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I Elemente der Mathematik

Tupel aus n natürlichen Zahlen, für die alle Summen
verschieden sind, und ein Maßkonzentrations-Phänomen

Ehrhard Behrends

Ehrhard Behrends war bis 2011 Professor an der Freien Universität Berlin. Seine

Fachgebiete sind Funktionalanalysis und Stochastik. Er setzt sich intensiv für
die Popularisierung der Mathematik ein. Unter anderem hat er die Internetseiten

mathematik.de und mathematics-in-europe : eu aufgebaut, und er ist
Autor des Buches „Fünf Minuten Mathematik", das in neun Sprachen übersetzt wurde.

Seit einigen Jahren beschäftigt er sich intensiv mit dem Thema „Mathematik und
Zaubern". Er hat dazu zwei Bücher geschrieben und ist seit 2015 „geprüfte^' Zauberer.

Bei der Analyse des mathematischen Hintergrunds eines Zaubertricks1 tauchte das folgende

Problem auf: Für ein gegebenes n e N finde man natürliche Zahlen a\ < • • • < an

so, dass die 2n — 1 möglichen Summen a<\ := XieA ai für nicht-leere Teilmengen
A C {1,...,«} alle verschieden sind und an möglichst klein ist. Ein Beispiel, für das

alle Summen verschieden sind, ist schnell gefunden. Man wähle einfach die Zahlen 1, 2,

4,..., 2,!_1. Doch kann man an auch kleiner, vielleicht sogar viel kleiner als 2"~' wählen?
Im Fall n 3 ist das kleinstmögliche Beispiel wirklich 1, 2, 4, aber schon für n — 4 ist 3,

5, 6, 7 ein möglicher Kandidat mit 04 7 < 8 24"1.

Das Problem ist wahrscheinlich erstmals von Erdös 1931 betrachtet worden (zitiert nach

[3]). Erdös vermutete, dass es nicht wesentlich besser als 2" 1

gehen kann. Er setze 500

1

Vgl. das Ende der Einleitung

Wer sich mit dem Dualsystem auskennt, weiß: Jede Zahl zwischen 0 und 2" — 1 lässt

sich als Summe einer geeigneten Auswahl aus den n Zahlen 1,2,4,..., 2""1 darstellen.

Insbesondere sind alle solche Summen verschieden. Schafft man das auch mit
kleineren Zahlen? Ja, das einfachste Beispiel gibt es schon für n — 4 : Nicht nur
für 1,2,4, 8 sind die Summen verschieden, sondern auch für 3, 5, 6, 7. Erdös fragte
vor vielen Jahrzehnten, wie klein bei vorgegebenem n solche Zahlen gewählt werden
können. Die bisherigen Fortschritte zu diesem Problem sind recht bescheiden. In der

vorliegenden Arbeit werden die oberen Schranken leicht und einige untere Schranken
wesentlich verbessert. Die Methoden sind elementar. Der Autor wurde auf diesen

Fragenkreis durch ein Zauberkunststück aufmerksam.
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Dollar für einen Beweis der folgenden Aussage aus: Es gibt ein positives c. so dass das

bestmögliche an stets größer als c 2"~' ist. Das Problem ist weiterhin offen, auch wenn
im Lauf der Zeit einige asymptotische Abschätzungen gefunden wurden (siehe |2]-[7]).
Wir beginnen mit einigen Bezeichnungen, n ganze Zahlen 0 < a\ < < an sollen

Summen-separiert heißen, wenn die 2" — 1 Summen a a alle verschieden sind2. f(n)
bezeichne das kleinste an, für das 0 < a\ <•••<«„ bei Wahl geeigneter a\,... ,an-\
Summen-separiert ist. Wegen des Beispiels 1, 2,.... 2" ist klar, dass f(n) < 2"-1 gilt.

Seien die «, so, dass an f(n). Die 2" — 1 verschiedenen Summen hegen alle in 1,2• /(«), und deswegen folgt, dass n f(n) > 2" — 1, also f(n) > 2"/n. 1955
haben Erdös und Moser (|51) gezeigt, dass sogar f(n) > 2"/(4y/îï) gilt, und im Buch

von Alon und Spencer (| 1J) findet man dazu einen auf der Tschebyscheff-Ungleichung
beruhenden Beweis.

Abschätzungen nach oben wurden wie folgt gefunden. Man konstruiert eine spezielle
Summen-separierte Familie 0 < a\ < < ang, so dass für ein (möglichst kleines) c
die Ungleichung ano < c-2"°~l gilt. Dann ist natürlich auch /(no) < c • 2"°~1. Und dann

hilft eine elementare Überlegung weiter: Ist 0 < a\ < • • < an Summen-separiert, so

auch die aus n + 1 Zahlen bestehende Familie 0 < 1 < 2a\ < < 2a„. Das impliziert
sofort /(/;. + 1) < 2f(n), und man wüsste, dass f(n) < c 2"_1 für alle n > no gilt.
Die bisher beste mit dieser Technik gefundene asymptotische Konstante ist c 0.44004,
sie wurde von Bohmann in |3| angegeben. (Sie verbessert minimal den von Lunnon in 171

gefundenen Wert r 0.44192.)

Ziel der vorliegenden Arbeit ist weniger die Herleitung asymptotischer Abschätzungen als

vielmehr die Entwicklung einer neuen Strategie zum Auffinden von Summen-separierten
n-Tupeln. Wir leiten auch eine neue untere Abschätzung für f(n) mit Hilfe eines Maß-

Konzentrations-Ergebnisses her, die für kleine n besser als die bekannten unteren Schranken

ist.

Eür eine erste Orientierung kann man sich Computerhilfe zunutze machen. Die systematische

Rechnung zu n 8 wurde mit einem Programm des Autors durchgeführt.

- /(3) 4, und 1, 2, 4 sowie 2, 3,4 (und keine weiteren 3-Tupel) genügen der Bedingung

ÜT, < 4.

- /(4) 7, und 3, 5, 6, 7 (aber kein weiteres 4-Tupel) genügt der Bedingung «4 < 7.

- /(5) 13, und 3, 6, 11, 12, 13 sowie 6, 9, 11, 12, 13 (und keine weiteren 5-Tupel)
genügen der Bedingung as <13.

- /(6) 24, und 11, 17, 20. 22, 23, 24 (aber kein weiteres 6-Tupel) genügt der

Bedingung a(t < 24.

- /(7) 44. und 20. 31. 37. 40. 42. 43, 44 (aber kein weiteres 7-Tupel) genügt der

Bedingung a-j < 44.

- /(8) 84. und 20,40, 71, 77, 80, 82. 83, 84 sowie 39, 59, 70, 77. 78. 79, 81. 84 und

40, 60, 71, 77, 80, 82, 83. 84 (aber kein weiteres 8-Tupel) genügen der Bedingung
«8 < 84.

- |n der englischen Literatur spricht man von der SSD property. Dabei steht SSD für Subset-Sum Distinctness.
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Weiter lassen sich die konkreten Rechnungen nicht fortsetzen. Schon für n 9 sind ja
alle 9-Tupel 0 < a\ < < ag < 256 potentielle Kandidaten: Wie groß ist das kleinste

ag, für das a\,... ,ag Summen-separiert ist? Es wäre die unrealistisch große Zahl von
(2g6) ^ 1-13 • 1016 Möglichkeiten zu überprüfen3.

Die Arbeit ist wie folgt gegliedert. Wir beginnen in Abschnitt 1 mit einer konkreten
Konstruktion: Summen-separierte n-Tupel werden mit Hilfe schwach Summen-separierter n-
Tupel konstruiert. Sie liefert für „kleine" n optimale Ergebnisse und stets obere Schranken

für /(«). In der einfachsten Form ist sie mit der in [2] vorgeschlagenen Konstruktion
verwandt, die verfeinerte Version verbessert die Abschätzungen in |7|; auch werden neue

optimale n-Tupel angegeben.

In Abschnitt 2 gibt es dann einen Exkurs: Gewisse Maße auf R tendieren dazu, auf
geeigneten kleinen Intervallen weit größere Werte zu haben, als eine naive Abschätzung
vermuten lässt. Dieses Maßkonzentrations-Phänomen wird dann in Abschnitt 3 ausgenutzt
werden, um untere Schranken für f{n) zu beweisen.

Das hier untersuchte Problem wurde, wie schon erwähnt, durch ein Zauberkunststück
motiviert, das ich durch einen Artikel des Zauberers Werner Miller aus Österreich kennen

gelernt habe. Eine stark vereinfachte Variante kann, mathematisch formuliert, wie folgt
beschrieben werden.

Es gibt n Spieler, vor denen ein Stapel mit roten und schwarzen Karten liegt. Der Zauberer
ist noch abwesend. Jeder nimmt sich eine rote oder eine schwarze Karte und befolgt dann
die Anweisung, die er in einem Umschlag findet: Im Umschlag des k-ten Spielers steht
die Anweisung: „Wenn Du eine rote Karte genommen hast, lege ak Cent-Stücke auf den

Tisch". Die restlichen roten und schwarzen Karten werden beiseite gelegt, der Zauberer
kommt dazu. Er sieht nur die Cent-Stücke auf dem Tisch und kann dann genau sagen, wer
eine rote und wer eine schwarze Karte genommen hat. Die Lösung: Er kennt die Summe
S der ük über die k, für die der Spieler eine roten Karte genommen hat, und wenn man

a\ ak Summen-separiert gewählt hat, lässt sich genau sagen, wie die Karten verteilt
sind. Besonders einfach ist es, wenn man ak 2k _1 festsetzt. Dann muss der Zauberer

nur in Gedanken die Binärdarstellung von S ermitteln. Schöner wären „unauffälligere" ak,
und es ist sicher auch wünschenswert, dass diese Zahlen möglichst klein sind. So wurde
ich auf das Problem aufmerksam.

1 Schwach Summen-separierte n-Tupel und
eine obere Schranke für f (n)

Wir beginnen unsere Untersuchungen mit einer Plausibilitätsbetrachtung. Damit 0 < a\ <
< an Summen-separiert ist, sollte a\ + + an eher groß als klein sein, denn dann

ist die Chance größer, dass alle a a verschieden ausfallen. Das erreicht man dadurch, dass

die größten a( also an, an _i,..., nahe beieinander hegen. Mehr als 3 können aber nicht
direkt aufeinanderfolgen, denn eine Folge, die t, t + 1, t + 2, t + 3 enthält, kann nicht

3 Eine drastische Verringerung der nachzuprüfenden Möglichkeiten ergibt sich daraus, dass /(8) 84 schon

gezeigt ist. Deswegen muss, wie oben begründet, /(9) < 168 gelten, und es sind folglich „nuf noch ('g8) »
2.36 - 1014 Kandidaten zu betrachten.
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Summen-separiert sein: Es wäre dann ja 1 + (/ + 3) (t + 1 + (f + 2). Wirklich enden

fast alle obigen Beispiele für n > 4 mit drei aufeinanderfolgenden Zahlen, nur für n 8

gibt es ein Beispiel, in dem Zahlen k, k + 1, k + 2 zwar auftreten, aber nicht am Ende.

Es scheint auch so, dass die optimalen a\,..., a„ zwar recht irregulär sind, dass sich aber

für die Abstände zum letzten Element, also die a„ — eine gewisse Regelmäßigkeit
erkennen lässt. Zum Beispiel:

- Für n — 5 ist 6, 9, 11, 12,13 optimal, und die as — ai sind die Zahlen 0,1, 2, 4, 7.

- Für n 6 ist 11, 17, 20, 22, 23, 24 optimal, und die ac, — «, sind die Zahlen 0, 1,2,
4,7, 13.

- Für n 7 ist 20, 31, 37, 40, 42. 43. 44 optimal, und die as — ai sind die Zahlen 0, 1,

2.4,7, 13.24.

Welche Eigenschaften haben die an — <7, Wir fuhren eine weitere Definition ein: Ganze
Zahlen b\ < ••• < bn heißen schwach Summen-separiert, wenn für jedes / e {1 /;}
die (") Zahlen ba ZieA die '-elementigen À C verschieden sind.

(Für diese Vorbereitung lassen wir also ausdrücklich ganze Zahlen zu.) Trivialerweise
wird diese Eigenschaft von der Summen-Scpariertheit impliziert, doch die Umkehrung
muss nicht gelten. Unsere Strategie zum Auffinden Summen-separierter a, wird aus zwei
Schritten bestehen:

• Konstruiere schwach Summen-separierteb\ < bi < < b„.

• Ordne einer schwach Summen-separierten Familie eine Summen-separierte Familie

zu.

1.1 Lemma. b\ < * • • < bn sei ein schwach Summen-separiertes n-Tupel. Für l
l,... ,n bezeichnet 4/ die Menge derjenigen Zahlen, die als Summen von I Summanden

aus [b\, ,bn) entstehen.

(i) Für beliebige b,b' e Z mit b' / 0 ist b'b\ — b, b'bz — b,..., b'bn — b schwach

Summen-separiert.

(ii) Die ganze Zahl b liege nicht in U"=2 — Ai-\. (Dabei ist A/ — A/_i die Menge
{c - d \ c e Apd e A/_i}.)

Dann ist auch {b\, b„} U [b] schwach Summen-separiert.

Ein Beispielfür so ein b kann wie folgt gefunden werden: Die Zahl b sei größer als (bp+1 +
bp+2 + • • • + bip) — (b\ + • • • + bf) 1 falls n — 2p gerade ist; und größer als {bp+\ +
bp+2 + h ^2/j+i) — (b 1 + h bp-\), falls n 2p + 1 ungerade ist.

(iii) Es sei zusätzlich b\ 0, dann heißt das Tupel normalisiert. Für ein b e N mit b > bn

definiere a\ := b — bn, a2 := b — bn-\,... ,an := b — b\. Dann ist a\,... ,an genau
dann Summen-separiert, wenn die Mengen l b — Ai := {/ • b — c | c e Aß für
I 1paarweise disjunkt sind. Das ist zum Beispiel dann erfüllt, wenn b

größer ist als

{bp+1 + bp+2 H + bip) — (b\ + h /?/,_!

im Fall geradern 2p bzw. größer als

(bp+1 + bpp 2 + • • • + bip m — (b\ ++ bp 1)

im Fall ungeradem 2p + 1.
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Beweis: (i) Das ist klar.

(ii) Der erste Teil der Behauptung ist leicht einzusehen. Für den zweiten Beweisteil richten
wires so ein, dass alle Elemente von b + At-i größer als alle Elemente von Â; sind. Das ist
gleichbedeutend damit, dass das kleinste Element von b + A/_i (also b + b\ H b b/-\)
größer ist als das größte Element von A/ (also bn + bn-\ + 1- /?„-/+1 Das bedeutet

b > bf, + b„-1 + • • • + bn-i+1 — (bi + • • + b/^\).

Die rechte Seite ist wegen b\ < • • • < bn monoton steigend in / und von einer Stelle
an konstant, da sich für größere l in bn + bn-\ + + Z>„_/+1 und b\ + + bi-\
einige Summanden wegheben. Das konkrete Maximum hängt davon ab, ob n gerade oder

ungerade ist. Es kann wie angegeben explizit dargestellt werden.

(iii) Der erste Teil der Aussage ist klar. Für den zweiten Teil soll die paarweise Disjunktheit
der l b — Ai dadurch erzwungen werden, dass das größte Element von (/ — 1) • b — A/_i
(also (Z — 1) • b — {b\ d h Z»;„i kleiner ist als das kleinste Element von l -b — Ai (also
l b — (bn + bn-1 + • • • + bn-i+1 Wir fordern also:

b > (bn + bn -1 + • • • + bn-i+\) — (Z>i + • • • + b/-\ l 2 n.

In Abhängigkeit von n gerade/ungerade kann das (analog zum vorigen Beweis) wie in (iii)
angegeben explizit umgeformt werden.

Der erste Versuch

Das Lemma motiviert die Konstruktion einer Folge gi < gs < • • ganzer Zahlen, so dass

gl,..., g„ für jedes // schwach Summen-separiert ist. Wir definieren gi := 0, g2 := 1,

g3 := 2 und konstruieren dann die gn+\ für« > 3 rekursiv wie folgt:

Ist n 2/) gerade, so sei

ft ii-t i := (8/>+1 + 8p+2 + • + g2p) — (gl + b gp-1 + 1.

Ist dagegen n 2/t + 1 ungerade, so setze

gn+1 := (gp+1 + gp+2 + • • • + 82p+1 — (gl H + gp-1) + 1.

Als Konsequenz des Lemmas sind alle «-Tupel g|,..., gn schwach Summen-separiert.

Hier sind die ersten g„:

gl 0, g2 1, g3 2, g4 4, g5 7, g6 =13, gj 24, g8 46, g9 88,

Obwohl sich die g„ auf recht komplizierte Weise ergeben haben, lässt sich ein Bildungsgesetz

angeben:

1.2 Lemma. Für n > 2 gilt: Ist n 2p gerade oder n 2p + 1 ungerade, so ist

gn+i — 2g« — gp.



Tupel aus n natürlichen Zahlen, für die alle Summen verschieden sind 119

Beweis: Sei etwa n 2/; gerade. Aufgrund der Definition ist

gn+1 (gp+l + • • + g2p) ~ (gl + • • • + gp-\) + 1

gn ~ gp + (gp H H g2p—\) — (gl + h g/>-1) + 1

2gn - gp.

Der Fall ungerader « kann analog behandelt werden.

Mit Teil (iii) des Lemmas kann nun eine Summen-separierte Familie konstruiert werden.
Fixiert man «, so ist die Formel für das g in (iii) die gleiche, mit der das jeweils nächste gn
berechnet wurde. Deswegen ist g g„+\. Das ist die (ohne Motivation) in [2] vorgeschlagene

Konstruktion Summen-separiertern-Tupel. Sie liefert turn < 6optimaleErgebnis.se.
Für n 7 wird aber 22, 33, 39,42,44,45,46 erzeugt, doch es ist /(7) 44 (s.o.). Für
größere n weicht das maximale Element der mit dieser Methode gefunden n-Tupel
immer mehr von /(«) ab. Es ist nicht schwer zu sehen, dass /(«)/2"_1 mit n -* oo gegen
0.63336 konvergiert, asymptotisch sind also für das maximale a„ viel bessere Werte

zu erreichen als 2"

Der zweite Versuch

Die Möglichkeiten von Lemma 1.1 wurden bei der vorstehenden Konstruktion nicht
ausgeschöpft. Es gibt zwei Ansätze für Verbesserungen.

Der erste Ansatz: Wie wurde das jeweils nächste Element gefunden? Wenn wir [b\,
hn} schon konstruiert haben, so kann doch als nächstes Element ein beliebiges b genommen

werden, das (mit den Bezeichnungen des Lemmas) nicht in (J/(A/ — ^t-\) liegt.
Im zweiten Teil von Lemma 1.1 (ii) wurde das dadurch erreicht, dass alle Elemente von
b -F A/_i größer sind als alle Elemente von A[ (l — 2,, n).

Das ist aber nicht zwingend. Wir betrachten die folgende Variante. 1st B {bi,..., /;„}
schon als schwach Summen-separierend identifiziert, so sei

• B+ die Menge B, vermehrt um das kleinste positive Element, das nicht in U/(A/ —

A,_|) liegt.

• B~ die Menge ß, vermehrt um das betragsmäßig kleinste negative Element, das

nicht in — At-\) ''eSl-

Wegen des Lemmas sind ß
1 wieder schwach Summen-separiert, und das Verfahren kann

iteriert werden. Zur Abkürzung setzen wir (zum Beispiel) ß : := (ß
1 ß+ h :=

(ß+~)+, usw. Auf diese Weise entstehen viele neue schwach Summen-separierte Mengen,

durch die dann mit Lemma 1.1 (iii) neue Summen-separierte «-Tupel erzeugt werden
können.

Flier ist ein Beispiel, wir starten mit ß := |0}:

ß+ {0,l}, ß+" {0,1,-1}, B+-+= {0,1,-1,3}
B+-+~ (0, 1,-1,3, -5), ß+-+~ {0, 1,-1,3, -5,-11}.
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Die Elemente müssen dann nur noch sortiert und so verschoben werden, dass eine
normalisierte Familie entsteht, um mit Lemma l.l(iii) ein Summen-separiertes /t-Tupel zu
erhalten.

Der zweite Ansatz: Wenn 0 b\ < < bn schwach Summen-separiert ist, so kann man
b in 1 .l(iii) so wählen, dass das größte Element von (/ — 1) • /; — A/_i jeweils kleiner ist
als das kleinste Element von / -b — A/. Dann muss man nur noch zu den b — bj übergehen.

Die paarweise Disjunktheit der l b — Ai lässt sich aber manchmal auch mit kleineren b

erreichen. Der Grund: Diese Mengen sind oft an den Rändern „ausgefranst". Als Beispiel
sieht man hier die Z - b — A/ für l 2, 3,4, 5, 6 im Fall n 7 und b 46. (Oben links: die
(^) Elemente von 46 — Az, jeweils durch einen kleinen senkrechten Strich markiert, in der

nächsten Zeile die Q Elemente von 46 — A3 usw.) Es ist naheliegend zu versuchen, diese

Mengen noch ein bisschen nach links zu schieben, ohne die Bedingung der paarweisen
Disjunktheit zu verletzen:

1 1 1 111 1 1 111 1 111111111

1 1 1111 1111111111 111111111111111111 1

111111 1 1 in 1 1 1

Die / • b — Af für / 2, 3, 4, 5, 6 im Fall n — 7 und b 46.

Unser zweiter Ansatz besteht damit in folgender Konstruktion bei vorgelegten 0 b\ <
• • < bn-.

Suche erstens ein b (zum Beispiel mit Lemma 1.1 (iii)), so dass die b — bi, i 1,,n
Summen-separiert sind. Teste dann „viele" k 1, 2,... daraufliin, ob auch die b — bi —

k.i 1,..., n Summen-separiert sind.

In unserem zweiten Versuch kombinieren wir beide Ansätze: Er soll die ±-Konstruktion
genannt werden:

Für gegebenes n berechne mit B := {0} alle Bwo e,- e {—,+}. Sortiere und
verschiebe so, dass Ig) 0. Die 2"-1 verschiedenen (n — I )-Tupel der müssen dabei
nicht zu verschiedenen b\ < < bn Anlass geben.

Suche ein b wie im zweiten Ansatz, beschrieben.

Das Verfahren ist sehr rechenintensiv. Es werden aber alle bekannten optimalen
Summenseparierten Tupel gefunden und auch noch einige, die schon bekannte Beispiele verbessern.

Um das zu präzisieren, muss die in [7] beschriebene Conway-Guy-Konstruktion
beschrieben werden. Da setzt man uq := 0, u\ := 1 und dann rekursiv un+\ := 2un — un-m,
wobei m die größte ganze Zahl z mit z < 0.5 + s/2n ist. Man weiß, dass für jedes n die

Ufi — it; (i 0,— 1) Summen-separiert sind, und mit dieser Konstruktion kann die

asymptotische Abschätzung f(n) < 0.44192-2" 1

gefunden werden. Es folgt ein direkter
Vergleich:

n — 2, 3, 4, 3, 6: Alle Verfahren finden die optimalen n-Tupel.

n 7. Das Conway-Guy-Verfahren und das ±-Verfahren finden das 7-Tupel 20, 31, 37.

40. 42, 43, 44.
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« 8. Das Conway-Guy-Verfahren und das ±-Verl'ahren finden 40, 60, 71. 77, 80, 82,

83, 84. Das ±-Verfahren erzeugt auch 39, 59, 70, 77, 78, 79, 81, 84, aber das

Tupel 20, 40, 71, 77, 80, 82, 83, 84 mit ebenfalls minimalem as 84 wurde nur
durch brute-t'orce-Rechnung ermittelt.

n 9, 10, 11. Conway-Guy-Verfahren und ±-Verfahren erzeugen jeweils die gleiche
Summen-separierte Familie:
77, 117, 137, 148, 154, 157, 159. 160, 161 für n 9

148, 225, 265, 285, 296. 302, 305, 307. 308, 309 für n 10.

285, 433, 510, 550. 570. 581, 587, 590, 592, 593. 594für« 11.

« 12. Beide Verfahren finden 570, 855, 1003, 1080, 1120, 1140, 1151, 1157, 1160,

1162, 1163, 1164. Durch das ±-Verfahren wird die Schranke aber verbessert:

Auch 556, 845. 995, 1073, 1112, 1134, 1145, 1151, 1155. 1156, 1157, 1159 ist

Summen-separiert.

« 13. Beide Verfahren finden 1120, 1690, 1975, 2123, 2200, 2240, 2260, 2271, 2277,
2280, 2282, 2283, 2284. Durch das ±-Verfahren wird die Schranke aber verbessert:

Auch 1085, 1649, 1942, 2094, 2170, 2213, 2235, 2246. 2254, 2256, 2257,
2258, 2262 ist Summen-separiert.

« 14. Beide Verfahren linden 2200, 3320, 3890, 4175, 4323, 4400, 4440, 4460, 4471,
4477, 4480, 4482, 4483, 4484. Durch das ±-Verfahren wird die Schranke aber
verbessert: Auch 2213, 3298, 3862, 4155, 4307, 4383, 4426, 4448, 4459. 4467.
4469, 4470, 4471, 4475 ist Summen-separiert.

Die Rechnungen sollen hier abgebrochen werden, da die asymptotischen Abschätzungen
im Vergleich zu den bekannten Verfahren nur unwesentlich besser sind4.

2 Maßkonzentration

Maßkonzentrations-Phänomene sind in der Wahrscheinlichkeitsrechnung wohlbekannt.
Zum Beispiel konzentrieren sich bei Abfragen unabhängiger Zufallsvariablen die Mittelwerte

um den Erwartungswert, und durch das schwache Gesetz der großen Zahlen und den

zentralen Grenzwertsatz kann das auch quantifiziert werden.

Hier soll ein Phänomen beschrieben werden, das für die Untersuchung unterer Schranken

für/(«) von Interesse ist (vgl. das nächste Kapitel). Wir fixieren eine natürliche Zahl r und
wählen irgendwelche reelle Zahlen 0 < x\ < < xr 1. Das gibt Anlass zu einem Maß

fi | SX[, wobei öx das Diracmaß bei x bezeichnet. Für nichlleere A C {1,..., /

setzen wir a a := Z/eA x< » auf diese Weise werden 2' — 1 (nicht notwendig verschiedene)
Zahlen erzeugt. Wir verabreden: Ist z.B. A {2, 3, 5), so werden wir *2,3,5 schreiben,
obwohl es eigentlich etwas schwerfälliger *{2,3,5) heißen müsste.

Setze /x* Xo/Acji r) Dieses Maß hat seinen Träger in ] 0, r ], und das Maß
dieses Intervalls ist 2r — 1. Für eine Borelmenge A ist /i*(A) die Anzahl der ,vA in A.

4Zum Beispiel könnte es statt,,/,, < 0.5473 2"—1 fürn> 14" nun „fn 0.5402 2"
1 für«> 14" heißen.
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Zerlegt man ] 0, /- 1 disjunkt in 10, 1 ] U | 1, 2 | U - U | r — 1, r ], so muss folglich für
mindestens eines dieser Intervalle //*(] i, i + 1 ]) > (2r — 1 )/r gelten. Überraschenderweise
lässt sich viel mehr aussagen: Es gibt, wenigstens für kleine r, ein Intervall \x — 1, x J, auf
das viel mehr Masse konzentriert ist als durch die vorstehende Abschätzung angegeben.
Es ist offen, ob auch bessere Abschätzungen für beliebige r möglich sind.

Die hier relevante Definition ist die folgende. S, soll die Menge derjenigen y g M sein, die
der folgenden Bedingung genügen: Egal, wie man die 0 < x\ < < xr — 1 wählt, es

gibt immer ein x, so dass p*(| x — 1, x ]) > y Es wurde schon bemerkt, dass (2'' — l)/r
zu Sr gehört. Wir setzen yr := max Sr. Klar ist dann, dass (2r — l)/r < yr < 2r — 1.

Aufgrund des folgenden Lemmas gilt yr < 2' 1

:

2.1 Lemma. Für jedes x ist p*(\x — l,x |) < 2r_1.

Beweis: Sind die x; so, dass X/=i xi — ü liegen alle xa mit r £ A und xr in ] 0, 1 ], es

ist also 1 1) 2' '.

Größer kann das Maß eines Intervalls ]x — l,x] aber auch nicht werden. Sei irgendein
x e IR vorgegeben. Mit Fx bzw. Gx bezeichnen wir die Menge der nichtleeren A C

{1,..., r — 1}, für die xa < x — 1 bzw. xa > x — 1 gilt. Die Anzahl der Elemente in
diesen Mengen nennen wir fx bzw. gx. Es ist also fx + gx 2r_1 — 1. Für A e Fx

bzw. A e Gx liegt xa bzw. xa + xr nicht in ] x — 1, x ], als Kandidaten für Elemente aus

] x — 1, x ] bleiben also höchstens die xa mit A e Gx, die Zahl x> und die xa + xr für
A e Fx. Das sind höchstens gx + J'x + 1 2r_1 Zahlen.

Man kann zunächst durch Computerexperimente obere Schranken für yr finden. Es ist
leicht einzusehen, dass man sich bei der Untersuchung der Intervalle ]x — 1, x ] auf die

x e := Ûa I 0 ^ A C {1,..., r}} beschränken kann. Und dann erzeuge man
„viele" zufällige r-Tupel x\,... ,xr und bestimme die maximale Anzahl der Elemente aus

Xxi,...,xr> 'n einem Intervall jx — l,x] liegen, wobei x alle Elemente aus XXli
durchläuft. So ergaben sich die folgenden Abschätzungen:

r 3 4 5 6 7 8 9 10 11

VI 4 7 13 23 43 83 158 283 566

Wenn die Anzahl der Versuche groß genug ist, sollte yr mit der durch Simulation gefundenen

Zahl übereinstimmen. Die Werte sind weit größer, als unsere erste Abschätzung
vermuten lässt. So wird sich zum Beispiel wirklich y^ — 23 ergeben, das ist deutlich
größer als 2(,/6 32/3 10.666

Um untere Schranken zu finden, werden wir wie folgt vorgehen.

• Wir beobachten: Ist Ao beliebig, so ist yr mindestens so groß wie die Anzahl der A

mitXA0 — 1 < xa < xa0- Das ist offensichtlich.

• Stelle mit Computerhilfe fest, welche Ao „aussichtsreich" sind, also solche, bei

denen voraussichtlich für „viele" A die Zahl xa in ] xa0 — 1, xa0 ] liegt. Es zeigt sich:
Ist r 2p + 1 ungerade, so sollte man es mit Ao {1, 3,..., 2p + 1} versuchen,
und ist /• 2p gerade, so arbeite man mit Ao {2. 4,..., 2p}.
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• Ermittle für solche Ao mit kombinatorischen Methoden die Anzahl der A, für die

garantiert xa() — 1 < a'a 5 xa0 gilt.

Für die von uns favorisierten Ao ist also r e Ao, und das bedeutet _va0 — 1

xA^, wobei

Aq := Ao \ {/-}. Konsequenterweise werden wir ein Ergebnis benötigen, mit dem sich für
beliebige A, A' feststellen lässt, ob stets xa 5 xA' gilt.

Wir definieren: Für A, A' C {1,... ,r} werden wir A < A' (bzw.A £ A') schreiben,

wenn bei jeder Wahl der x, die Ungleichung xa < xa' (bzw. xa £ xa') gilt. So ist

etwa offensichtlich {1,2, 5} < (3,4,5} und {2,3,4,5} < {3,4,5,6,7}, doch es ist nicht
richtig, dass {1,4} £ {5}, da man aus x\ < X2 < X3 < X4 < X5 nicht auf x\ + X4 £ X5

schließen kann.

2.2 Lemma. Sei A {ii,...,is} und A' {yj,..., wo i\ < <is und j\ <••• <

(i) Es ist genau dann A < A', wenn s <t sowie is <jt, is-\ <jt~\,...,i\ <jt-s+i-
(ii) A < A' ist gleichwertig zu A < A' und A ^ A'.

Beweis: (i) Eine Richtung ist offensichtlich. Für die andere gehen wir von A £ A' aus. Es

ist zu zeigen: Wenn die Implikation nicht stimmt, kann man ein geeignetes (x, )-Tupel mit

xa > xa' angeben.

Angenommen, es wäre s > t. Wir wählen die x; alle sehr nahe bei 1. Dann ist xa ~ s und

Xa' ä: t, ein Widerspruch. Dann zeigen wir durch Induktion nach k. dass £ ji - k Wir
beginnen mit k 0 und nehmen j, < is an. In diesem Fall betrachten wir ein (x, )-Tupel,
bei dem die x; für i < is sehr nahe bei Null und die anderen sehr nahe bei 1 liegen. Dann
ist 0 ~ xa' < xa ~ 1. Im Induktionsschritt wird ähnlich verfahren.

(ii) Ist A £ A' und A ^ A' so gibt es in A' mehr Summanden, oder es ist ein is-k < jt - k-

In jedem Fall ist x^ < xa'. Die Umkehrung ist klar.

Nach diesen Vorbereitungen können untere Abschätzungen für die yr gefunden werden.
Wir stellen zwei Ansätze dar, für den zweiten ist eine neue Idee erforderlich.

Der erste Ansatz

Setze Ao {1, 3,..., 2p + 1} und A,', =: {1, 3,..., 2p — 1} für ungerade r 2p + 1

bzw. Ao {2,4,..., 2/)} und A'0 := {2, 4, 2p — 2) für gerade r 2p. Unter A a0
verstehen wir die Menge der „sicheren Kandidaten", also die Menge der niehtleeren A mit

Aq < A £ Ao- Die Anzahl der Elemente von A a0 (wir werden sie a (Ao) nennen) ist eine

untere Schranke für yr. Für nicht zu große r kann man «(Ao) leicht durch systematische
Suche mit Computerhilfe berechnen. Die Tabelle auf der nächsten Seite zeigt die ersten

a(Ao) und die sich daraus ergebenden Abschätzungen.

Für a{ Ao) lässt sich aber auch für beliebige r mit Hilfe von Lemma 2.2 unter Verwendung
elementarer Kombinatorik ein expliziter Ausdruck herleiten. Man geht so vor:

1. Sei p e {2, 3 }.

(j>p bezeichnet die Anzahl der ganzzahligen /z-Tupel a\,... ,ap, die den Ungleichungen
0 < «i < «2 < • • • < Up, a 1 £ 2, 2 < «2 £ 4,... ,2p — 2 £ ap £ 2p genügen.
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r Ao «(Ao) Simulation Schranken für yr
4 (2,4) 7 7 7 5 yr < 7

5 {1,3,5} 12 13 12 < y, < 13

6 {2,4,6} 20 23 20 < yr < 23

7 {1,3,5,7} 33 43 33 < yr < 43

8 {2,4,6,8} 54 83 54 < yr < 83

9 {1,3,5,7,9} 88 158 88 < yr < 158

10 {2,4, 6,8, 10} 143 283 143 < yr < 283

11 {1,3,5,7,9, 11} 232 566 232 < yr < 566

Und unter <///( verstehen wir die Anzahl der ganzzahligen (/> — 1 )-Tupel «i, ap-\, für
die die Ungleichungen 0 < a\ < «2 < < ap-2 < a\ < 4, 4 < an < 6,... ,2p — 4 <

ap-\ <2p —2 gelten.

Zusätzlich setzen wir noch <p\ := 2 und y/\ := 1.

2. Für die 4>p, y/p gelten die Rekursionsformeln

</>,,+\ ~(Pp 2 W ' V/' 11 'À/' Wp-

(Das folgt leicht aus der Definition.)

3. Fxplizit gilt, mit A (3 + \/5)/2 und // (3 — V3)/2,

(Wir wissen, dass stets

/ <Pp+\ \ _
2 1 \ (pp \

V Vp+1 / V 1 1 / V '/V /
gilt, und die Eigenwerte der Matrix C ergeben sich als A (3 + \/5)/2 und

p (3 — >/5)/2. Die (pp, y/p sind folglich Linearkombinationen der A", p", die Koeffizienten

findet man durch Lösen eines Gleichungssystems.)

4. r — 2p sei gerade, und Ao {2,4,..., 2p). Dann ist a(Ao) <pp + y/p — 1. Ist

r — 2p + 1 ungerade und Ao {1, 3,..., 2p + 1}, so ista(Ao) <pP+\ — 1.

(Hier wird Lemma 2.2 wichtig.)

Für große p wachsen die <pp, y/p und damit die «(Ao) asymptotisch wie die Folge

((3 + \/5)/2Y'. Es folgt, da r =2p oder r — 2p + 1, dass yr nach unten (bis auf ei¬

ne Konstante) durch ((3 + v/5)/2)',/", also durch (3 + \/fi)/2^ beschränkt ist. Dabei

ist interessanterweise 3 + V5)/2 (1 + \/5)/2 1.618 die Zahl des goldenen
Schnitts.
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Der zweite Ansatz

Sei Ao wie vorstehend. Bisher haben wir uns nur um die À e A a(, gekümmert, die
„sicheren Kandidaten". Ks gibt daneben auch noch die „Versager*', also diejenigen A. für die

garantiert nicht ,va„ — I < *a 5 xa0 zu erwarten ist. Offensichtlich ist das die Menge
Z?a0 := jA | A < Aq oder Ao < A}.

Es bleiben die A, für die in Abhängigkeit von den konkreten *a- die Ungleichungen *a0 —

1 < t'A 5 a'Ao gelten können oder auch nicht. Das ist zum Beispiel für {1, 2, 3, 4} im Fall

r 5 der Fall: Es ist sicher x\ +*3 < x\ +X2+X3+X4, aber x\ +*2+*3+*4 < x\ +X3+X5
gilt nur dann, falls *2 + .V4 < X5. Diese A wollen wir zur Menge Ca0 zusammenfassen.

Ausgangspunkt der weiteren Untersuchungen ist die folgende Beobachtung, die wir am
Fall r 5 beschreiben wollen. Dort besteht Ca,, aus {4}, (2,3,4), {1,2,3,4}. {5) und

{4, 5). Wir betrachten insbesondere (4), {4,5) und behaupten, dass bei beliebigen x\,
*5 eine dieser Mengen ein A mit*A0 — 1 < *a < *a0 ist. Die Begründung:

- Es ist {4} < {1,3,5} und {1,3} < {4,5}, in jedem Fall gilt also *4 < *1,3,5 und

X\,3 <X4,5-

- Wenn x\ + *3 < *4 ist, so ist *1,3 < *4 < *1,3,5-

- Ist dagegen *4 < x\ + *3, so folgt*i,3 < *4,5 < *1,3,5-

Anders ausgedrückt: Genau eine der Zahlen *4, *4,5 wird zu ] * a0 — 1, xa0 ] gehören. Die

*A mit den 12 Kandidaten A e Aa0 findet man sowieso, es sind also immer mindestens
13 Elemente. Und das beweist 75 13.

Diese Idee soll nun verallgemeinert werden:

2.3 Definition. Wie bisher seien Aq {2,4,..., 2p} und A'() {2,4 2p — 2} für
gerades r 2p bzw. Ao {1, 3,..., 2p + 1} und Aq {1, 3,..., 2p — 1} für ungerades

r 2p + 1.

Sei A eine nicht leere Teilmenge von {1 r — 1}. Die Mengen A, A U {/} heißen ein

Bonuspaarfür r, wenn A'0 < A U {/-} und A < Ao gilt5.

Wir haben gerade gesehen, dass {4}, {4,5} ein Bonuspaar für r 5 ist. Es soll gezeigt
werden, dass es für „große" r „viele" Bonuspaare gibt und dass das zur Verbesserung der

unteren Schranken der yr ausgenutzt werden kann. Bonuspaare genügen den Erwartungen:

2.4 Lemma. Gibt es h Bonuspaare in Ca,,, so ist yr > a(Ao) + k.

Beweis: Wie in der Motivation zeigt man: Ist *A^ < *a, so ist *a e ] *a0 — 1, *a0 |- unci

gilt *AU{r) < *a0 (gleichwertig: *a < x^), so ist *au(r) ein Element dieses Intervalls.

*A und * a 1 «[ werden auch nicht beide dazugehören, denn sie haben den Abstand Eins.
Da bei k verschiedenen Bonuspaaren 2k Elemente aus Ca0 beteiligt sind, heißt das: k

Bonuspaare geben zu genau k zusätzlichen Elementen in ] *a0 — 1, *a0 J Anlass6.

Die Bonuspaar-Bedingung kann auch für die A e A a0 erfüllt sein. Genauer gilt

5Da r größer ist als das größte Element von Aq, darf Aq < A U {;-} durch Aq < A U (r) ersetzt werden.
6Sie müssen nicht verschieden sein, aber jedes derartige x4 (oder xau(, j) erhöht //*(] xa0 — 1, xa0 ]) um

Eins.
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2.5 Satz. Wir verwenden die bisherigen Bezeichnungen.

(i) Sei A eine nichtleere Teilmenge von {1, r — 1}. Dann gilt Aj, < A U {/-} und
A < A() genau dann, wenn A oder A U {/•} zu Äa0 gehört oder A, A U (r| ein

Bonuspaar in Ca0 ist.

ii Die Anzahl der A C {1 r — 1} mit Aq < A U {r} und A < Ao ist gleich a(A a0)
plus der Anzahl der Bonuspaare in Ca0. Folglich ist die Anzahl dieser A eine untere
Schranke fur yr.

Beweis: (i) A genüge den Bedingungen A'() < A U {/•} und A < Ao.

Fall 1: Es ist aueh Aq < A. Dann gilt A e Aa(i-

Fall 2: Es ist auch A U jr} < Ao- In diesem Fall ist AU{r}e A a0. (Beachte, dass im Fall

Aq < A U {/-} sogar Aq < AUjr) gilt.)

Fall 3: Es gilt weder Fall 1 noch Fall 2. Wir müssen zeigen, dass A und A U {r} zu Ca„
gehören, ein Bonuspaar sind sie dann nach Voraussetzung.

Fall 1 liegt nicht vor, A liegt also nicht in Aa0- Es ist auch nicht A U{rJ < Ao, also
A U jr} f Aa0- Wäre A e Ba0, so wäre entweder A < Aq oder Ao < A. Im ersten Fall
folgte A U fr} < Ao (Fall 2), der zweite kann nicht eintreten, da r f A.

Und AUjr} e ßÄQ ist auch nicht möglich. Es müsstedann AUjr} < Aq oder Ao < AUjr}
gelten. Die erste Ungleichung ist wegen r f Aq nicht möglich, die zweite würde Aq < A

(Fall 1) implizieren. A und A U jr} liegen also in Ca„.

Für den Beweis der Umkehrung ist nur zu berücksichtigen, dass A < A U jr}.
(ii) Das folgt sofort aus (i). Es ist nur noch zu beachten, dass niemals A und A U {/ }

gleichzeitig in Aa0 liegen können. Aq genügt der Bedingung und muss hier mitgezählt
werden, da in Wirklichkeit Aq U jr} Ao gezählt wird.

Nun wollen wir die A zählen, die der Bedingung des vorigen Satzes genügen. Wieder kann
das wegen Lemma 2.2 auf ein kombinatorisches Problem zurückgeführt werden.

2.6 Definition. Sei p e {2,3,...}. Für j,j' e (0, 1,2,3,4} sei C'- -, die Anzahl der

ganzzahligen />-Tupel a\ < az < < ap, die den Bedingungen a\ 2 + 7,4 < az < 8,
6 < «3 < 10,—2p — 2 < ap i <2p + 2, ap 2p + j' genügen.

Die Gesamtheit der CyjV dehniert eine 5 x 5-Matrix Cp := (C'! .,)j ,/'=o,1,2,3,4

So ist zum Beispiel C|4 4, denn die fraglichen Tupel sind (4,5,10), (4,6, 10),

(4, 7, 10) und (4, 8, 10). Und Cz ist gleich

/ 1 1 1 1 1 \
11111

C := 0 1111
0 0 111

\ 0 0 0 1 I

Zum Beispiel steht unten links deswegen eine Null, weil es keine Tupel a\ < az mit

«1=6 und «2 4 gibt.

2.7 Lemma. Für p > 2 ist Cp+\ — CCp. Es folgt Cp — C/,_1.
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Beweis: Wie wird zum Beispiel C'jq
'

berechnet? Wir schauen uns in den fraglichen (p +
1) Ungleichungen insbesondere ap an. Für ap 2p und ap 2p + 1 liefert das einen

Kandidaten für Cj q', denn dann ist ap < ap+\ 2p + 2. Ist dagegen ap — 2p + /'
mit einem j' > 1. so liefert das keinen Beitrag. Das bedeutet: Cj q' C1-

0 + C'- Bei

der Berechnung von Cp^1 werden dagegen alle C1! j =0, 1,2, 3, 4 berücksichtigt. Das

kann nach entsprechenden Überlegungen für die anderen Einträge in der Matrixgleichung
C,,+1 CCp zusammengefasst werden.

Das Ergebnis soll nun zum Zählen der in Satz 2.5 (i) auftretenden A verwendet werden.
Wir beginnen mit der Diskussion des Falls, dass r 2p gerade ist. Wie üblich setzen wir
Ao {2,4,..., 2p} und Aq [2,4,... ,2p — 2j. Uns interessieren doch die A, die r
nicht enthalten, und für die A'Q < AUjr] und A < Ao gilt. Wegen Lemma 2.2 kann A

nur aus p — 2. p — 1 oder aus p Elementen bestehen.

1. Die A mit Länge p — 2. Sei A [ai, ap-2} mit 0 < a\ < • • • < ap-2 < 2p (es

muss ap—2 < 2p sein, denn A soll r nicht enthalten). Die Bedingungen A'() < AU {/),
A < Ao implizieren wegen Lemma 2.3

2 < a\ £ 6, 4 < «2 < 8 2(p — 2) < ap-2 < 2(p — 1) + 1.

Wenn die letzte Bedingung a,,-2 S 2(p — 1) + 2 wäre, würden alle Tupel, die bei der

Berechnung aller Cp2~ auftreten, gefragt sein. Die Anzahl wäre also JU -, C'-~y Wegen

ap~2 < r darf j' 4 nicht berücksichtigt werden. Die Anzahl der fraglichen Tupel ist

a|so z/=(). 1,2.3.4./'=().1.2.3 c'i~p- Wir setzen noch Dj~2 := Z/=o,1,2,3 Cjj?> dann ist

die gesuchte Anzahl Z/=0

2. Die A mit Länge p — 1. Diesmal geht es um (p — 1)-Tupel 0 < a\ < < ap-\ < 2p
mit

«l <4, 2 < «2 < 6, 4 < «3 < 8, 2{p — 2) < ap-\ < 2(p — 1) + 1.

Wie viele solche Tupel gibt es, wenn a2 2 + j für ein j e {0, 1, 2, 3,4} ist? Das hängt

von j ab. Ist etwa j 0, so gibt es für a\ nur eine einzige Möglichkeit, d.h., es gibt D^2
Möglichkeiten. In den Fällen j 1,2,3,4 kann a\ mehr Werte annehmen: 2 für j 1. 3

für j 2, 4 für j — 3 und j — 4. So folgt: Es gibt

Dq
2

+ 2 Dp2 + 3 • Dp2 + 4 • Dp2 + 4 • Dp2

geeignete Tupel.

3. Die A mit Länge p. Das läuft auf die Suche nach den 0 < «1 < • • • < ap < r mit

«1 < 2, «2 <4, 2 < «3 < 6, 4 < (14 < 8, 2(p — 2) < ap < 2{p — 1) + 1

hinaus. Ist a3 2 + j, so kennen wir die Anzahl der (<23,..., ap) mit den richtigen

Eigenschaften schon: Sie ist gleich D1' 2. Es hängt aber von j ab. wie viele a\, «2 möglich
sind:
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- 1st j 0. also 03 2. so gibt es keine a\, mit 0 < a\ < a2 < a3 und a\ <
2, ci2 < 4.

- Eine einzige Wahl a\, «2 (nämlich 1, 2)) gibt es im Fall j 1.

- Drei Möglichkeiten (nämlich (1,2), (1,3), (2, 3)) sind im Fall j — 2 erlaubt.

- Fünf Möglichkeiten (nämlich (1,2), (1, 3), (1,4), (2, 3), (2,4) für j 3.

- Ebenfalls fünf Möglichkeiten (die gleichen wie eben) im Fall j — 4.

Zusammen heißt das: Geeignete p-Tupel gibt es genau

0 • DQ~2 + 1 • Df"2 + 3 • D'[
2

+ 5 • Dj-2 + 5 D£~2.

Um zur Anzahl der A inSatz2.5(i)zu kommen, muss man die Ergebnisse für p — 2, p — 1,

p nur addieren:

(l + l+0)D^2 + (l+2+l)Dp2+(l+3+3)Df2+ (l+4+5)Df2 + (l+4+5)D;"2.

So gelangen wir zu

2.8 Satz. Ist r =2p gerade, so gilt

Yr > (2,4,6, 10, 10)C/;_2(1, 1,1,1, 0)T.

(Der Ausdruck in der Formel ist das Produkt der Matrizen (2,4, 6, 10, 10), Cp-1 C''~x
und 1, 1,1, 1,0)T.)

Hier folgen einige konkrete Werte:

4 5 6 7 8 9 10 11

r 8 10 12 14 16 18 20 22

IV 75 244 793 2 576 8 366 27 167 88215 286439

Es fehlt noch die Diskussion des Falles ungerader r 2p + 1. Diesmal ist

A0 {1,3 2/> + 1} und A(', {1,3 ,2p-l}.
Uns interessiert die Anzahl der A mit r ^ A und A'() < AU {/•) sowie A < Aq. Wegen
Lemma 2.2 sind nur A mit p — 1, p, p + 1 Elementen möglich, und wir werden wieder
auf kombinatorische Probleme geführt. Ähnlich wie im Fall gerader r zeigt man:

- Die A mit Länge p — 1: Davon gibt es X"/=0 D'j
'

•

- Die A mit Länge p: Die Anzahl ist

0 • D'q
1

+ I • Dp' + 2 • /J>r' + 3 Dp1 + 3 • D^'"1.

- Die A mit Länge p + 1: Hier erhält man als Anzahl

0 • Dq-1 + 0 • D'[~X + 1 Dr 1

+ 2 D3-1 + 2 D£"'
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Fasst man die drei Fälle zusainmen, so folgt für die Gesamtzahl

(l+0+0)D£~,+(l + l+0)Dr1+(l+2+l)£,rI+(l+3+2)örl+(l+3+2)Ö4~l>
und unter Verwendung der Cp kann das als Matrixprodukt umgeschrieben und zu einer
Abschätzung ausgenutzt werden:

2.9 Satz. Ist r 2p + 1 ungerade, so gilt

y r > (1,2,4, 6, 6)0,-1(1, 1, 1, 1,0)'.

Konkret ergibt das die folgenden Abschätzungen:

p 3 4 5 6 7 8 9 10

r 7 9 11 13 15 17 19 21

^2 -i IV 42 136 441 1431 4645 15 080 48 961 158 970

Wie gut sind die bisherigen Abschätzungen? Es ist zu erwarten, dass yr durch die
approximativ ermittelten Werte gut zu approximieren ist. Bisher haben wir yr für r < 6 exakt
identifiziert, bei y-\ sind wir sehr nahe am Zielwert, doch dann wird die Lücke zwischen
dem erwarteten yr und der beweisbaren Schranke immer größer.

Ganz am Anfang hatten wir schon bemerkt, dass yr > (2' — 1 )/r. Die hier ermittelten

Schranken erweisen sich für r < 31 als besser, für große r sind unsere Untersuchungen

also nicht besonders hilfreich. Es ist auch leicht festzustellen woran das liegt.
Für das asymptotische Verhalten der von uns ermittelten Ausdrücke spielen doch die
Potenzen der Matrix C eine Rolle. Die Eigenwerte dieser Matrix sind (MAPLE sei Dank)
0,0,0.1981, 1.5549,3.2470. Es ist r 2/; oder r 2p + 1, das Wachstum wird also

asymptotisch wie (s/3.2470)'" 1.802' sein. Oder anders formuliert: Durch den zweiten

Ansatz wurde die untere Schranke auf c 1.802'" gegenüber c • 1.618 aus dem ersten
Ansatz verbessert. Es sollte aber angesichts der Lücke zwischen Experiment und strenger
Abschätzung noch viel besser gehen.

3 Untere Schranken für Summen-separierte n-Tupel
Durch Umskalieren können die Ergebnisse des vorigen Abschnitts für untere Abschätzungen

von /(«) nutzbar gemacht werden. Nach Delinition von yr gilt doch: Ist 0 < x\ <
• • • < x, 1. so gibt es ein x, für das die Anzahl der .v a in ] x - 1, x | mindestens gleich
}7 ist. Und für yr gibt es einige konkrete Abschätzungen.

Unmittelbar folgt: Sind 0 < x\ < < xr := y reelle Zahlen, so gibt es ein x, für das die
Anzahl der .va in ].v — y,x | mindestens gleich yr ist.

Und nun sei eine Summen-separierende Familie 0 < a\ < < an vorgelegt. Wir
wählen ein x wie vorstehend: y„ Zahlen a a liegen in ]x — an,x ]. Die a a sind aber nach

Voraussetzung verschiedene natürliche Zahlen, es ist also an > yn. Wir folgern:

3.1 Satz. Es ist y„ < f(n) für alle n.

Bis n 8 ist f(n) exakt bekannt. Für größere n lässt sich aufgrund unserer Ergebnisse
folgendes aussagen:



136 < /(9) < 161

244 < /( 10) < 309

441 < /(11) < 594

793 < ./ 12) < 1159

1431 < /( 13) < 2262

2576 < /"(14) < 4475.

Das vergleiche man mit der bekannten Abschätzung f(n) > 2"/(4^/n):

n 9 10 11 12 13 14

/(«) 2 42.66 80.95 154.37 295.60 568.01 1094.70

4 Zusammenfassung

Die Atkinson-Negro-Santoro-Konstruktion 121 und die Conway-Guy-Konstruktion ([4],
[7]) erweisen sich als Spezialfälle einer neuen systemalischen Konstruktion schwach Sum-

men-separierter n-Tupel. Dadurch konnten die oberen Schranken für optimale
Summenseparierte Familien leicht verbessert werden. Das Auffinden neuer unterer Schranken wurde

auf ein Maß-Konzentrations-Ergebnis zurückgeführt.

Der Autor dankt Herrn Noga Alon, durch den er auf die Ergebnisse in 11 ] und [3] aufmerksam

gemacht wurde.
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