Max Leppmeier studierte Mathematik und Physik für das Lehramt an Gymnasien
an der Ludwig-Maximilians-! Iniversität München und war dann in unterschiedlichen
Funktionen als Pädagoge tätig. Er verfasste das Buch „Kugelpackungen von Kepler bis

heute" und promovierte bei Prof Dr. Ulm und Prof. Dr. Dr. h.c. Beulelspacher an der

Universität Bayreuth über „Mathematische Begabungsförderung am Gymnasium".

1 Einleitung

Das dritte Hilbertsche Problem lautet im Original:

„Gauss spricht in zwei Briefen an Gerling sein Bedauern darüberaus, daß gewisse

Sätze der Stereometrie von der Exhaustionsmethode, d.h. in der modernen

Ausdrucksweise von dem Stetigkeitsaxiom (oder von dem Archimedischen

Axiome) abhängig sind. Gauss nennt besonders den Satz von Euklid, daß

Der Satz von Wallace, Bolyai und Gerwien besagt, dass flächengleiche Polygone in

der Ebene zerlegungsgleich sind. Ob sich zwei dreidimensionale Polyeder in paarweise

kongruente Teilpolyeder zerlegen lassen, stellte sich dagegen als eine bedeutend

schwierigere Frage heraus, die lange offen blieb: In einem Briefwechsel mit Gauß

spitzte Gerling die Fragestellung zu. Gauß legte die Thematik 1844 zur Seite, Gerling
ein gutes Jahr später - ungelöst. Hilbert hob sie 1900 wieder aufs Tableau, Dehn griff
das Problem auf und löste es, noch bevor Hilbert die Liste seiner berühmten Probleme

veröffentlicht hatte. Aigner und Ziegler nahmen 1998 das dritte Hilbertsche Problem
in ihr Buch der „perfekten Beweise" auf. Ein solch „perfekter Beweis", nämlich dass

die Zerlegungsgleichheit von Polyedern gleichen Volumens an eine weitere Bedingung
geknüpft ist, geht anfangs auf Dehn und Boltjanski zurück, später gründet er auf Ideen

Benkos und Bricards. Der Autor der vorliegenden Arbeit gibt nun einen elementaren

Beweis mit sphärischen Vielecken, der die Ansätze der Dehn-Invariante und der

Bricard-Bedingung zusammenführt und vereinheitlicht.



Drittes Hilberlsches Problem und Dehn-Invariante - Eine Elementarisierung mit Kugeldreiecken 59

dreiseitige Pyramiden von gleicher Höhe sich wie ihre Grundflächen verhalten.

Nun ist die analoge Aufgabe in der Ebene vollkommen erledigt worden;
auch ist es Gerling gelungen, die Volumengleichheit symmetrischer Polyeder

durch Zerlegung in congruente Teile zu beweisen. Dennoch erscheint mir
der Beweis des eben genannten Satzes von Euklid auf diese Weise im
allgemeinen wohl nicht als möglich und es würde sich also um den strengen
Unmöglichkeitsbeweis handeln. Ein solcher wäre erbracht, sobald es gelingt,
zwei Tetraeder mit gleicher Grundfläche und von gleicher Höhe anzugeben, die
sich auf keine Weise in congruente Tetraeder zerlegen lassen und die sich auch

durch Hinzufügung congruenter Tetraeder nicht zu solchen Polyedern ergänzen
lassen, für die ihrerseits eine Zerlegung in congruente Tetraeder möglich ist."

[l.S. 266f.]

Dahinter steht eine interessante Ideengeschichte [1-12], Dehn konnte als erster zeigen,
dass ein Würfel und ein volumengleiches reguläres Tetraeder nicht zerlegungsgleich sind

[3], und gab wenig später zwei Tetraeder mit gleicher Grundfläche und gleicher Höhe an,
die nicht zerlegungsgleich sind [4].

Mit anderen Worten: Es gibt keine endliche Zerlegung eines Würfels in ein Sortiment
aus Polyedern, aus dem man ein reguläres Tetraeder aufbauen kann und umgekehrt. Das

gleiche gilt für Tetraeder 77 und Tetraeder 77/ (Abbildung 5).

2 Elementarisierung der Dehn-Invariante

Dehn führte für Polyeder folgende Größe ein [8, S. 39ff.|, die für zelegungsgleiche Polyeder

den gleichen Wert annimmt:

Definition (Dehn-Invariante). Gegeben sei ein Polyeder P. Für jede Kante k bezeichne

l(k) die Länge der Kante k und a(k) den Kantenwinkel1 zu k. d.h. den Winkel zwischen
den beiden an k angrenzenden Flächen. Die Menge aller Kantenwinkel von P einschließlich

7r sei M/'. Für eine beliebige, reelle Obermenge M zu A7/> sei V (M) die Menge aller
Linearkombinationen von Zahlen aus M mit rationalen Koeffizienten und die Funktion /
eine beliebige Q-lineare Funktion / : V(M) -» Q, die die Bedingung f(it) 0 erfüllt.
Dann heißt der Term m f{k) := / (k) f(a(k)) Masse der Kante k (bzgl. f) und

Df(P) :=2>./(*)
keP

Dehn-Invariante von P (bzgl. /).

Wir führen nun eine gedankliche Klonierung eines Kantenwinkels in zwei Kantenwinkel
durch, die wir jeweils an die Ecken schieben (Abbildung 1

1

In der Literatur findet man dafür auch den Begriff „Diederwinkel" 110, 111.
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Abbildung 1 Übergang Kantenwinkel - Kugeldrcieckswinkel

Die Kantenwinkelbögen bilden somit an den Ecken sphärische Vielecke, die den Weg zum
einfacheren und neuen Begriff der L-Invariante bereiten.

Definition. Gegeben sei ein Polyeder P mit Kantenwinkeln a (k). Für jede Ecke e

bezeichne Ke die Menge der Kanten, die e enthalten. Dann heißt

ee := ^ a(k) - (\Ke\ - 2)-n
keKe

sphärischer Exzess an der Ecke e und

L(P)
ee P

L-Invariante von P.

Aus der sphärischen Trigonometrie wissen wir, dass bei einer Einheitssphäre der sphärische

Exzess an der Ecke e genau der Fläche des sphärischen Vielecks entspricht, das durch
die Kantenwinkelbögen an der Ecke e gebildet wird. Denn es gilt:

Satz (Flächeninhalt eines sphärischen Vielecks). Auf der Einheitssphäre sei ein sphärisches

Vieleck gegeben. Es bezeichne K die Menge der Ecken des sphärischen Vielecks; für
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eine Ecke k e K sei a(k) der dazu gehörige sphärische Innenwinkel. Dann gilt für den

Flächeninhalt A des sphärischen Vielecks:

A i: := a(k) — (\K\ — 2) 7t.

keK

Beweis. Einen schönen, direkten Zugang findet man in [ 13, S. 3ff.]. Ein weiterer Beweis ist

in [14, S. 22ff. | ausgeführt. Allein wegen der auf Kupfertafeln angefertigten Abbildungen
lesenswert ist der historische Beweis in |15J.

In geometrischer Hinsicht bezeichnet die L-Invariante eines Polyeders daher die Flächensumme

der sphärischen Vielecke an den Ecken. Wir betrachten zwei Beispiele.

L-Invariante eines Würfels W. Wir erhalten an jeder Ecke e den sphärischen Exzess

n n
c.e 3 TT —

2 2

und damit für die L-Invariante

L(W)= =4*-
ecW

Die sphärischen Exzesse an den acht Ecken ergeben also genau eine Kugel(oberfläche).

Abbildung 2 L-Invarianle eines Würfels

L-Invariante eines regulären Tetraeders Till (Abbildung 1). Wir erhalten als sphärischen

Exzess an einer beliebigen Ecke e

se 3 a — n.

Eine elementargeometrische Überlegung ergibt a — arccos(i) und damit
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und für die L-Invariante

L(TIII) ^ ee — 4 yi arccos^-^ — n j 12arccos^-^ — 4%.

eeTlII
V 3 / 3

Hier ist für die Frage der Zerlegungsgleichheit von entscheidender Bedeutung, dass

arccos(j) ein irrationales Vielfaches von n ist |8, S. 33ff.|, |9, S. 669], [ 10, S. 501.

3 Polyederzerlegungen und Eigenschaften der L-Invariante

Wir betrachten eine beliebige Zerlegung eines Polyeders in Teilpolyeder. Hier gibt es

Zerlegungen, die keine neuen Teilpolyederecken generieren, aber auch Zerlegungen, die neue
Ecken im Inneren (oder auf einer Facette oder auf einer Kante) des Ausgangspolyeders

erzeugen.

Definition. Gegeben sei ein Polyeder P und eine Zerlegung in endlich viele Teilpolyeder
P\, P2, Pn- Eine Zerlegung heißt einfach, wenn jede Ecke eines Teilpolyeders auch

Ecke des Polyeders ist: e e P, ==> e e P

Eine Zerlegung heißt ziemlich einfach, wenn keine Ecke eines Teilpolyeders P; im Inneren
einer Kante des Polyeders P liegt und wenn jede Ecke eines Teilpolyeders P; auch Ecke
eines jeden angrenzenden Teilpolyeders ist.

Abhängig von der Art der Polyeder-Zerlegung haben wir unterschiedlich starke Invarianzen

der L-Invariante. Wir beginnen mit der stärksten Invarianz.

Lemma 1 (Additivität und starke Invarianz der L-Invariante). Gegeben sei ein Polyeder
P und eine einfache Zerlegung in endlich viele Teilpolyeder P\, P2,..., Pn- Dann gilt:
L(P) L(Pi) + L(P2) + --- + L(P„)

Beweis. (Der Beweis ist anschaulich klar.) Wir betrachten eine Ecke e des Polyeders P und

das von den dazugehörigen Kantenwinkeln bestimmte Kugelvieleck mit der Oberfläche ee.

Wir betrachten die Teilpolyeder Pej mit der gemeinsamen Ecke e.

Abbildung 3 Additivität und Invarianz
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Diese erzeugen an der Ecke e auf natürliche Weise eine Zerlegung des Kugelvielecks mit
Oberfläche ee in die Teilkugelvielecke mit Oberfläche Eep also ee X, ee, •

Mit der Definition der L-Invariante erhalten wir:

L(P) 2> ZZ«.
eeP eeP i

L(P\) + L{Pf) + • • + L(Pn) ^ et'i + 2L f-e2 + • + Ee" S /L f'e< '

C|S/'i e2 eP2 e„<=P„ i e-, ePi

Wir gruppieren die Summe mit Blick auf die betrachtete Ecke e um und erhalten

L(P]) + L(P2) + --- + L(P„) zz sei L(P).
es P i

Die Invarianz wird etwas schwächer, wenn eine zusätzliche Ecke im Inneren oder auf einer
Facette entsteht. Dann gilt:

Lemma 2 (Ziemlich starke Invarianz der L-lnvariante). Gegeben sei ein Polyeder P und
eine ziemlich einfache Zerlegung in endlich viele Teilpolyeder P\, Po,..., P„. Es sei nK

die Summe aus der doppelten Anzahl der Ecken aufden Facetten von P und der vierfachen
Anzahl der Ecken im Inneren von P. Dann gilt: L(P) + nK n L(P\ + L{Pf) d h

L(Pn).

Beweis. Da jede Ecke der ziemlich einfachen Zerlegung auch Ecke eines jeden angrenzenden

Teilpolyeders ist, können wir den Beweis wie in Lemma 1 führen. Dabei ist zu
beachten, dass eine zusätzliche Ecke im Inneren von P zu einer Vollkugel mit Oberfläche
47t und eine Ecke auf einer Facette von P zu einer Halbkugel mit Oberfläche 2n führt
(Abbildung 4, links bzw. Mitte).

Die Invarianz wird noch einmal schwächer, wenn zusätzliche Ecken auf den' Kanten
zugelassen werden.

Lemma 3 (Schwache Invarianz der L-Invariante). Gegeben sei ein Polyeder P und eine

Zerlegung in endlich viele Teilpolyeder P\, P2,, P„. Jede Ecke eines Teilpolyeders P,

sei auch Ecke eines jeden angrenzenden Teilpolyeders. Fürjede Kante k e P sei a (k) der
Kantenwinkel. Dann gilt:

L(P) Z 2 a(k) (mod k).
keP

Und es gibt gerade Zahlen nik e 2N so dass gilt:

L(P\) + E(P2) d h L(P„) • a(k) (mod 7t).

keP

Beweis. Die Zerlegung des Polyeders P in die Teilpolyeder P\, Pj,..., Pn ergibt zu den

Ecken e von P noch weitere Ecken; wir nennen sie Zerlegungsecken. Wie im Beweis für
Lemma 2 ist jede Zerlegungsecke auch Ecke aller angrenzenden Teilpolyeder.
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Die erste Aussage ergibt sich folgendermaßen aus der Definition: Es ist

L(P) a(k) — (|Ke\ — 2) • n
ce/' e<=PkeKe

und damit

L{P) ZI a(k) (mod n).
eePkeK,.

Da jede Kante zu zwei Ecken gehört, haben wir

L(P) 2 a(k) (mod n).
keP

Die zweite Aussage können wir folgendermaßen zeigen: Hinsichtlich der Lage der

Zerlegungsecken im Inneren von P unterscheiden wir drei Fälle. Sie sind in Abbildung 4

skizziert.

1. Fall: Die Zerlegungsecke liegt im Inneren von P (Abbildung 4, links). Wir nennen
sie e'.

Dann ergeben die Kugelvielecke eine Kugel mit Mittelpunkt e'. Ihre Oberfläche ist An und

ihr Beitrag zur L-Invariante ist mod n also nicht zu berücksichtigen.

2. Fall: Die Zerlegungsecke liegt auf einer Begrenzungsfläche (Facette) von P, jedoch
nicht auf einer Kante (Abbildung 4, Mitte). Wir nennen sie e".

Dann ergeben die Kugelvielecke eine Halbkugel mit Mittelpunkt e". Ihre Oberfläche ist

In und ihr Beitrag kann wieder mod n vernachlässigt werden.

3. Fall: Die Zerlegungsecke liegt im Inneren einer Kante k von P (Abbildung 4, rechts).
Wir nennen sie e'".

Hier ergeben die Kugelvielecke zur Ecke e'" gerade ein Kugelzweieck. Seine Oberfläche
ist An 2a(k). Da auf jeder Kante höchstens endlich viele Ecken vom Typ e'"
liegen können, ist ihr Beitrag zur L-Invariante am* a(k) (am* e 2N). Daraus folgt die

Behauptung.

Lemma 3 ist entscheidend für den folgenden Gedankengang.
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4 Zerlegungsgleichheit

Wir vergleichen die Zerlegungen von zwei Polyedern.

Definition (Zerlegungsgleichheit). Zwei Polyeder P und 0 heißen zerlegungsgleich,
wenn es je eine Zerlegung für P und für Q gibt mit P — Pi U Pi U U P„ und

Q — 01 u O2 U U 0„ so dass P, kongruent ist zu O, für alle I < i < n, n N.

Ohne einfache und ziemlich einfache Zerlegungen im Detail zu betrachten, wenden wir
uns unmittelbar der allgemeinen Situation zu.

Die Untersuchung erfordert zunächst eine Vorüberlegung, die auch Bestandteil einer ziemlich

einfachen Zerlegung ist: Wir betrachten ein Teilpolyeder P, und eine Ecke e eines

anderen Teilpolyeders, die auf dem Rand von P, liegt, jedoch nicht Ecke von P, ist. Dann

liegt e im Inneren einer Fläche von P, oder im Inneren einer Kante von P,. In beiden

Fällen kann man eine Zerlegung von P, in endlich viele Teilpolyeder angeben, so dass e

nur noch Ecke eines jeden Teilpolyeders von P, ist. Da die Zerlegungsungleichheit einer
feineren Zerlegung auch die Zerlegungsungleichheit der Ausgangszerlegung impliziert,
können wir im Folgenden ohne Einschränkung annehmen, dass jede Ecke der Zerlegung
auch Ecke eines jeden angrenzenden Teilpolyeders ist.

Proposition 1. Gegeben sind zwei volumengleiche Polyeder P und 0. Wenn alle Kantenwinkel

von P gleich und irrationale Vielfache von x sind, und wenn alle Kantenwinkel von

0 gleich und rationale Vielfache von x sind, dann sind P und 0 nicht zerlegungsgleich.

Beweis. Wir nehmen an, die beiden Polyeder P und Q sind zerlegungsgleich mit den

Zerlegungen P P\ U P? U U P„ und 0 Q\ U Q2 U U On.

Die Kantenwinkel von P seien px (p eR\ <Q), diejenigen von 0 seien qx(q e Q).

Dann haben wir mit Lemma 3

L(P\) + L(Pi) -\ f L(P„) ee ym/c pn (mod n), e 2N
keP

b(0\) + L(Ü2) ~\ f L(Qn) qn (mod x), nk e 2N.

keQ

Daraus folgt

y.fflit • px y nt qX + nn x, (nw e Z)
kl> keQ

und

y »U P y nk q +nK.
keP keQ

Auf der linken Seite der Gleichung steht eine irrationale Zahl, auf der rechten Seite eine
rationale Zahl. Dies ist ein Widerspruch und die Behauptung folgt.

Proposition I zeigt, dass Würfel und reguläres Tetraeder nicht zerlegungsgleich sind.
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Proposition 2. Gegeben sind zwei volumengleiche Polyeder P und Q. Wenn das
Kantenwinkelsortiment von P neben rationalen Vielfachen von n mindestens ein irrationales
Vielfaches von n enthält, und wenn alle Kantenwinkel von Q rationale Vielfache von n
sind, dann sind P und 0 nicht zerlegungsgleich.

Beweis. Wir nehmen an, die beiden Polyeder P und Q sind zerlegungsgleich mit den

Zerlegungen P P\ U Pi U U P„ und 0 0\ U Qi U U Q„
Der zu n irrationale Kantenwinkel von P sei aq — pn(p e IR \ Q), die zu n rationalen
Kantenwinkel von P seien Vielfache von qpjt(qp e Q).
Die Kantenwinkel von Q seien Vielfache von qn(q e Q).

Aus Lemma 3 haben wir

L(P\ + L{Pf) + 1~ L{Pn) *^mk a{k) (mods:), ///; e 2N

kei>

b(Q\) + L(Q2) + + L(Qn) ^nk a(k) (mods'), nk 6 2N

iteQ

und damit für ein nn e Z

^ mk a(k) n/c a(k) +nKJt.
keP keQ

Unter Berücksichtigung der gegebenen Winkelsortimente erhalten wir

mo • «o + ^ mk a(k) ^nk • a(k) + nKn, (mo e 2N)

*e/\^eQ ksQ

mo-ao ^ nk a(k) - ^ mk a(k) + n„n
keQ kl','^1Q

und mit n, m e 2N

n/o pn — n qn — m qpn + nn n

n/0 p — n q - m qp + n„.

Auf der linken Seite der Gleichung steht eine irrationale Zahl, auf der rechten Seite eine

rationale Zahl. Dies ist ein Widerspruch und die Behauptung folgt.

Mit Proposition 2 können wir zwei Tetraeder angeben, die gleiche Grundfläche und gleiche
Höhe haben, aber nicht zerlegungsgleich sind (Abbildung 5):

Das Tetraeder 77 heißt auch Roger's Simplex oder pieh-nao und ist der sechste Teil eines

Würfels; die Kantenwinkel sind f, j, f- (8, 16].

Das Tetraeder 77/ hat als Kantenwinkel f und arccos |8, 161. Ebenso wie arccos ^ ist

auch arccos 4^ ein irrationales Vielfaches von n [8, S. 33ff.|.

Da mit 77 und 77/ die Voraussetzungen der Proposition 2 erfüllt sind, erkennen wir hier
die elementare Lösung des dritten Hilbertschen Problems.
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5 Vereinheitlichung des Satzes von Dehn-Hadwiger und
der Bricard-Bedingung

Wir setzen den Gedankengang über die Proposition 2 hinaus fort.

Satz (Dehn-Hadwiger, ,,Bricard"-Bedingung2). Es seien P und Q zwei Polyeder mit
Kantenwinkeln a\, 012, o-p bzw. ß\, ß2,..., ßq. Wenn P und Q zerlegungsgleich sind,

dann gibt es natürliche Zahlen ni\, mi,..., mp und n \, «2,..., nq, so dass

"1 - Ynj ßj nEn
' j

für ein ganzzahliges nn gültig ist.

Beweis. Da P und 0 zerlegungsgleieh sind, gibt es Zerlegungen P — P\ U P2 U U P„
und Q — Q\ U Q2 U U Qn. Nach Lemma 3 gibt es gerade Zahlen m,, n j e 2N mit

L(P\) + L(P2) H h L(P„) Y,mj «, (mod n)
i

L(Q\) + UQï) H + L(0„) s y nj ßj (mod n)
j

Daraus folgt die Behauptung.

Diese Formulierung des Satzes von Dehn-Hadwiger in der elementarisierten Version ist

hochinteressant: Sie erscheint als sog. Bricard-Bedingung, die in der historischen Genese

des dritten Hilbertschen Problems auch eine hohe Bedeutung erlangte. Bereits 1896 wurde

sie von Bricard angegeben und für einen Beweisversuch der Nichtzerlegbarkeit von

regulärem Tetraeder und Würfel verwendet.

Wir bekommen hier die Bricard-Bedingung nicht in einem eigenständigen Elementarisierungsversuch

wie bei Benko, Aigner/Ziegler oder Wittmann [9-11], sondern als kugelgeometrische

Interpretation des Ansatzes von Dehn und Hadwiger [3-7], Insofern führt die

2Dieser Satz heißt in 111, S. 751 nicht mehr Dehn-Hadwiger. sondern „Bricard"-ßedingung. Die Beweisführung
erfordert dort ein Perlenlemma und ein Kegel-Lemma, sie wurde bereits in (10] elementarisiert.
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kugelgeometrische Elementarisierung der Dehn-Invariante mit Hilfe der einfacher
konstruierten L-Invariante beide zunächst getrennten Ansätze zusammen und legt das ihnen

zugrundeliegende allgemeinere Prinzip offen.

Zusammenfassend erhalten im dargestellten Gedankengang die Bricard-Bedingung eine

geometrisch-anschauliche Elementarisierung mit Hilfe von Kugelzweiecken an den

Polyederkanten und die Dehn-Invariante eine Elementarisierung mit Kugeldreiecken.

Danksagung. Herrn Prof. Dr. Dr. h.c. Albrecht Beutelspacher und Herrn Prof. Dr. Ulm
danke ich für wertvolle Hinweise und Anregungen. Den Gutachtern danke ich für die
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