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I Elemente der Mathematik

Short note A characterization of the focals
of hyperbolas

Paris Pamfilos

1 Chords through a point
The property which we discuss here relates to the tangents of a hyperbola at the end points
of a chord and their intersections with the asymptotes of the hyperbola. It is formulated by
the following lemma.

Figure 1 Asymptotic triangles and par allels

Lemma 1. If the tangents to the hyperbola at the end points ofa chord AB intersect the

asymptotes respectively at points {A\, A2} and points {B\, B2}, then {A\ B\, A2B2} are
parallels and AB is their middle-parallel.

Proof The proof of the lemma, in the case A B runs in the inner domain of the hyperbola
(see f igure 1 derives from the equality of the areas of the triangles [A \ AzB\, A \ ß?ß|
which have in common the area of the triangle A\P'B\, and are complemented by the

equal areas of the triangles \P'A2B1, P'BsA\} (|3, 111.43, p. 112], [5, p. 1921). point P'
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being the intersection of the tangents. The claim about the middle-parallel follows from
the equally well-known property ([3, II.3, p. 561. 14. Fig. 10.18, p. 315], [5, p. 191]), that

{A, B} are respectively the middles of {A \ .42, B\ ïh\- The proof, when AB runs in the

outer domain of the hyperbola is completely analogous1.

2 The property of focal points
The next theorem characterizes the focal points {F, F'\ of the hyperbola by measuring the
distance of the parallels {A\B\, A2B2}, as the chord AB turns about a fixed point P.

Theorem 1. Under the notation and conventions made above, for chords passing through
a fixed point P, the distance between the parallels {AB, A\B\} is variable, depending on
their direction, except when P is a focal point. In the case P is a focal point, this distance
is independent of the direction and equal to the conjugate axis b of the hyperbola.

Figure 2 Triangle formed by the segments cut on the asymptotes

Proof. To prove this, we represent the hyperbola with its canonical coordinates in the form
1 -1

— - y— 1

a2 Ifi

We consider also the quadratic equation, giving the product of the tangents from the point
P\x 1, yi This can be seen to be ([2, p. 251,1])

f.vyi - x, y)2 a2(y - v,)2 - b2(.x -x\f. (1)
1 At this point I would like to express my gratitude to the referee, who kindly suggested not only the references

to the classical literature, but also a complete alternative proof to the main theorem. I hope to see this proof, as

well as some other, possibly better 01 simpler proofs, from interested readers, published in this journal.
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The intersection points {A2, B\} and [B2, A \} of these lines with the asymptotes are found
by solving the systems consisting of the previous equation and the equation of each asymptote

x/a — y/b — 0 and x/a + y /b — 0 (see Figure 2). These are found to be

M, B\ ab±.8 (a,b) and B2, A\ ^ ^5 (a,-b), (2)
ay 1 — bx\ ay i + bx\

where, g g(*i, yi yjt'2y2 — b-x^ + a2b2. This implies that

4g2(a2+b2) 2 4g2(a2 + b2)
\A2B\\2 J and |/M,P= 0 ' ' (3)

(ay 1 - bx\Y (ay 1 + bx\)~

The required distance Ii of the parallels can be measured from the altitude of the

triangle P2A'B', resulting by parallel translating at an arbitrary point P2 the segments
{A2B\, B2A1}. Since the property under consideration is invariant by similarities, we can
assume that cr + h~ 1. Thus, using the well-known formula, deriving from the area of
a triangle, h

11 ' we find that

baca sin(fo)2 2(a2y? — b2xr + a2b2) sin(fw)2
h — — (41

a'2 a2y2 + b2x2 -I- (a2y2 — b2x^) cos(cu)

where to is the angle of the asymptotes. Taking into account that sin(cy) 2ab, and

cos(co) a2 — b2, we obtain the simplified expression

-, 2a2y} — b2x\ 4- arb2
h ACl b AO AO •• (5)

aAy] + b4x~

Letting the chord AB revolve about P(x0, yo), the corresponding point P'(x\, yi) moves

on the polar line ^y- — ^ 1 of F ([1, p. 1921), a particular point of which is

K2(x2, y2) (a2/xo,0).

A parametric form of the polar is consequently given by

a2 yo vo
x\ I-t-j, yi t—r.

X() bl a1

Introducing this into equation (5) and simplifying, we obtain

/,2=4—, with
q(t)

Pit) t2[-Xoia2yo - b2xl)] + f[-2aV.v,)yol + [aAbA{xl - a2)],

q(t) f2[*o(*o + >'())! + t[2a2b2x0yo] + [aVj.
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The condition of constancy of h2 is equivalent with the vanishing of coefficients of the

quadratic equation p(t) — kq(t), for a constant k, which implies the equations

xoCv'o(«2 + k) - x%(b2 -k))= 0

(a2 + k)x0yo 0,

(xq — a2) — k — 0.

The two last equations lead, for A'o Vo y 0. to a contradiction. The condition ,vo 0 leads

also to the contradiction h2 —4a2. Thus, if a point (xq, vo) has the stated property,
it must satisfy yo 0, .Vo / 0, implying k b2 (Xq — a2), hence Xq 1, which

determines the position of a focal point F(± 1,0) and the value for Ii2 4b2, which

proves the theorem.
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