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Constructions of isospectral circulant graphs

Katja Monius

Katja Ménius studied mathematics at the University of Wiirzburg, where she presently
is also doing her PhD. She is mainly interested in algebraic graph theory and number
theory, particularly in spectra of graphs and their algebraic and number-theoretical
properties.

1 Introduction

We consider circulant graphs. A graph is said to be circulant if it has a circulant adjacency
matrix, that is a matrix of the form

(&) Cl 2 vt Cp-1
Cn—1 €Q cp o Cp=2
Chn—2 Chp—1 €O - Cp-3

C1 c3 €3 wis Co

with entries ¢; € {0, 1}. Since each row is a cyclic shift of the first row, such a matrix is
completely determined by specifying its first row. Therefore, with every circulant graph

Konstruktionen isospektraler Graphen, d.h. Graphen, deren Adjazenzmatrizen das glei-
che charakteristische Polynom besitzen, gehen auf die beriihmte Frage “Can you hear
the shape of a drum?” von Mark Kac von 1966 zuriick. Tatséchlich finden isospektrale
Graphen heutzutage Anwendung in der Chemie und sind seitdem auch Bestandteil ma-
thematischer Forschung. Herkommliche Konstruktionsmethoden sind jedoch nicht auf
sogenannte zirkuldre Graphen anwendbar. Zirkulidre Graphen sind Graphen mit einer
zirkuldren Adjazenzmatrix und lassen sich eindeutig iiber Teilmengen von Restklas-
senringen definieren. Da die Eigenwerte zirkulirer Graphen Summen von Einheits-
wurzeln sind, hiingt das Problem der Konstruktion isospektraler Graphen eng mit der
Frage zusammen, wann Summen iiber unterschiedliche Einheitswurzeln gleich sind.
In der vorliegenden Arbeit werden aus der Literatur bekannte Beispiele zirkuldrer Gra-
phen verallgemeinert und liefern damit auch Konstruktionen neuer solcher Beispiele.
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we can associate a set § C 7, (where Z, denotes the ring of integers modulo n) of the
positions of non-zero entries of the first row of the adjacency matrix of the graph (i.e.,
the set of all indices i with ¢; = 1). Respectively, we denote by (S), the corresponding
graph and call S the connection set of (S),. Two vertices x, y € Zj, are adjacent in (S},
if and only if x — y € §. All graphs in this paper are assumed to be without loops or
multi-edges. Note that a circulant graph (§), is undirected if and only if § = —S mod n.
These notations are adopted from Mans et al. [10, 11].

Circulant graphs are Cayley graphs on cyclic groups and play an important role, for ex-
ample, in computer science [3] and physics [16].

The isomorphism problem for general graphs is known to be in NP, which means that,
to now, there is no efficient algorithm running in polynomial time which decides whether
two graphs are isomorphic or not. However, in 1967 Adam [1] conjectured that this prob-
lem is easy for circulant graphs. We can easily see that if there is an m € Z; (where Z;,
denotes the group of units in Z,) such that S = mT = {m -t | t € T}modn, then
(S), and (T'), are isomorphic. If such m exists, we say that § and T are proportional, and
write § ~ T. Addm conjectured that the converse is also true, i.e., that for all isomor-
phic circulant graphs (S), , (T), with connection sets S, T C Z, we already have that
S ~ T. But in 1970 Elspas and Turner [5] found a quite simple counterexample. Ever
since, further counterexamples were given, for example, by Alspach and Parsons [2] or
Mans, Pappalardi and Shparlinski [11]. However, in 2004 Muzychuk [12] proved that the
isomorphism problem for circulant graphs is nor NP-hard. He constructed an algorithm
which recognizes isomorphisms between circulant graphs in polynomial time.

In this paper, we study a somehow weaker property of circulant graphs, namely isospec-
trality rather than isomorphicity. Two graphs are called isospectral if they have the same
spectrum, i.e., their corresponding adjacency matrices have the same multi-set of eigenval-
ues. [sospectral graphs are also of great interest, especially in chemistry for the construc-
tion of isospectral molecules [9], [14], [15]. Clearly, every pair of isomorphic circulant
graphs provides a pair of isospectral circulant graphs. But, as shown by Brown in [4],
there exist infinitely many isospectral non-isomorphic circulant graphs as well. The rather
general methods for constructing isospectral graphs presented by Godsil and McKay [8],
however, do not apply to circulant graphs. Therefore, the goal of this paper is to investigate
isospectrality of circulant graphs. Given connection sets S, 7 C Z,, we introduce some
techniques to decide whether the corresponding graphs (§), and (T'),, are isospectral or
not without determining their spectra explicitly. These techniques arise from generalizing
known examples of isospectral circulant graphs and provide constructions of new exam-
ples as well. In Section 2, we investigate some necessary conditions for isospectral circu-
lant graphs. In Section 3, we provide some sufficient conditions or rather give some explicit
constructions to find isospectral circulant graphs. Our constructions yield non-isomorphic
as well as isomorphic graphs, even though, our aim is to find non-trivial examples of
isospectral circulant graphs, i.e., circulant graphs with non-proportional connection sets.
Thus, every pair of isospectral graphs which arises from one of our constructions is ei-
ther non-isomorphic or provides a counterexample to Addm’s conjecture. Furthermore,
we show that every such pair relates to vanishing sums of roots of unity.
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2 General observations and notations

It is well known that the spectrum of a circulant graph (§),, is given by

.\ Kk
_ J _
spec((S),) = Ze(n) |0<k<n-1},

Jjes

where here and in the following e(x) denotes exp(2zix). A proof for this can be found in
the book of Zhang [17]. Therefore, two circulant graphs (S), and (T'), are isospectral if
and only if for every [ € Z, there is an [’ € Z, such that

>efy) = Ze()

and vice versa, i.e., there exists a bijection (permutation) o : Z, — %, such that

Se3) = (i) e Xe3) = 2e(h)

ses teT s€eS tel

for all | € Z,. We shall call such a bijection a spectral bijection of § and T. Note that
for k = 0 the corresponding eigenvalue of (S), equals the number of elements in S, and
that two circulant graphs have the same number of edges if and only if their connection
sets have the same cardinality. This in combination with the fact that isospectral graphs
have the same number of vertices and edges yields o (0) = O for every spectral bijection
o . Therefore, we neglect this case here and elsewhere.

A further basic observation is stated in the next lemma. Therein, for a set
& = 185 55 ) 'C. iy

we write ged(S, n) instead of ged(sy, ..., S, n).

Lemma 1. Let (S), and (T), be isospectral circulant graphs. Then,
ged(S, n) = ged(T, n).

Proof. The graph (§), consists of gcd(S, n) isomorphic connected components. Each
component is a circulant graph and, therefore, regular. By the Perron-Frobenius theo-
rem (see [7], for example), each component has the eigenvalue A = #S = #T and all
other eigenvalues are smaller than 4 in absolute value. The spectrum of (S),, is the union
of the spectra of its connected components. Thus, (S), contains exactly ged(S, n) times
the eigenvalue A. Equivalently, 4 is an eigenvalue of (T'),, of multiplicity ged(T, n). Since
(S), and (T'), are isospectral, the statement follows. O

Now, we define the polynomial G 7 r(x) by

Gsrarl) =D x"=> x"

sES teT
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(where all exponents are understood to be taken modulo n). Let (S),, and (T),, be isospec-
tral circulant graphs with connection sets S, T C Z, and spectral bijection ¢, and let @
be a primitive nth root of unity. Then, we observe that Gg 7 »)(w) = O foralll € Z,,
since (S), and (T), are isospectral, whereas G 1.1, (1) €quals the zero polynomial if and
only if § = ¢ (1)T mod n. The following theorem shows that the latter statement is already
equivalentto S ~ 7

Theorem 2. Let (S), and (T),, be isospectral circulant graphs with S = [T mod n for any
(not necessarily invertible) | € Z,,. Then, S and T are proportional.

Proof. By Lemma 1, we already know that ged(S, n) = ged(T, n) =: g. Therefore, S =
[T modn is equivalent to
S/g=I1(T/g)modn/g,

where, for example, S/g denotes {s/g | s € S}. From this equation, we deduce that [ is
invertible in Z, /¢, because otherwise we would have

ged(U(T/g),n/g) > 1 = ged(S/g, n/g).
Now, let k := x(n/g) + [ forx € Z, with 0 < x < g. Then, it follows that
kT = (x(n/g)+ DT =x(n/g)T +IT =xn(T/g) +IT =IT = Smodn.

Note that ged(n,[)|g since !l € Z;‘;/g. Therefore, we may write n = pj--- py with some
N € N and not necessarily distinct prime numbers p;, and, without loss of generality,
g=pi---pmform < Nandl = p|---prqy---q; forr <m,z € Nand not necessarily
distinct prime numbers g; # p; forall j = 1,..., N. Now, let x be the product of all

prime numbers in the set {p,+1, ..., pm}\{p1, ..., pr}, then

k=x(n/g)+l=xpmy1--pN+Pp1- - prg1---q;.

Since [ and n/g are relatively prime, we have {py+1, ..., py}N{p1, ..., pr} = 9. Hence,
every prime divisor p; of n either is a divisor of x(n/g) but not a divisor of /, or vice versa.
Thus, it follows that ged(k, n) = 1 and, therefore, S ~ T, since § = kT modn. d

Note that a similar approach was already undertaken by Litow and Mans [10] within their
proof of their main result and this is also stated in the paper of Mans, Pappalardi and
Sharplinski [1 1, Lemma 3]. But neither of them gave a complete proof. Our constructions
of non-trivial examples of isospectral circulant graphs rely on this necessary condition.

Since it seems to be difficult to gain further necessary conditions for isospectrality of
circulant graphs, in the following we investigate sufficient conditions and present some
explicit constructions and examples thereof.

3 Main results

Our basic idea for the construction of non-trivial examples of isospectral circulant graphs
is stated in the following theorem. It generalizes an example given by Godsil, Holton and
McKay [6] (here presented as Example 4).
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Theorem 3. Assumen € Nand S, T C Z, such that there exists

l e Z: with Ggr1(@) =0

for a primitive nth root of unity w. If there is an m € Zy such that S = mT mod % for

every prime divisor p of n, then (S), and (T), are isospectral.

Proof. We define

lk, if ged(k,n) =1,

0 Ly —> Lp, k— )
mk, otherwise.

Since I, m € Zy, the map o is bijective. We show that o is a spectral bijection of S and 7.
Letw := e(nl). If ged(k, n) = 1, then w! is still a primitive nth root of unity and, therefore,
Gs.T ko) (@) = Gs.1.1.1(@*) = 0. On the other hand, if p is a divisor of k and n, then
we may write k = kp and we observe that

Zw.v-k _ Ze(%) _ Ze(mix) _ Zw;.n(k),

SES s€eS P teT 14 teT

since S = mT mod % This yields G, 1 k.0 k) (@) = 0 for all k£ with ged(k, n) > 1. (]

This theorem does not require the existence of an m € Z; satisfying S = mT modn.
Therefore, it provides also non-trivial examples of isospectral circulant graphs:

Example 4. Let n = 20,
$=1{2,3,4,7,13,16,17,18} and T ={3,6,7,8,12,13,14,17}.

Then, for! € {3,7, 13, 17}, we have that G5 7.; ;(w) = O for every primitive nth root of
unity w, but S # [T mod 20. Since § = T mod 10 and § = T mod 4, by Theorem 3 we get
that (S), and (T'), are isospectral but non-proportional.

This example was stated by Godsil, Holton and McKay [6] and seems to be the first pub-
lished example of isospectral non-isomorphic undirected circulant graphs. The graphs are
shown in Figure 1.

To find such an example, first of all, we construct sets S, T C Z, such that there exists
| € Zy with

Gsrai(w) =0 and Gg 71, # 0 (as a polynomial) (1)

for every primitive nth root of unity w. Therefore, the remaining part of this paper is an
investigation of sets S, 7' C 7Z,,, which satisfy (1). On top of that, we show that Theorem 3
does not provide a necessary condition for the construction of isospectral circulant graphs
with non-proportional connection sets.
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(a) § =1(2,3,4,7,13,10, 17, 18} by T =1{3,0,7,8,12,13, 14, 17}

Figure 1 Non-isomorphic isospectral circulant graphs.

The main idea for constructing sets S, T C Zj, satisfying (1) is to use subsets Eq € Z,
which have the property that
> e(2) =0 @)
n

Jekq
Indeed, we will see that every non-trivial pair of isospectral circulant graphs arises from
such sets or rather can be constructed starting from such a set. Motivated by Rédei [13,
Theorem 10], we call a set Eq satisfying Equation (2) equilibrium set. In his paper, Rédei
gave a complete characterization of these sets. In the following, we will use his result, but
adapt some notations.

For fixedn € N, the set {0, 1, ..., n — 1} is an equilibrium set, i.e.,
n—1 .
Ze(i) =0.
, n
j=I

Therefore, if d is a divisor of n, the set {0, 'Z’, - T (A 1)5} is also an equilibrium set,
since

)-5e(h) -0
Y (Y =2ed)=0
jel0,5,25,....(d-1)4] j=0

Finally, multiplying both sides by e(%), forany a € Z,, yields the equilibrium set

n n n
{a,a+3,a+22,...,a+(d— 1)31 =: [z, n.d].

Rédei called such sets trivial equilibrium sets. We observe that every trivial equilibrium set
is an arithmetic progression in Z, of length d with common difference  for some divisor
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d of n. In the following, we denote an arithmetic progression of length d with common
difference % and initial value a by |a, n,d] € Z,. Note that if d is not a prime number,
then, for each prime divisor p of d, the arithmetic progression [a, n, d] equals the union
Uﬂf [ai, n, p] for suitable values of a;. Therefore, we call [a, n, d] indecomposable if d
is a prime number and decomposable else. Furthermore, it is clear that, for every k € Z,

with ged(k, d) = 1, the set k - |a, n, d] is still an equilibrium set. If ged(k,d) > 1 butd
does not divide k, then we may write

ged(k,d) d
k *  } b d = ‘, » —-——
la,n,d] ,.LJI [a, n gcd(k,d)]

for suitable values of a;, i.e., k - [a, n, d] remains an equilibrium set as well.

Now, we construct non-trivial examples of isospectral circulant graphs by using such trivial
equilibrium sets. We use the idea of Theorem 3 as a foundation, but can weaken the second
condition of this theorem by exploiting the properties of equilibrium sets. The following
theorem provides a sufficient criterion for two circulant graphs to be isospectral:

Theorem 5. Let n € N and d be a divisor of n. Furthermore, define

r r

Eqg := Ul'ai,n,d] and Eqp = U[b,-,n,d],
i=l i=1

for some a;, b; € Zn and pairwise disjoint sets [a;, n, d] resp. |b;, n,d]. Finally, let § :=

S'"UEqg and T := T"UEqy for §', T' C Z, with S’ NEqg = ¥ = T’ N Eqy such that

there exists | € 7% with ' = IT' mod n. If there is some m with ged(m, 7) = 1 such that

S =mT mod %, then the circulant graphs (S}, and (T), are isospectral.

In particular, if Bqg # [ Eqy mod n for every | € 7' with §' = [T'modn, then S and T
are non-proportional.

Proof. We define
lk, ifd¢tk,
mk, ifd|k.

Sincel € Z; and m € Z’}_‘}, the map o is bijective. We show that ¢ is a spectral bijection
a

Ly —> Ly, k—

of S and T. Let w := e(1). If d is not a divisor of k, then k - Eqg and [k - Eqy are still
equilibrium sets (as mentioned above Theorem 5) and, therefore,

Gs 1@ = D 0 = 3070 = 3 ok 3 gtk o,
se§ teT ses’ reT’

On the other hand, if d is a divisor of k, we may write k = xd. Since, by assumption,
S =mT mod %, we observe that

Sot=Te(F) = (") = Zor .

seS ses d (eT d 1€T

Thus, we get that G 7 4.4 k) (@) = 0 also in this case. 0
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Note that if (S), is undirected, then [a,n,d] C § if and only if [—a,n,d] € S. In the
following we write [+a, n, d] instead of [a, n,d|U|—a,n,d].

Example 4 arises from both, Theorem 3 and Theorem 5. But there are also examples of
non-trivial isospectral circulant graphs which satisfy Theorem 5 only:

Example 6. The first known counterexample to Addm’s conjecture, published by Elspas
and Turner [5], suffices Theorem 5: Letn = 16, S = {1,2,7,9,14,15} and T =
{2,3,5, 11, 13, 14}. Then, § and T are non-proportional and we may write S = {2, 14} U
[£1,16,2]and T = {2, 14} U [£3, 16, 2]. Since we easily observe that S = 3 - T mod 8,
the graphs (S),, and (T),, are isospectral by Theorem 5.

Unfortunately, as Examples 4 and 6 show, the theorem neither guarantees that the isospec-
tral graphs are non-isomorphic nor that they are isomorphic.

We can easily generalize Theorem 5 by considering distinct divisors of n. In the following,
let P(M) denote the power set of a set M.

Theorem 7. Letn € Nandd,, ..., d, be divisors of n which are pairwise relatively prime.
Furthermore, let

z T z Ky
Eqq := U U[a,—_,-,n,dj] and Eqp = U U[b,-j,n,djl,

j=li=I j=li=1

for some ajj, bjj € 7y, and pairwise disjoint sets |a;j,n,d;] resp. |bij, n,d;]. Finally, let
S :=8UEqgand T :=T'UEqy for §',T' C Z, with S’ NEqg =@ = T' N Eqy such
that there exists | € 7} with S = [T modn. If for all x € P({1,...,z)\{B} there is

some my with
n
gcd(m,,, —) =]
njen dj

such that

n
S"=m,; T mod ——
" l_ljerr d]

and
rj rj
n
U U[a,'j, n,dijl=my U Ulb,'j, n,d;] mod ﬁ,
jemi=1 jemi=1 RS
then the circulant graphs (S), and (T), are isospectral.

In particular;, if Eqg # | Eqp modn for every [ € 7} with ' = IT' modn, then S and T
are non-proportional.

Proof. We define

lk, ifdjtkforall j=1,...,z,

0 Ly —> 2Ly, k> . ‘
myk, if [];c,dj|kandd;jtkforall j¢m,
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forallw € P({1, ..., z)\{¥}. By the same argument as in the proof of Theorem 5, we can
see that o is bijective. We show that & is a spectral bijection of S and 7. Let w := e(%). If

no d; divides k, then k - Eqg and [k - Eqyp are still equilibrium sets and, therefore,
Gs.rholy (@) =D o’ =D oW =" - H o =0.
sS€S tetl ses’ tel’

Now, letz € P({l,...,z}H)\{¥} and define Eqgg, := Uje:r U:-'illa,-j, n,dj| and Eqy, =

Ujer U 1bij.n,dj1 16 [1;cp dj | kand d; { & forall j ¢ z, then k - (Eqg \Eqs, ) and
myk - (Eqy \Eqr,) are still equilibrium sets due to the fact that the d;’s are relatively
prime. Since, by assumption, we have

n n
Eqs, = mz Eqr, mvod ———— and S =m, T mod ——,
[jex di [ljer d;

it follows that

Z oh= 3 e(%): 3 e(’"rr””frr): > We®

seS'UEgs, seSUEgs, dr teT'UEqr, dr teT'Ulqr,
ford,: = ]_]’-6,[ dj and k; = k/dy. Thus, we get G5 7 k.4 (@) = 0. O
Example 8. Let n = 120 and let Eqq := [£5,120,5] U [£9, 120, 2] and Eq; :=

[+1, 120, 5] U [£27, 120, 2]. Furthermore, let § := {34,806} UEqg and T := {2, 118} U
Eqy. Since

120 120

[+5,120,5] = 5 [£1, 120, S]mod? and {34,860} = 5-{2, 118} mod <
120 120

[£9, 120, 2] =13 - [£27, 120, 2] modT and {34,86} =13 - {2, 118} mod B

120 120
Eqg = 5-Eqy modﬁ and {34,86} = 5- {2, 118}modﬁ,

the undirected circulant graphs (S}, and (T'), are isospectral by Theorem 7. In particular,
S and T are non-isomorphic (i.e., also non-proportional).

So far, we only used trivial equilibrium sets in order to construct isospectral circulant
graphs. Now we also want to consider so-called non-trivial equilibrium sets. Rédei [13,
Theorem 10] proved that every non-trivial equilibrium set arises from the trivial ones. We
reformulate his theorem in the following way:

Lemma?9. Let py, ..., pr,P1,-.., ps be (not necessarily distinct) prime divisors of n and
let

r y
A=\ Jlai,n, pil, B = JIbj.n. pjl
i=] =i

for some values a;,b; € Zp, i = 1,...,r, j = 1,...,5. If B C A, then A\B is an
equilibrium set. In particular, all equilibrium sets are of this form.
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This lemma not only includes every equilibrium set, but, on top of that, also yields a
construction of sets S, ' C 7, satisfying (1): we observe that for every prime divisor p of

n we have ; j
()= 2 () 3

Jjela,n,p\{a}

Therefore, every equation of the form G r 1 ;(w) = 0 with a primitive nth root of unity
w 1s equivalent to an equation of the form

Z w = 0,

JeEq(S.T.0,p)

with an equilibrium set Eq(S, 7', /, p) which depends on S, 7', p and [ only. Thus, in par-
ticular, we can construct every pair of sets §, T C Z,, satisfying (1) from an equilibrium
set. This yields a new way to construct non-trivial isospectral circulant graphs:

Theorem 10. Let n € 4N and Eq := |J;_,[ai, n, d] be an equilibrium set for pairwise
disjoint sets |aj, n,d] and for d being an even divisor of n such that all elements of Eq
are odd. Let S be a set containing exactly half of the elements of each set |a;, n, d] for
i =1,...,randlet either T := Eq\S or T := Eq\S + 5 = {t + 5 | t € Eq\S}. Then,
for every set Z C 27y, the circulant graphs (S U Z), and (T U Z), are isospectral.

Proof. Let T = Eq\S and define

k+ 75, ifd{k,

T > Tk
OL o = H[k, itd | k.

Obviously, the map o is bijective. We show that o) is a spectral bijection of § U Z and
TUZ.

We observe that for every k € 7, with d { k we have that
J\k Sk 1\*
0=2e(,) = 2e(,) +2e()
Z n Ze n * Ze n
J€Eq S€S tel

or, equivalently,
Ky k t k t k+%
e(z) =-2e(c) =2e(-)
n n - \pn
s€S teT el

since every t € T is odd. On top of that, we get
Z\k+E zk  z Z\k
< & < < <
Z (n) Z (n 2 Z n
zeZ zeZ zeZ

since 2 | z forevery z € Z. Therefore, we have Gsuz 17Uz k.0,(k) = O for all k with d | k.

Ifd | k foreveryi = 1,...,r, we observe that k - [a;,n,d] = {ka;, ..., ka;} modn.
Since § and T contain the same number of elements of each set |a;, n, d], it follows that
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k-S§ = k- T modn and, therefore, we get Gsuz Tuz.x.0,(k) = 0. Thus, oy is a spectral
bijectionof SUZ and T U Z.

Now, let T = Eq\S + 5 and define

k+35, ifdfkand2 ]|k,

02 : Ly = Ly, k> .
k, otherwise.

Then, for all k € Z, with d { k, we get

= o) = xe) - o),

Jjekq SES

resp.

sy f— Bk e (D). if2tk,
Ze(;) :_Ze( ”2) :[ Zrel (;;)k "2)[;(
i o —2here(y) . W21k

If k is odd, then G suz 17Uz k.02(k) = O obviously holds true, and since

1Kk t k+% Z\ K z k+%
S2e() =2e(p) o 2e(h) =2e()
-~ \n - \n n - \p

T tel zeZ ze”Z

te

the equation also holds true for all even k.

By the same argument as in the first case, we also have G suz 17Uz k0, (k) = 0 forall & with
d | k. Therefore, o7 is a spectral bijectionof SUZ and T U Z. ]

Note that the condition that all elements of Eq are odd is fulfilled if and only if a; is odd
foreveryi = 1,...,r and :—} is even. Therefore, we assume n € 4N. We remark that this
theorem provides an explicit construction of isospectral circulant graphs. Unfortunately,
we cannot generalize this result simply by exploiting Equation (3) with p > 2.

Example 11. Let n = 60 and Eq := [£3, 60, 6]. Furthermore, define

§ = {+23, 433, 453} € Eqg
and
Ty := Eq\S = {£3, £13, £43} resp. T2 :=Eq\S + 30 = {£13, £33, +43}.

By Theorem 10, we get that for every set Z with 2 | z for all z € Z the circulant graphs
(SuZz),, (MuZz),and (To U Z), are isospectral. In particular, these graphs are undi-
rected if and only if Z = —Z modn. If, for example, Z = {2, 58}, then the circulant
graphs (SU Z),, (T1' U Z),, and (T> U Z),, are isospectral with pairwise non-proportional
connection sets. Moreover, we observe that (S),, is neither isomorphic to (77), nor (T>),,.
whereas (71), and (7>), are isomorphic. Figure 2 shows the non-isomorphic isospectral
circulant graphs (S), and (71),.
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(@) § = {423, 433, £53} (b) Ty = (3, £13, £43)

Figure 2 Non-isomorphic isospectral circulant graphs.

4 Final remark

Apart from the theorems we proved in this paper, it seems that there are still several other
ways to construct isospectral circulant graphs. For example, we can think about combining
some of these results or exploiting the equilibrium sets in more complex ways as it is done
in the following example:

Example 12. We consider an example of a pair of non-isomorphic isospectral circulant
graphs with directed edges stated in the paper of Elspas and Turner [5]. Letn = 32and § =
{1,2,6,18,22,25}, T ={2,6,7, 18,22, 31}. We observe that the subset {2, 6, 18,22} C
S, T is an equilibrium set which may be written as {2, 6, 18, 22} = (2,32, 2] U |6, 32, 2],
i.e., the union of two arithmetic progressions with common difference % = 16. One
has that {1,25} = 31 - {7,31} mod 32, but there is no m with ged(m, 32—2) = 1 satisfy-
ing {2,6, 18,22} = m - {2,6, 18,22} mod 16 and {1, 25} = m - {7,31} mod 16. There-
fore, Theorem 5 does not hold for this example. But the point here is that 2 - {1, 25} =
{2, 18} mod32 and 2 - {7, 31} = {14, 30} mod 32 are equilibrium sets of common differ-
ence 16 as well. Thus, it suffices to find m with ged(m, %) = | such that {2, 6, 18, 22} =
m-{2,6, 18,22} mod8 and {1, 25} = m - {7, 31} mod 8 hold true. Because then, the map

3k, if41k,
oLy —> VL, k> ’ l f

mk, if4|k
provides a spectral bijection of S and T'. Indeed, m = 7 fulfills these requirements.

It remains an open problem to give a complete characterization of isospectral circulant
graphs.
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