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Zigzags with Burgi, Bernoulli, Euler and
the Seidel-Entringer-Arnol’d triangle

Philippe Henry and Gerhard Wanner

Philippe Henry completed his PhD at the Ecole Polytechnique fédérale de Lausanne
under the supervision of Nicolas Monod in 2010. His main interests include group
theory and history of geometry.

Gerhard Wanner’s Thesis was completed 1965 in Innsbruck under the supervision of
Wolfgang Grobner. His main interest is since then numerics of differential equations.

1 Jost Biirgi’s Artificium of 1586

“For many hundreds of years, up to now, our ancestors have been using this method because they
were not able to invent a better one. However, this method is uncertain and dilapidated as well as
cumbersome and laborious. Therefore we want to perform this in a different, better, more correct,
casier and more cheerful way. And we want to point out now how all sines can be found without
the troublesome inscription [of polygons] (...)."

(Jost Biirgi, Fundamentum Astronomic, fol. 34r-v, [14, p. 140])

A spectacular discovery of a lost manuscript of Jost Biirgi (1552—-1632), entitled Funda-
mentum Astronomice, was made in the University Library of Wroctaw by Menso Folkerts

In diesem Beitrag werden mannigfache Zusammenhiinge aufgezeigt zwischen dem
kiirzlich wiederentdeckten Artificium von Jost Biirgi, den iterierten Evolventen von
Johann Bernoulli und der Kembinatorik alternierender Permutationen von Désiré
André. Dabei ergeben sich in ganz natiirlicher Weise einfache und anschauliche Be-
weise. Die Sinusfunktion, die Eulerschen und Bernoullischen Zahlen spielen dabei
eine zentrale Rolle und erlauben eine geometrische Herleitung der Reihen fiir tan x

- und sec x, welche die exponentiell erzeugende Funktion der Eulerschen Zickzackzah-
len darstellen. Diese letzteren kommen bereits bei Johann Bernoulli vor. Das Seidel—
Entringer—Arnol’d Dreieck lidsst sich auf alternierende Injektionen erweitern, was einen
Beweis des Boustrophedon Theorems erlaubt sowie eine zweite geometnsche Herlei-
tung der obigen Reihen.
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in 2013'. This manuscript contains a forgotten iterative method which is also discussed
in the papers Waldvogel [30], Folkerts, Launert, Thom [14] and Nicollier [25]. Biirgi’s
work was crowned by his Canonis Sinuum, an impressive table of 90 - 60 = 5400 sine
values with a precision of 5 hexadecimal digits (approximately 9 decimal digits) obtained
using trigonometric identities and interpolations. This table fills 36 pages of the Funda-
mentum Astronomice (fol. 46v—64r), which was never published and rediscovered only four

centuries later.
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60° | 9 312 10290 338688 11146776
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Figure 1 Biirgi’s “Exemplum” in Fundamentum Astronomice (fol. 36r, facsimile from
http://www.bibliotekacyfrowa.pl/dlibra)and the same calculation in base 10 (from left to right

and from top to bottom).

Biirgi’s Artificium or Kunstweg. Biirgi’s “skilful method” allows the simultaneous calcu-

lation of n sine values (so = 0, 51, ..

I Biirgi’s manuscript can be consulted on the website of the Wroclaw digital library:
http://www.bibliotekacyfrowa.pl/dlibra.lt has been carefully edited by Launert [23].

., Sp) on an equidistant grid of the interval [0°, 90°]
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“diirch Theiliing eines rechten winckels in soiiil theil als man will [partitioning the right
angle in as many parts as one likes]” [23, p.43]. Biirgi explains his method with calcu-
lations in base 60 for n = 9 in the “Exemplum” of Figure 1, to which we have added
the same values in base 10 together with little arrows indicating the order in which the
calculations are performed. The method is graphically displayed for n = 4 in Figure 2.

;o
54| N\ Y s4—s3+c%
c71 = 3 <
2 2 / ’
53 ( S3:S2+C%
C%ZC%+S3 <
52 < 55, =8 dcx
2
c3 =c¢s5+ 52 <
2 2 ;
51 < S1:C%
ci=ci+s1|C
, : 2 2 ,
o : R sp =0
0° -00°0

Figure 2 Biirgi’s algorithm (n = 4).

From arbitrary (but cleverly chosen) initial values
(s0,51,...,8)=1(0,2,4,6,7, 8,9, 10, 11, 12), (1)

for the sine values (to be scaled by 1/s,), Biirgi’s algorithm computes iteratively

1
N €l = 25n <S,’{+1:s,’<+ck+% (k=0,...,n—1)

= = 1 1 4 2)
<Ck—%_ck+%+sk (k=n—1,...,1) 50:0

first by downward additions for approximations to the cosines (cn_%, C,_3,...,C1) at
2 2

the mid points, followed by upward additions for new approximations to the sines (s, =
0,s],...,s,) (again to be scaled by 1/s;). From here, the method is iterated until a
sufficiently high precision is reached. The starting value B = % in (2) is due to

n+% - _Cn—%'

The method is apparently motivated by the relations (in modern notation)
cos(x —d) —cos(x+3d) = 2sinxsind, sin(x+dJ) —sin(x—dJ) = 2cosxsind, (3)

which Biirgi called Prosthaphaeresis and proved in his Chapter 3 by two geometrical fig-
ures [23, p.25]. In order to avoid tedious multiplications, Biirgi neglected the constant

factor K = 2sin ¢ throughout his calculations and normalized the final values Sém) )

’ Sl b)
Sém), ... by one single division to s,s_'") = I

The method seems to converge very well. For example, we see from the data of Figure 1
that the sequence of fractions
63 2064 67912 2235060

— =0.1740, —— =0.17368, —— = 0.1736498, ————— = 0.173064825,
362 11884 391086 12871192
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converges rapidly to sin 10° = 0.17364817766693. The maximal errors of all nine values
are

| Sinus | Sinus 2 Sinus 3 Sinus 4 Sinus 5
err [0.11602540 0.00414695 0.00015533 0.00000617 0.00000025
ratio 27.978 26.698 25.195 24.423

with an approximate convergence rate of 1/25.

Proof of Convergence. Since the method remained unknown through all these centuries,
sound proofs of convergence were only given by contemporary authors (see, for example,
[14], [30] and [25]) in the framework of modern theories. We give here a proof, as far as
possible back in history, based on the early work of Joseph-Louis Lagrange (1736-1813)
[21] and [20]. We reverse the formulas in (2) and obtain

— ¢ ¢ — _ ! I
Cord =81 ~ Sk = k=61~ 6t = =Sy T 285 — S

valid fork=1, ...,n—1. For k=n, we have 5, = an_% = 2(s), — s,’l_l). This determines

alinearmap M : s = (s1,...,8,) — s’ = (s],...,s},). For example, in the case of
Figure 2, the inverse of this map is given by

S1 2 —1 S;

2] |-1 2 -1 55 gt

o 1 2 S;f; or s=M"s". (€))
54 -2 2 Si

For discussing the question of convergence of s +— s’ — s” > s” ... we search an
eigenvector v = (v1,....,0,) of M, i.e., Mo = Av or v = AM ~'o. For all rows of the
matrix in (4), except the first and the last, this gives

O = —AUg41 + 240k — Avg—1  Or  vpyq + (% — 2) v + 051 =0. (5)

This formula remains valid forall k = 1, ..., n, if we extend the vector v with vy = 0 and
2
Up+1 = Unp—1""

How Lagrange found the eigenvectors of such linear maps ? The 23 year old Lagrange
was the first to deal with a similar problem in his work on the theory of sound?. His
method of discovery for finding an eigenvector can be explained as follows: equation (5)
is a second-order linear difference equation and can be solved by the ansatz vy = r*
(another idea of Lagrange, see [20, p. 26]), which leads by linear superposition to

vszrf+Br§ with ry,ra» roots of r2+(%—2)r+1=0.

By Viete’s formulae rirp, = 1, thus o, = 1/r;. Since v9p = 0, we get B = —A and
v = A - (rk — ;lf). If r is real, the condition v,4+1 = v,—1 cannot be satisfied. Therefore

2“(. ..) je considére que ces équations étant toutes semblables, on peut les exprimer généralement par (...) [l

consider that these equations are all similar, we can express them generally by (...)].” [21, p. 74]
3121, Sect. 1, Chap. IIT]. See also [16, pp. 28-29] for other boundary conditions and physical details.



Ph. Henry and G. Wanner 145

r must be on the complex unit circle, i.e., r = ¢'? for some real ¢ (which we choose
between 0 and 7). This leads, using Euler’s famous equation?, to

o =A- (e — e_ik¢) =2iA -sinkg.
The condition v, 41 = v,—1 becomes, using (3),

sin(n + 1)¢ —sin(n — 1)¢p = 2cosngsing =0.

Since sin ¢ # 0 (otherwise all vy = 0) we have cosn¢ = 0 so that n¢p = %, 37”, 57”, etc.
This allows n different values for ¢p = z”—n, 3—,’2, e (2"—2",1')1 and the eigenvectors become

(see Fig. 3, left)

k 3k Sk
DIE') — sin %, v,gz) =igin 2—}:, v,ES) = sin 2—:, k=1,...,n). (6)
From % — 2 = —(r; + r2) (again Viete's formulae) we get % =2— (% +e7i?) =

2 —2cos ¢ = 4sin® % and thus the corresponding eigenvalues satisfy

| -2 T 1 i 37[ 1 - 57[

—=4sin“"—, —=4sin“"—, —=4sin"—, .... 7

A1 4n A2 4n 13 4n )
The n eigenvectors (6) span IR" and are orthogonal for (x, y) = ;’;ll x;yi + %x,, Yn.

|
10

| |
Y})’ 30

»©)

—1-

Figure 3 Eigenvectors oM @ ) and 0@ for n = 9 (left; the stars represent the extensions vy = 0 and
Up1 = bp_1; convergence of the iteration s, 5", s”, s, ... with A} = 1.7 and 15 = 1.1 (right).

Conclusion. We see that Biirgi’s method is the same as the so-called “Power iteration”
method for the eigenvector problem which is today standard knowledge. If 4| > Ay > ---

4«(_..) comme nous I’enseignent les expressions exponentielles imaginaires des sinus & cosinus, si familicres
aujourd’hui aux Géometres [as we learn from the imaginary exponential expressions of sine and cosine, so
familiar today to the Geometers]” [21, p. 79].
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and we write s = bjp) + bo @ + ... (see Fig. 3, right), we have

Ao\ m
s = b M 4 p AW @ 4. = (b]v(l) + (_1_2) by @ + .. )
1

Thus we see that if by # 0, we have convergence in direction to the eigenvector with the

greatest eigenvalue 4. After normalization by | /s,S'”), the convergence is pointwise to the

eigenvector vV (because v,(,l) = 1), hence the coordinates of this normalized vector are

sin g—ﬁ as claimed by Biirgi. If b, # 0, the convergence speed is (j—?)’".

For Biirgi’s initial guess (1) we find the coefficients b; by numerical calculations:
10.970508, 0, 0.466576, —0.253301, 0, —0.124191, 0.101454, 0, 0.083971.

So we have by miracle />, = 0° and the convergence speed is (i—?)’", i.e., from (7):

in? Z 2 X
Gl 1 SIN~ 555 1 1

— =9), — =90), — . ]
sin? 2—7(‘; 23.5128 (n ) sin? % 24.9848 (n ) 25 (n— 00) (8)

This last limit would be g if by # 0.

We shall see in the next sections that Biirgi’s method is closely related to a discovery of
Johann Bernoulli (1667-1748).

2 Johann Bernoulli’s successive involutes

“Ce théoréme remarquable est di a Jean Bernouilli (...). [This remarkable theorem is due to
Johann Bernoulli.]”

(Siméon Denis Poisson, [27, p. 440])

One hundred and ten years after Biirgi’s death appeared the Opera Omnia [6] of Johann
Bernoulli in four volumes published by Marc-Michel Bousquet (1696-1762). In volume
IV (*“Quo continentur ANEK AOTA”) are collected unpublished manuscripts which Johann
judged interesting for posterity. The article CLXV describes a surprising method “succes-
siva et alternante” for “cyclometricum” (calculation of 7 ) based on a fixed-point property
of the cycloid®.

Bernoulli’s Theorem. Let ADB (see Fig.4) be an arbitrary curve (“curva qualibet™)
whose tangents in A and B are perpendicular. Produce the tangent B F and the parallel
axis C A to infinity. Then describe through A the involute A E F of the curve AD B ending
in F, describe through F the involute FG H of the curve AE F ending in H and continue
alternately to infinity. Bernoulli claims (without a direct proof) that at infinity we so obtain

3This phenomenon occurs for all n = 0 (mod 3).

%De evolutione successiva et alternante curva cujuscunque in infinitum continuata, tandem Cycloidem gen-
erante; schediasma cyclometricum [On the successive and alternating development of any curve continued to
infinity eventually generating a cycloid; cyclometric scheme] [6, TV, pp. 98—108]. A handwritten version of this
text (without title) is conserved in the University Library of Basel [7].
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identical cycloids (“Cycloides identicas”), whatever was the initial curve’. According to
Joseph E. Hofmann (1900-1973) “‘es ist das erste Beispiel, das erkennen lésst, dass sich
eine Folge wohldefinierter Kurvenbogen einem Grenzbogen niihert®”,

Figure 4 Illustration from [7, fol. 245] (above), and a modern drawing (below).

Computations for the case of a circle. Johann computes the arc lengths for the case when
the curve AD B is the quarter of a circle with radius 1. We use the abbreviations’

T
arcAB:—z—:a, artc AF =¢,, arc HK ={,, arc MO = (3, etc.

We choose a point D on AB and denote by x the angle between the normal to the curve
at D and the axis C A. The successive tangents to these curves lead to a polygon D, E, G,
I, L, N, P, R, etc. We denote the arc lengths AD, AE, HG, HI, ML, ..., which are all
zero for x = 0, by 51(x), £1(x), s2(x), t2(x), 53(x), ... respectively!’. By the property of
the involutes, the tangents DE, EG, GI, IL, ... are equal to sy, {1 — t1, 82, {2 — 12, etc.
By the property of orthogonal angles, all dark angles are mutually equal and equal to dx,
hence we obtain

dty = sy dx, ds>, = (f] —t1)dx, dir = s2dx, dsz = (fz —t;z)dx, e s W

Beginning with s;(x) = x (the arc length of the circle), we integrate these equations one
after the other as

£ x) = [0 GEYEE,  SelE)= /0 € — 1;(8)) dé ©

7We shall see that the cycloids are identical for all initial curves, if we normalize the distance CB to 1. Also,
s1(x) is only well defined, if the slope of the curve decreases monotonically.

8118, p.98].

9The notation a is that of Joh. Bernoulli, Euler [11] and Legendre [24]. For €y, €5, (3, ... Bernoulli wrote b, ¢,
e, ... (see Fig. 5) while Euler, Lagrange and Legendre used b, b, b”, . . ..

10Euler [11] wrote for these functions s, £, s', £/, ",
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and obtain (for a reproduction of Johann’s formulas, see Fig. 5)

x2 -— si(x) = x
nx) = 51 E
2 a4 =ek=tx -3
nx)=b% -7 3 E (10)
2 R 53(x) = €ax -t +g
t3(x) = 522—! —514—! % xé' 15- E
T sulE) = st ~lag i~
ZZb./. —y
AL= S.é.- ‘/{)2 2 .
PR Y. Al §=d42-Su
it 26 Mz 22, 2
22 _ 28, ¢ Ly 2
M= =g Y Z7. 3 Iar o
'3, 3. =€{'*%+-~5__’._ 2

& -]
"ZK“ “ -1,.7.1‘ t.‘,-u[ +5.-Y 9‘ x >‘ .

som

Figure 5 Facsimile reproduction of Johann’s formulas for 5;(z), 17 (z) [7, fol. 245v].

The conditions t;(a) = {j or 0 = {; — t;(a) allow the lengths £; to be computed recur-
sively as

2 2
a a
0=t -5 =h=5
2 4 4
a a Sa
e = 11
O=6—bg +7 =h=7 o)
2 4 6 6
a a a 6la
0253 ——525 +€|E —a =>£3=T etc.

Finally, after calculating s (a) from (10), we get the list of all the arc lengths:

a’ 2a3 5a* 16a° 61a°
AF=— FH="—- HK="—, KM= —, MO =
2! 3! 4! 5! 6!

, etc. (12)

(see Johann’s longer list in Fig. 6 and the still longer list in (26) below).

Rectifying the circle. Equating, for example, the curve lengths VII and VIII, and “divi-
dendo per a’”, we obtain a = %%2 and hence 2a = & =~ ‘:—gg—g = 3.14224, so that “nostra
analogia tantillo minor est, quam Archimedea” [6, IV, p. 103]. The best approximations are
obtained by comparing the curves XII-XIII and XIITI-XIV with the result

70271 263111
890 = 3.14159003 < & 626311168

—— =3.141 :
22368256 - 199360981 Beses (13)
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Curva I ==a(r) con V= @ (520
s I =2 () ....IX-—a“(-—ﬁé—;)
III——d’(;—z—g) o Xemato (R
ceen IV =a (1234) cor s Xlmma (2372
cres V=2 5(1234g) ""XH—“‘“( 2’?7,?.2.??..12)
vere Vle=a® (15— ) 3 Z) e Xmmd”(l.z.z:.sf?‘.zf.g..rg)
ce s s VII=ﬂ7 (i‘f?“‘“‘?) S XIV:414(121§935°93114)

Figure 6 Table from [0, IV, p. 106]: all values are correct.

Remark. We can also compare the values contained in Figure 6 with the known length of

the limiting cycloidal arc, which is ;‘:— (see (24)). So, by extracting a high-order root we get
for “Curva XIV” the better value

2141
" ”/m — 3.14159266818 withanerrorof 1.46-107%.  (14)

But obviously Johann preferred to calculate 7 “sine extractione radicum, & sine compara-
tione Cycloidis™ [6, IV, p. 102].

Figure 7 The initial curve corresponding to Biirgi’s values (1) and involutes.

Relation with Biirgi’s algorithm. If we introduce for the superior part of the curve lengths
in Figure 4

c,-(x)=€j—r,-(x)=[0 Sj(f)df—/o s,-(«:)d«::/ 5 () de,
then Bernoulli’s algorithm (9) becomes nicely symmetric
¢ () = (/ GEWIE, )= <f0 ¢i(@)de (15)

and turns out to be identical with Biirgi’s algorithm (2) in the case when n — oo and
when the constant K = 2sind, which Biirgi had at first neglected, becomes the d&. We
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further introduce cq(x) for the derivative of s (x), which is also the corresponding radius
of curvature. Biirgi’s clever initial choice (1), where the values s; increase twice as fast
below 30° than above, would correspond to

2 2 if05x<% 2 2x if05x<% -
CO(X)_E' 1 if%ixia, SI(X)_E. (16)

x+% if%fxfa.

The factor % assures the condition CB = 1. The corresponding initial curve then con-

sists of two circles of radii % and % respectively. Rapid convergence towards “Cycloides
identicas” can be observed in Figure 7.

3 Convergence proof

“(...) il est, en général, plus long et plus pénible de résoudre complétement une question relative
a un nombre indéterminé de points matériels, que la méme question dans laquelle on suppose
immédiatement ce nombre infini [It is, in general, longer and more painful to solve completely a
question related to a finite number of material points, than the same question in which this number
is immediately supposed infinite.]”

(Siméon Denis Poisson, Théorie mathématique de la chaleur, 1835, p. 171)

The first proof for Bernoulli’s affirmation is due to Leonhard Euler (1707-1783) in [11].
Lagrange, in an unpublished manuscript from 1780, asserts that Euler’s method “doesn’t
bring and cannot bring in mind all the light and all the conviction that one can desire on
this subject” and writes his own proof. Later proofs were given by Legendre [24, pp. 541-
544] and Poisson [27, pp.431-440]. But it was not until 1844 that appeared the first short
proof by Puiseux [28, pp. 397-399]'!.

All these proofs show, by various methods, that the arc lengths converge to
sj(x) — Const-sinx (andalso c¢;(x) — Const-cosx) forj— oc. (17)

With this information, say, for the curves M LK in Figures 4 and 7, we know at every
point L

e the arc length ML, as wellas e the direction (defined by the angle x).

Therefore the curves are uniquely determined. We know that the involute of a cycloid is
also a cycloid!? and that the involute of a hypocycloid/epicycloid is also a similar curve.
This shows that the curves in Figure 8 (because of Eucl. IT1.20) satisfy

4r - sin x (cycloid, left),

arcLM = LN = LP + PN = (18)

2(r1 + ) sinx (hypocycloid, right),

and so have both of these properties. Thus the equations (17) lead to Johann’s Theorem
and to Euler’s generalization of this result to hypo/epicycloid.

1 Lagrange’s manuscript together with an introduction will be published elsewhere (see [22]).
12This result is due to Huygens in his Horlogium oscillatorium, see also [17, Thms. 1 and 3].
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Figure 8 Cycloid (left) and hypocycloid (right).

Proof of (17). Since Johann’s algorithm is the same as Biirgi’s (for n — 00) and since
(17) is the same as Biirgi’s claim in Section 1, the proof of (17) is immediate from what
we have proved there. Following the advice of Poisson (see quotation), the continuous case
is even simpler to understand.

Inspired by the eigenvectors (6), letting ’:‘Z—’; — x (forn - 00,0 <x < %), we consider
the basis functions
sinx, sin3x, sin5x,... (andalso cosx, cos3x, cos5x,...).

Linear combinations of these functions are the Fourier series on the interval |0, %]. Be-
cause of the integration formulas

z 1 : 1
(] sinkédé = ——coské|” = —coskx (fork=1,3,5,..) (19
» k x k
(observe that cos k5 = 0 for odd k) and
* |
</ coskédé = Esin kx (forall k), (20)
0

we see that the downward integration (<) transforms any series in sin kx into a series in
cos kx by dividing the coefficients by k, and the upward integration (<) transforms any
series in cos kx into a series in sin kx, again by dividing the coefficients by k.

In view of the integrations in (15), we develop co(x) into a series in cos kx and s (x) into
a series in sinkx :

T

4 (5
co(x) = aycosx + azcos3x +ascosSx + --- with q = — / co(x)coskxdx (21)
T Jo

.

4 3
s1(x) = bysinx + bzsin3x + bssinSx + ---  with by = —/ si(x)sinkxdx . (22)
T Jo



152 Zigzags with Biirgi, Bernoulli, Euler and the Seidel-Entringer—Arnol’d triangle

The integral formulas for the coefficients, together with their standard proof using orthog-
onality, were independently discovered by Euler [13] and Fourier (Théorie analytique de
la chaleur, 1822).

Formulas for Bernoulli’s case. For the functions (10), which Johann Bernoulli had com-

puted, we have s1(x) = x and hence start with co(x) = 1. The coefficients a; in (21)

become 1, —1, 1,... and we obtain, by the continued integrations of (15) and alterna-

tive use of (20) and (19),

CO(x)—;(—}-cosx— cos3x + 1 $€0s5x — 5 cos7x+---)
sl(x)—%( smx— sm3x+ 5 sin Sx — 7;sin7x+---)
etz ) = %(+ COsSX — 3q cos 3x + 53 cos 5x — 7'3 cos7x + - ) (23)
salx) = %(+smx 34sm3x+54sm5x 74sm7)c+---)
cz(x)_%(+cosx—3—Scos3x+5—5c055x—%cos7x+---)

and so on. Therefore, for j — 00, we have in the limit

4 4
s1(x), s2(x), s3(x), ... — - sinx and co(x),ci(x),ca(x),... — - cosx, (24)

since all coefficients except the first one tend to zero. The coefficients of sin 3x converge

most slowly, therefore we have convergence ratio 5‘; = % :

The convergence of the Fourier series for co(x), s1(x) and ¢ (x) is shown in Figure 9 (left,
where also a nice Gibbs phenomenon can be seen).

Cq : §1

I 1

¢ for (23) for (25)

U btasd apessagesivlin g
2 6 Z

Figure 9 Convergence of the Fourier series for Bernoulli’s (left) and Biirgi’s (right) case: ¢(, s1 and ¢ (1,2,3 and
33 non-zero terms).

Formulas for Biirgi’s case. If we compute the a; for the initial functions (16), we have
the nice surprise that az = 0. The full series becomes

co(x) = i(+cosx + %cosSx - %cos7x — ﬁcosllx + %cos 13x +)

s1x) == (+smx+ 31n5x—7gs1n7x ﬁzsinllx+l—;ysinl3x+---) (25)
Cl(x)z;(+cosx+5—3-c055x—ﬁcos7x—#cosllx+l'?cosl3x+---)

and so on (see Fig. 9, right). The dominant error in s;(x) is due to the term sin 5x, so we
have faster convergence with ratio ;'2— = % as observed in (8).

Nicollier found further initial conditions with still faster convergence in [25].
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4 Connection with the Euler numbers

“Haecque consideratio ad plurimas alias speculationes non spernandas perducere poterit. [This
consideration [the Euler numbers] can lead to many other speculations that should not be de-
spised.]”

(Leonhard Euler, Summarium of [11])

Euler zigzag numbers. We recall (and extend a little bit) the sequence of numbers which
appear in Johann’s list of Figure 6:

Eo=1,Ei1=1,E=1, B3=2, Ex=5, Es5=16, Eg=61, Ey=272,

Eg = 1385, E9 = 7936, Eq19g = 50521, Ey1 = 353792, Ep = 2702765,

E13 = 22368256, E14 = 199360981, Ei5 = 1903757312, E16 = 19391512145,
E7 = 209865342976, E g = 2404879675441, Ej9 = 29088885112832,

E29 = 370371188237525, Ea; = 4951498053124096, ... . (26)

These numbers have been rediscovered several times and are often called the Euler zig-
zag"3 numbers by authors who were not aware of Johann’s contribution.

Euler’s Summation Formulas. We set in (23) x = 0 for ¢, ¢1,c2,... and x = a for
51,82, 83, ... and get from (12) the remarkable formulas

2

tf ) b e | e =

QL IS IS NS IR U5 I TS NI NI SR TR

33 753 73 T3 oA 34 P54 g3 Tot T 315

1 1 5x° 1 1 1 1 16z°

l—m+y g4y~ =3w | Ututgtmte =55

1 1 1 1 617 1 1 1 1 27278

l—gtg—gty — =ar | tztetatat =55

or, in general,

0 1 1 1 1 .S . -
—32£’+1+52£’+l_72€+l+92£+1_“'_(25)!_22f+2 205 (27)
PR SRS SR B e 7 -
+ﬁ+@+ﬁ+@+'“—(25—1)!.225_“ 26—1 - ( )

Euler numbers. Formula (27) was for Euler [9] the original motivation for studying the

numbers (26) with even indices, called the Euler numbers'# (see Fig. 10). Formulas (11),

together with £ = %’% (see (12)), show that they obey recursions like

(e Qe Q@

B3 This terminology has been popularized by John H. Conway and Richard K. Guy during the 90s [26].

141t seems that this terminology was coined by James Joseph Sylvester (1814-1897): “Following the accepted
Continental notation, I denote by By (...)" and “I call the numbers Eq, Eq, ..., E, Euler’s Ist, 2nd, ... nth
numbers, as Euler was apparently the first to bring them into notice” (Mathematical Papers 11, p. 254 & p.262).
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a ™ I ¢ — sosar

e = n = 2702765

y = 8 =— 199360981

§ — 61 P TS X939I512145

e — 1385 n — 2404879661671 &G

Figure 10 The Euler numbers printed in Euler’s Institutiones calculi differentialis (1755) [10, part. 2, §224].
Only k = Eg is slightly wrong.

Bernoulli numbers. The numbers (26) with odd indices are connected to Euler’s great
discovery

| 1 1 1 1 B 5_1(27[)26
whets Bg =1, B = % By = % By = —31—0) B = ﬁ, Bg = —%, ... are the Bernoulli

numbers" . Indeed, if we multiply (30) by ig—[ and substract from itself, we obtain (28)
together with

(226’ _ 1)22£
2¢
The right-hand formulas of (10) show that they satisfy recursions like

Es = 5E 5E 5E 32
5—(4) 4—(2) 2+(O) 0- (32)

Asymptotic values. Johann’s approximation method (14) can now be written

5, gt 2 n-+1
T ~2 "“/E—” or E,~ 2(—) n! (33)
n T

with a relative error of size 37". The estimates of (13) generalize to

Eye 1 = (=D Boy . (31)

2-@n+1)- Eap 2.2n+2) Emii
<m < )
E2pq1 E2p42

An arbitrary angle b. In the second part of his work [11, §28-45], Euler generalized
Johann’s Theorem to the case where the angle @ = 7 is replaced by a value b other than
7. Anillustration is given in Figure 11 for the case where b < @ and the initial curve is a
circle of radius 1. Bernoulli’s algorithm (15) becomes here

b y
&i(y) = </ 5i(mdn, Si+1(y) = </o ci(mdn.
y

15They have been named by Euler: “isti numeri, qui ab Inventore lacobo Bernoullio vocari solent Bernoulliani”
[10, part. 2, §122].
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)
tan b b Dp
F dy
1 |
3 = .
K/E.zg. ds; Si=y
, L £ : X dy
S/P €1 dc
N\ N\ / 2o “1
‘ l .' ! E bt E. 2 E > Y[b
z Ro ™" M ™a n§ 2 A I C
e sech >

Figure 11 Bernoulli’s algorithm for b < a = %

For the computation of the new arc lengths ¢; and 5; 1, we use the coordinate transforms
y = 2 "X, H= 2 -&odn = g—j -d¢ in the integrals and obtain recursively, by starting from
snip)=y= L—’ ‘X = (g)lsl (x), the formulas

5 b\2j N b\2j+1
G0 =) aw.  5mm=(2)" 5. (34)

The arc lengths s; and ¢, due to the ratio dn/d¢ = g receive an additional factor g at
each integration. They thus tend to zero for b < a, to infinity for b > a. But when the

involutes are continuously rescaled by Z—;, they tend to finite curves. From (24) we get
I (a)2j~( ) ad . a d . (a)2j~( ) 4 a

im(—) §i(y)=-—sin—y an im({—-) ¢j(y)=—cos—y.
jmoo\p) T MY jmooNp) G T R
So the limit is a hypocycloidal arc if b < a (where in equation (18) r; = % r2, compare
with the right picture of Fig. 8) and an epicycloid for b > a (Euler [11, §45]: “quae sunt
proprietates epicycloidum et hypocycloidum™).

The tangent and secant functions. Another motivation for Euler to introduce his numbers
was the study of the secant function'®. Figure 11 presents an elegant access to its series.
We have b < a = 7 so that the iterated involutes zigzag inside a right-angled triangle

with hypotenuse sec b = c_ols_b and legs 1, tan b. With (34) the arc lengths (12) become

31 31

b2a? B2 b\32a®> 2B3
BA:BF:b,AF:AH:(—)a—:-—,FH:FK:() a
a’/ 2! 2! a

etc., the same expressions as before with @ replaced by /. From this picture we can imme-
diately read off the infinite series for tan b and sec b. Since b is arbitrary, we replace this

16<per hos autem numeros Bernoullianos secans exprimi non potest, sed requirit alios numeros, qui in summas
potestatum reciprocarum imparium ingrediuntur” [“The secant can not be expressed through Bernoulli numbers
but needs other numbers which appear in the sums of reciprocal powers of odd numbers.”] [10, part. 2, §224].
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letter by the more common x and have

secx = ! = S £2Lx2" tanx = i —Ek—ﬂ—xu“ (35)
cosx & (2)! ’ = (2k+1)! ’

James Gregory (1638—-1675) knew these results but divided out common factors so that
no structure is visible and the series “maxime videntur irregulares”. On the contrary, Euler
reduced the series “ad facilem progressionis” (see Fig. 12).

a? 245 1747 &2a?
t =a ";;;";“i" i + &e.

1gr7 3i50¢ 2835r 8
14t 27748

a? sa
r & + 247} -+ 7207 =T Boar? &e.
22(22~1)AYr 24(24-D)Bx3 | 29(29-1)Ex" 28(28~1)Dx?
1.2—-‘— 102'3,°4 1-3.-..6 I.z....-g

-  &ec.

g ¥ 3
O — — gt
fee +1.z.xx+x.2.3.4x +1.2...6

3

fgxx

6 & 8
x -[-1.2 - x¢ 4+ &ec.

Figure 12 The tangent and secant series by James Gregory (letter to D. Collins, 15 Februarii 1671) and by Euler
([10, part. 2, §221, §224]).

Exponential generating function of the Euler zigzag numbers. There exists a close
connection between the developments of tan x and sec x seen for the first time, according
to Désiré André (1840-1917), by Eugéne Catalan (1814-1894)[2, §12]. Indeed, by adding
up both series (35) we obtain the exponential generating function (e. g.f.) of the Euler
zigzag numbers. Because of

+ tanx = tan (% + %), we have  tan (% -+ E) = Z —x". (36)

COS X 4

For a geometric proof of the first identity, see Figure 13.

Recursive calculation of the Ej. Differentiating y(x) = tan(% + %) we obtain

1 /
y=s(raG ) o =1 yO=mEi=1 6]

This is an initial value problem for a differential equation, to which we apply an idea of
Euler [12, §663]. We develop

=  Eot+ 2 2
= = T 2
E E
2y’ = 2E+ ZT'z—x—I— 22—'3x2+---

EoE1 E1 Eg EoEx EVEr  ExEp\ ,
2 _ 2 9 e T . M S W s o W b 2 I
14y —1+E0+( T )x+(0! TR T O!)x+ .
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2sin(3 + %)

Figure 13 Proof of (36) from AH /HC = AC/C B (Eucl. I11.20 and Thales).

We first have from y(0) = I that Ep = 1. Next we equalize the coefficients in the second
and third row and obtain:

n
E0=17 El =19 2En+l=Z(:)EkEn—k (n=152333--')' (38)
k=0

This recursion for the Euler zigzag numbers was first discovered in 1879 by André by
solving a question in combinatorics'’, as we shall see in the next section.

5 Connection with alternating permutations

“Toutes les formules (...) étaient déja connues; mais I'introduction du symbole A,, moitié du
nombre des permutations alternées de n éléments distincts, leur donne, selon nous, un nouveau
degré d’intérét. [All formulas (...) were already known; but the introduction of the symbol A,
half of the number of alternating permutations of n distinct elements, gives them, in our opinion, a
new degree of interest.]”

(Désiré André, [2, p. 177])

Alternating permutations. On May 12, 1879 Désiré André [1] presented to the Académie
des Sciences in Paris a “probablement toute nouvelle” notion in combinatorics, that of
“permutation alternée” (today sometimes called zigzag permutations). A detailed paper
was published two years later [2].

We call a permutation ¢ : i +—> o; of n objects [n] = {1,2,...,n}

with o) > 02 < 03 > < --- adown-up (alternating) permutation,

with o1 < 02 > 03 <> --- an up-down (alternating) permutation.

It is easy to see that by the symmetry o +— n -+ 1 — oy an down-up permutation becomes a
up-down permutation and vice-versa. Therefore, for a given n, there are as many up-down
as there are down-up permutations and André raised the question of finding this number
A, (André’s notation). It is convenient to set Ag = A; = 1. For the next values, we see

17 At that date, according to André, combinatorics was “une partie des Mathématiques ot les méthodes étaient
jusqu’a présent fort rares, pour ne pas dire inconnues [a part of mathematics where the methods were until now
very rare, if not unknown]” (Bull. Soc. Math. Fr. 7, 1879, p. 63).
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in Figure 14 that Ay = 1, A3 = 2, A4 = 5. Comparing these numbers with the extended
Bernoulli list (26), it is not difficult to guess a general theorem:

André’s Theorem ([1, p.965], [2, p. 170]). The numbers A, counting the up-down or
down-up alternating permutations of n elements are, for all n, the Euler zigzag num-

bers (26).
4 4 @4 ~m4 4
2 : ﬁ: 3 N} 3{ 3\ 3v
N RN S NN NN
b2 %3 31 2 3 1 e 1 I I
_ 1 2 3 41 23 41 23 41234123 4
A =1 A3 =2 Ay =5

Figure 14 Down-up permutations forn = 2, 3, 4.

Proof. André supposes the A, to be known for & < n and searches all alternating permuta-
tions of [n 4 1]. Let k+1 be the position of the highest peak o411 = n+1, the permutation
going down on both sides. This peak will thus be followed, left and right from inside
towards outside, by up-down permutations:

Gry1=n+1

Ll,..U » [1 < kE]I B L £ [h,,.E
; " n—k

There are (2) possibilities for partitioning the remaining n points [n] in two sets with k
and n — k elements and Ay, respectively A, _, possibilities to arrange these elements
as up-down permutations. Adding up (',:)AkA,,_k for all k£, we so obtain all alternating
permutations of [n + 1], hence the double of A, . This way of counting is precisely the
recursion formula (38) for the Euler zigzag numbers. g

From here, going through the above proofs backwards, André arrived'® at formulas (37)
and then to (36), the e. g. f. tan(% + %) of the A (“notre formule fondamentale™). Finally,
in the search for the simplest recursions, he developed a list of formulas, among which are
(29) and (32). Some years later, he discovered formula (33) by determining the asymptotic

value of the probability for a permutation to be an alternating one'”.

Entringer’s Lemma. Unaware of André’s work, Aubrey J. Kempner (1880-1973) [19]
and Roger C.Entringer [8] rediscovered the alternating permutations in 1933 and 1966
respectively. While André focussed on the position of the highest peak, Entringer focussed
on the value of o1. So we define the Entringer numbers:

Enr = # of down-up alt. perm. of {1,2,...,n+1} witho; = k+1

= # of up-down alt. perm. of {1,2,...,n+1} witho; =n+1—k.

8u1p°s a very nice exercise” according to Arnol’d [5, p. 64].
19 Comptes rendus 97, 1883, pp. 983-984.
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We see in Figure 14 that the first of these numbers are £y = 1, Ea; = 1, Exn = 1,
E3; = 1, E3» = 2, E33 = 2. In general, they satisfy Entringer’s Lemma [8, p.242]:

Enk - Eu,k—l = En—l,n—k . (39)

Proof of Entringer’s Lemma. We simplify Entringer’s proof by observing that there are two
types of reductions for alternating permutations. We are dealing with the case of down-up
permutations, the other case being similar.

1. The down-up permutations in £y, such that oo = o1 —1 are, by removing o1, one-to-one
with the up-down permutations in E,_1 ,— (gray arrows; Fig. 15, left).

2. The remaining down-up permutations in E,; are, after exchanging the rows k + 1 < &,
one-to-one with the down-up permutations in E, x— (black arrows; Fig. 15, right). 0

6 7 7 7

Sf T R A

( ) k+1 k+1 :

4 | 4 FRIES 2 § <

i \I[ [\ : \I[ 1 > I\ g

; ¥\ ) 2 \ 2¥ \

; /A g ¥ 4
123456 1234567 1234567 1234567
— — —— I —
En—l,n—k Eqx En,k—l

Figure 15 Proof of Entringer’s Lemma (n = 6, k = 4).

The Seidel-Entringer-Arnol’d (SEA-) triangle. Starting from Egpp = 1 and E,90 = 0
(n = 1,2,3,...), formula (39) represents an elegant algorithm for computing all these
numbers (see Fig. 16). Since in this formula the indices of the second term (for n —1) run
in the opposite direction, it is nicer to arrange them in a triangle as upwards-downwards
alternating columns: each E,; is then the sum of its neighbor above (or below) and the

one to the left, exactly as in the Biirgi-Bernoulli algorithm. This triangle was discovered
by Philipp Ludwig von Seidel? (1821-1896) and by Vladimir Arnol’d*! (1937-2010).

Applying the two bijections of the previous proof repeatedly, we fill the nodes of the entire
SEA-triangle with the corresponding alternating permutations and we obtain Figure 17. In
this picture the permutations of the first type are, along the gray arrows, one-to-one with
all permutations in E,_j ,—x of “opposite downing mode”. They are placed inside a dotted
region.

20For Seidel (1821-1896) it was an excellent means for calculating the Bernoulli numbers (“(...) in welchem
sich wahrscheinlich die einfachste Genesis der Bernoulli’schen Zahlen ausspricht” [29, p. 158]). Sei-
del’s work remained unnoticed until Dominique Dumont (1947-2007) studied anew the “Euler—Seidel matrices™
(Séminaire Lotharingien de Combinatoire BO5c, 1981).

21<To calculate the Euler and Bernoulli numbers quickly, it is convenient to use the classical Euler—Bernoulli
triangle, similar to the Pascal triangle” [4, p.3]. “J’appelle [ce] triangle de Euler—Bernoulli parce que Pascal
ne I’a pas considéré, et parce que Euler et Bernoulli ne I’ont pas considéré non plus [I call this triangle Euler—
Bernoulli triangle because Pascal did not consider it, and because Euler and Bernoulli did not either consider it]”
[5, p.63].
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B E3q
22,
EiwC E3
Eoo Er)
< 11 <E éE32 0 0521<
P NEas 385 0521
0 385
1 ;1385 49136
0 61 C 770
_ »l 1324 46366
5 22C 094
6 202 42272
0 78 296
1 4 46 024 6976
4 24 320
2 800 0656
6 56 120
6 544 3536
6 72 4
0 272 5872
72C 936
0 7936
936 0

Figure 17 Filling the nodes of the SEA-triangle for n = 0, 1, 2, 3, 4 with its corresponding alternating permuta-

tions.

702765
702765
652244
551202
401024
204480
15702 965664

689872
06448<f

383424
29984

053440
45856

707584
53792<:353792

0
50521
01042
50178
96544
38816

53792 0
Figure 16 The Seidel-Entringer—Arnol’d triangle.
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Euler and Bernoulli numbers. By iterating (39) we have

n—1
B = Z E,_1x = (André’stheorem) = E,. (40)
k=0

This means that at the end of each column in the SEA-triangle appear the Euler zigzag
numbers, the Euler numbers above, the Bernoulli numbers below (see (31))22. This can
also be seen in Figure 17 where the number of dotted permutations in column #, which is
equal to E,,, is equal to the number of all permutations in the previous column.

The Boustrophedon Transform. If the simple algorithm (39) already produces such in-
teresting sequences of numbers as Euler’s or Bernoulli’s, one might ask which other inter-
esting sequences of numbers (b, ) appear at the end of each column in the SEA-triangle if,
instead of eg = (1, 0, ...), we feed this triangle with an arbitrary sequence (a,)? Figure 18
illustrates this question originally formulated by Richard Guy about this “boustrophedon”
(or “ox-plowing”) transform B : (a,) +> (b,). It was solved in 1996:

Sap+8ai+6az+4az+as
b
ao+2a;+a» < Sap+8a; +6ar+3az+ay
ap+2ar+az+as

< aptai+az <2 i ik dapg+6a1+S5ar+2az3+ay
a ap+3a;+2ax+a
0 < 0 : S 2a0+3a1+3ar+az+aq

2a0+3a; +3ax+ a3
et
Figure 18 The Boustrophedon transform (by,) = B(ay).

The Boustrophedon Theorem (Millar, Sloane and Young, [26, Thm. 1]).

"
by, = Z (k) En kax. (41)

k=0

A “sketch of proof” based on paths in a directed graph and so-called “box diagrams” is
given in [26]. We understand it here more easily as follows:

Proof. Using linear superposition, we separate the coefficients of ag in Figure 18, which
are the entries of the SEA-triangle of Figure 16, and those of ay, az, az, etc. which are
the entries obtained by calculating the values of the image sequences of e = (0, 1,0.. ),
er =(0,0,1,0,...),e3=1(0,0,0,1,0,...), etc. which we denote by (C;), (c?), (cj-), éte.
We so obtain modified SEA-triangles, constructed by the same rules, but with different
initial values (see Fig. 19).

22Emile Picard (1856—1941) writes that “les nombres A, de Désiré André remplaceront sans doute quelque jour
en analyse les nombres de Bernoulli et les nombres d’Euler [the numbers A, of Désiré André will without doubt
some days replace in analysis the Bernoulli and Euler numbers]” (Rapport sur les travaux de M. Désiré André,
1910, Archives de I’ Académie des sciences). Entringer, unaware of André’s work, proved the appearence of these
numbers with a lot of analytic calculations [8].
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o <"< m_2:<o<“<2 Y
og; e85
% Cl@@é G

Figure 19 The images B(ey) form = 1,2, 3.

We have B(ep) = (c(}) with c(} = E; and (41) means that at the end of each column appear
Euler zigzag numbers, shifted and multiplied by a binomial coefficient:

mlj | O 1 . ! - S 6 7
0 |fo=1 E=l  E=1  E3=2  E4;=5  Es=16  Eg=61  E;=272

NN N NN N N

1 0 1 2 3 8 25 96 427
2 3 4 5 6 7
NN NI (2 N2 N2

2 0 0 1 3 6 20 75 336
3 4 5 6 7
WTONT NS Ny 3 Ny 5

3 0 0 0 1 4 10 40 175

Therefore it is enough to prove that for (c’}‘) = B(ey) (m=1,2,3...) we have

2% = (J)Ej_,,, for j > m. (42)
m

The key to proving equality (42) is to replace alternating permutations of [n + 1] by alter-
nating injective maps into a larger image set:

Efl'i)m i = # of down-up alternating injections {1, ...,n+1} = {1,...,n+1+m}
with o1 = k+1
= # of up-down alternating injections {1, ...,n+1} — {1,...,n+1+m}

withoy =n+1+m—=k.

These numbers, for m = 1,2, 3 respectively, are precisely the entries of the triangles
in Figure 19. Indeed, for example with m = 1, we construct Figure 20 analogously to
Figure 17. We observe that, in each column, all injections with the same initial value, after
removing this value, are built from the previous ones (according to the direction of the
arrows) in the previous column. Therefore, by construction, we again have the recursion
formula (39).

Now fix m and consider all the alternating injective maps at the top or at the bottom (ac-

cording to the downing mode) of a column. This number can be written E,(, 43,, ntm and

represent maps from [n + 1] to [n 4+ 1 4+ m]. Since for all such maps o is fixed at the top
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%e
412341234

1
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Figure 20 Modified Entringer numbers E,(ll_gl « and maps for n+1 = 1,2, 3, 4 arranged as SEA-triangle (missing

image values are surrounded by dotted ovals).

or at the bottom line, we are free to move: we thus have (";"') possibilities to choose m
values to avoid among the n + m possibilities in the image set and we have E,, possibilities
to choose an alternating permutation of the n remaining ones. So we have

n-+m j )
Er(zt,:-)m,n—i—m - ( m ) - E, and thus C';ﬂ = ('i) “Ejm (j=m)

because j —m = n.

For example, if n = 3 and m = 1, after removing o1, the 8 alternating injections on the
top of the fourth column in Figure 20 can be arranged according to the (?) = 4 values not
in the image set and the E3 = 2 down-up permutations of the remaining values:

4 — — 4 1 4 H
D g W N
}2& 2@2 2
[. 1 1 I O

123 123 123 123

Remark. The Boustrophedon Theorem easily gives the link between the corresponding
e.g.f. A, B of the sequences (a,), (b,). Dividing both sides of (41) by n!, the expression
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obtained for b, /n! is the same as that in the product

(bo+b1x+%x2+---) = (E0+E|x+%%x2+---)(ao+a|x+‘%x2+»--).

=B(x) =F(x)=secx-tanx =A(x)

(43)
Therefore, the Boustrophedon transform multiplies the corresponding e. g. f. by E (x). Oth-
erwise, (42) shows that for j > m the jth term of the e. g.f. of the sequence B(e,,) is

j )Cj xm xj—m
Ejom —=—Ej_m—r.
(m) S TR TR )

Therefore, by adding up, we see that the e. g. f. of B(e,,) is E (x)’r‘—n"% and we obtain (43) by
linear superposition.

Differentiating (37) we get 2y” = 2y’ -y, i.e,, E” = E - E’, hence (43) shows that
B(E,, Ez, E3,...) = (E2, E3, E4, ...). This can also be seen in Figure 16 by deleting the
top and the bottom side of the triangle. Furthermore, by deleting only the top (respectively
the bottom) side of the triangle, we see that

B(Eo,0, E2,0, E4, ...) = (E1, E2, E3, .. .)
and
B, E1,0,E3,...)= (0, E, E3,...).

Paths in a directed graph. In 1991, Arnol’d [3, p. 542] proposed another interpretation
of the Entringer numbers. He observed that (39) associates a directed graph I' with the
SEA-triangle (see Fig. 21, left): if we concentrate all maps representing E,; in Figure 17
or E,(11+)1  in Figure 20 to a single node e, by keeping the arrows, we always obtain a part
of this same graph I'.

If now we choose the starting node e and ask for the number of different paths starting
in egp and ending in one of the nodes e, we have

Enx = # paths from e to e,
and, in particular, E,, = E, = # paths from ey to e, .

For example, we see in Figure 21 (right) that there are E4» = 4 paths starting in egg and
ending in e4>: these 4 = 2 + 2 paths are built by the 2 = E37 = E41 paths ending in the
incoming nodes 32 and e4;.

Moreover, we observe that by remembering the creation of the paths, we have a natural
bijection between the paths in I from g to e, and the alternating permutations in E .
For example, the four paths above correspond, from top to bottom and left to right, to the
four permutations in E4> from left to right in Figure 17.

In the same way, for m > 1, we have

E ,(:jzn k= # paths from e, 10 &1 m k

and, in particular,

EM™ - ('H"") E, = ("J,:’") E,, = # paths from e 10 &, m nim - (44)

n--m,n-+m m
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Figure 21 The directed graph I' (left); paths from ey to e4p (right).

Figure 22 # of paths ending in es5 (]eﬂ).

Paths ending in a given node. We now choose a fixed node, for example ess, and ask for
the number of paths starting in e,; and ending in ess. The result is displayed in Figure 22
(left). This time, we compute these values from right to left. The first column is filled by
I’s. Then the value of any further node, for example 3, is the sum of possible paths from
the outgoing nodes ¢33 and e42, hence 4 + 3 = 7. Using (44), we understand why the dark
nodes in Figure 22 bear the values

o _ (5 e (5 o _ (5
5=ED = (I)El, 10=EY = (2)E2, ony 1= B = (5)55. (45)

“Discretizing” Johann’s iterated involutes. Suppose to have a fixed angle b and a fixed
integer n. We explain the idea of the construction®? in Figure 23 for the case n = 5. We
fill the circular sector of radius | and angle b by 5 isosceles triangles of side lengths 1, 1
and s = 2sin lb—o. We then construct a discrete involute to this discrete arc by attaching

23This construction was motivated by an idea of Y.S. Chaikovsky [15] who obtained in a similar manner the
Taylor series for sinus and cosinus. In his paper, the anologue of the SEA-triangle is the Pascal’s triangle.
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4 triangles, all similar to the original triangles, of base lengths s, 252, 352, 45 (see the
triangle to the left of Fig. 23). For the next involute, we have, for example,

ED=5-DA=s-(CB+BA)=s5-(4s>+3s%) =7s".

The integer coefficients of all these arc lengths are computed by the triangle to the right of
Figure 22. These numbers are the same as those in the white circles to the left of the same
figure, because they are formed by the same alternating addition process. The coefficients
of the total arc lengths for these involutes are the sums of the columns, i.e., the values in
the dark circles given by (45).

The same is true for any n (see Fig.24) and, if n — o0, the arc length of the ith involute
tends, for each i, to

bi

n i.\'—)% 1 2 F—1 bi n—00
E;- ) Ei-1-1-2)(1—-2)---(1-£2)- — E; HE

n n l_‘
We have thus obtained a combinatoric proof of Johann’s arc lengths in Figure 6. Figure

24 becomes, for n — 00, the picture of Figure 11, which was the origin of the beautiful
access to the series for sec b and tan b.

Figure 24 Discrete Bernoulli’s algorithm forn = 15, b = 1,2‘- —0.35.
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