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1 Introduction

If in 1862 J. Wolstenholme [13] proved that the numerator ofthefraction 1 + 4 H 1- jj^ry

when reduced to its lowest terms [for a prime n > 3] is divisible by n2, today one simply
considers each term of the sum as the inverse ol'an element of Zn2 and sets ^T" j 0

(mod n2). The viewpoint has changed but the fascination remains intact. Combining the

previous result with the fact that © 0 (mod //) allowed him to prove 1

(mod n3). At the dawn of the XXth century, J.W.L. Glaisher |3, 4] extended Wolsten-
holme's theorem, (2^Z] ' (mod p3) to Z/(4 for primes p > 3 and connected it to

Der sogenannte erste Fall des Satzes von Fermât besagt, dass xp + yp f zp für
Primzahlen pm\tp fxyzgilt. Bereits im Jahre 1847 realisierte Cauchy (siehe [12, p. 155]),

dass
' ' ip 4 0 (mod p) folgt, wenn dieser erste Fall für eine Primzahl p

nicht gilt. Diese Summe wiederum ist über den kleinen Satz von Fermât verknüpft
mit den Bernoulli-Zahlen und einem Resultat von Genocchi: X/=7'^2 J5 —

(mod p). Derartige Summen wurden zu einer Quelle der Inspiration für Sylvester,
Wolstenholme, Morley, Glaisher, Mirimanoff, Vandiverund Lehmer. In der vorliegenden

Arbeit zeigt der Autor

^ J] ^ ~^pBp~3 {mod p2y
0 <i<j<p

i odd, j even

Eine Version dieser Summe modulo p war vor Kurzem die Grundlage für einen
elementaren Beweis der Kongruenz von Morley.
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Bernoulli numbers by obtaining (2^' j1) 1 — |/?3 Bp-3 (mod p4). More than half a century

later, Selfridge and Pollack [10] identified the first irregular prime p dividing Bp-3.
Another thirty years after, J. Mcintosh [10] defined Wolstenholme primes as verifying one
of the three equivalent conditions:

ii) p|ßp-3

1 (mod p4)

Lf J

j
iü) X! ^3

0 ^mod p)

l<*<Lfl+l

and thanks to the third condition confirmed the sole existence of two Wolstenholme primes
smaller than 2-108. He also conjectured an infinite number of such primes for probabilistic
reasons. Since then, no other Wolstenholme prime has been identified. A detailed account
of the history of Wolstenholme-type congruences from the XIXth to the XXIth century is

contained in 1111.

Recently, an elementary proof of Morley's congruence theorem [ 1], 4r^i ± ^ Pp~i ^

(mod p3), was found depending on the fact that

— 0 (mod p) for primes p > 3.
i i0 <i<j<p

i odd, j even

Our aim is to prove that

^ Ï7 " ~^pBp~3 (mod p2y
0 <i<j<p

i odd, j even

For example, in the case p 7, one has

———; + 7—-7 + 7— h ——7 + + ~z~~p 25 + 37 + 4-1+4-5 + 30+ 18
1-2 1-4 1-6 3-4 3-6 5-6

196 0 (mod 72).

Our presentation relies almost exclusively on classical properties of Bernoulli numbers
and polynomials from |8, Ch. 15] and [5] that we recall below.

2 Prerequisites

If we define in the standard way

p 1

Sm(p).= YJ'"' (0
i- 1
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then we have

m+1

(m + 1 )Sm(p) Bm+l(p) - Bm+X 2^ [ i
(2)

where the Bm are the mth Bernoulli numbers given by

oo n_^_ y< 1 Ùk[

and Bm(x) := X!T=o ('")Btxis the /nth Bernoulli polynomial, which verifies the
particular property

Bn m (21" - 1)Ä„. (3)

Summt Petejlatum.

fr 00 inn +fn.
fnn 00 fn8 -f- s n*
fi>} 00 i"4 +i»' + inn.
/"« X t«< +fn* + i n5

y»5 X i»6 +i»8 + /i»4 *—î'ixn.
/n6 X 4-i»6 + in' *_ i „5 a|e 4-A«.
/n' X j[»8 +i"7 +Tîn6 un4 s)c + yjn».
/n8 X J»? +i»8 + f»' *—&»' * + *—7'5n.
/n? Xï^»IO+i»' + U" *—T>6 3»c-»-i»4 *—ï'ï»#'
/»,0XT'T»"+â:B,0+ |n9 sjc— i »7 jjc—^n' s)c +fa"'
Quin imö qui legem progreflionis inibi attendus infpexerit, eundem
ctiam conrinuare poterit ab/q; bis ratiociniorum ambagibus : Sumtâ
enim t pro poteftatis cujusiiber exponente, fit fumma omnium n*£u

/«•30 rr,"'4"'+ iBC+ ß"t-3+
L" r-t t— ' '-) .r-4 Qj' — 5 - c.c—l.c—i.t — }.c~4.t^ )-c~*

2 I 4 5 6 ».5.4.5.6.7.8
D»<-7 &

Figure 1 Jacob Bernoulli, Ars Conjectandi, 1713

With permission of Bibliothèque de Genève, Kcl52, p. 97

3 Four progressive lemmas

We will start by recalling a very particular case of Leudesdorf's theorem [2, 5], that we

prove for completeness.

Lemma 1. Ifp is prime greater than 3, n is even and p — 1 / n then

Z ^ - Z ^=0 (mod//). (4)

!</<p-l |<;<2z!
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Proof. Let g denote a generator of Z*. Then

x- 1 xr- 1 1 xr- 1

7 — 7 — 7 — =0 (mod p),Z—I in Z—i (t/j\n o" ill
\<i<p-l \<i<p-\ * \<i<p-\

since l/gn f I (mod p). If« is even then i" (p — i)" (mod p) and so the second

equivalence of (4) follows.

Our second equivalence was already known to Genocchi in 1852 [12, p. 121] and generalized

extensively in 2000 by Zhi-Hong Sun [14, Theorem 5.2.].

Lemma 2. If p is prime and p > 3 then

V i -2ßP-3 (mod p). (5)
t

1

0 <i<^-

Proof. Working in 77
p we transform the summand in (5) into an expression of the form 1

by applying Fermat's little theorem, and follow up by the identities (2). (3) and (4):

Bp-A~)-BrJZ h Z "-4 -w^) ^(-
<i< V (i r '

EE ^ (ßp-3^) - ßp-3) ^ ((24"' " l)ßp-3 - ßp-3) "2ßp-3.

The next congruence is proposed as an exercise by Hao Pan in [7],

Lemma 3. If p is prime and p > 3 then

(mod p). (6)
0 <i<j<pl '
j even

Proof. We proceed as above

1

_ ip 3

_ Sp-T,(j) _ Bp_2(./) — ßp-2
•*—-1 /-/' -1 ; •"—-1 j j (p — 2)

0 <i<j<p 0 <i<j<p 0 <j <p 0<j<p
j even j even j even j even

P-2

=-1
0 <j<p J k=0 v 7

j even

-jZ Z ('t2)®"'-3-' le,J 2'"
£=0 0<j<p

j even
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(2m)k+2'

If 1 < k < p — 3 and k is odd then Bk 0. Moreover if k is even, Leudesdorf's

congruence (4) implies the last summand is 0. We are therefore left with the two terms
k I and k p — 3 to examine.

For k 1 we get -\{-2)=l\{-2Bp 3) gßp-3 by using (5).

For k p — 3 we get — j(—2)Bp-j^- — jßp_3 by using Fermât.

Hence lßp-3 + (—ißp-3) — |ßp_3 gives the desired result.

Our final lemma follows the same approach as the two preceding ones, but its proof
requires all three conditions (3), (4) and (5).

Lemma 4. Ifp is prime and p > 3 then

x - 1 1

Ç ¥] lb5" (mod p).
0<i < j <p
i and j even

Proof.

V ' -
1 V 1

-
1 V2—1

i2 j 2 3 in211 23
; ^ „ «/ r, p t\

m p-3

0<i<j<p
i even,j even

0 <m<n<^ 0 <m<n<&7

p+l

J_ Bp..2(f) - Bn-2 _ ^ Xj[-=o ('a )£A»p ~ * ßP-2
23 ^ (/> — 2)h ~ fS Z-*

P-3

n= 1

P 1 1

(p-2)n
p+i _, /oi

n=l X—0 V 7 A -<) V 7 n=ln=l A- (I

P-3

/.--A s /Jt=0

P-3

Bkti

p-l
:

z
n l

'

P I

4 12 + 2'A-t-2

-izC^hz^-^zC-2)
A=0 v 7 n=l A=0 v y

Bk2k.

p-l
In the first term we use the facts that Bk 0 for all odd k > I and X«=i — 0

(mod p) when k is even and k < p — 3, by (4). Hence we are left to examine the terms,
k 1 and k p — 3. By (5) we get

1

¥' ' {~2BI> 3) + ~Y T7.Br 3 (mod p).
1

Ï6
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Concerning the last term, we use (3):

p-2
l1' ~\R,/yk ?P~2R„

p-2 /£(v) Bt2k 2p~2Bp-2(-) (2 - 2>'-2)Bp_2 0,
7=0

since /? — 2 is odd and p > 3.

Theorem. If p is prime and p > 3 then

^ i7 ~ ~^pBp~3 (mod /;2)'

0<i<j <p
i odd, j even

Proof. By exploiting three kinds of bijections as in [1], we see that

(7)

1

3 y - y • y yo<U<p " o<Ttj<P " o<U<v 0 " 'h o<U<p "ip + ' " ']
i odd, j even i odd, j even i odd, j even i odd, j even

y- P P ~ i + j" o<h<p,,/ '• /•

i odd, j even

ZP — i + j _ y^
1

("00 — i)(i - j)2 ~ P ^ (j — 02(—0
0 <i<j<p v /v •// 0 <i<j<p yj J ;

1 odd, j even i odd, j even

p V ^ (mod /r),Z ' lZ /0<i <7 </?
i odd, j even

where in the last passage we replaced j — i by i and p — i by j.
Therefore, combining the above with our two previous lemmas gives the final blow:

_ P_ y^ _ P_ y-i _} y^1
1 \

i j ~ 3 2— j2 : ~ 3 I 2—i j2 : 2—i ;2 ;

0 <i<j<p 0<i<j<p ' 0 <i<j<p ' 0 <i<j<p
i odd, j even i odd, j even j even i and j even

f (-§a'-jy"y --sy n
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