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Tupel aus n natiirlichen Zahlen, fiir die alle Summen
verschieden sind, und ein MaBkonzentrations-Phinomen

Ehrhard Behrends

Ehrhard Behrends war bis 2011 Professor an der Freien Universitiat Berlin. Seine
Fachgebiete sind Funktionalanalysis und Stochastik. Er setzt sich intensiv fiir
die Popularisierung der Mathematik ein. Unter anderem hat er die Internetseiten
mathematik.de und mathematics-in-europe.eu aufgebaut, und er ist
Autor des Buches ,,Fiinf Minuten Mathematik™, das in neun Sprachen {ibersetzt wur-
de. Seit einigen Jahren beschiiftigt er sich intensiv mit dem Thema ,Mathematik und
Zaubern“. Er hat dazu zwei Biicher geschrieben und ist seit 2015 , gepriifter* Zauberer.

Bei der Analyse des mathematischen Hintergrunds eines Zaubertricks' tauchte das folgen-
de Problem auf: Fiir ein gegebenes n € N finde man natiirliche Zahlen a; < --- < a,
so, dass die 2" — 1 moglichen Summen ap = ZieAa,- fiir nicht-leere Teilmengen
A C {1,...,n} alle verschieden sind und a, mdoglichst klein ist. Ein Beispiel, fiir das
alle Summen verschieden sind, ist schnell gefunden. Man wihle einfach die Zahlen 1, 2,
4,...,2" 1 Doch kann man a, auch kleiner, vielleicht sogar viel kleiner als 2"~ wiihlen?
Im Fall n = 3 ist das kleinstmogliche Beispiel wirklich 1, 2, 4, aber schon fiir n = 4 ist 3,
5, 6, 7 ein moglicher Kandidat mitag =7 < 8 = 24-1

Das Problem ist wahrscheinlich erstmals von Erdos 1931 betrachtet worden (zitiert nach
[3]). Erdés vermutete, dass es nicht wesentlich besser als 2"~ gehen kann. Er setze 500

I'Vgl. das Ende der Einleitung

Wer sich mit dem Dualsystem auskennt, weill: Jede Zahl zwischen 0 und 2" — 1 ldsst

~sich als Summe einer geeigneten Auswahl aus den n Zahlen 1,2, 4, . .. .21 darstel-
len. Insbesondere sind alle solche Summen verschieden. Schafft man das auch mit
kleineren Zahlen? Ja, das einfachste Beispiel gibt es schon fiir n = 4: Nicht nur
fiir 1,2, 4, 8 sind die Summen verschieden, sondern auch fiir 3, 5, 6, 7. Erdos fragte
vor vielen Jahrzehnten, wie klein bei vorgegebenem n solche Zahlen gewiihlt werden
konnen. Die bisherigen Fortschritte zu diesem Problem sind recht bescheiden. In der

- vorliegenden Arbeit werden die oberen Schranken leicht und einige untere Schranken
wesentlich verbessert. Die Methoden sind elementar. Der Autor wurde auf diesen Fra-
genkreis durch ein Zauberkunststuck aufmerksam. '
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Dollar fiir einen Beweis der folgenden Aussage aus: Es gibt ein positives ¢, so dass das
bestmogliche a,, stets groBer als ¢ - 2"~ ! ist. Das Problem ist weiterhin offen, auch wenn
im Lauf der Zeit einige asymptotische Abschitzungen gefunden wurden (siehe [2]-[7]).

Wir beginnen mit einigen Bezeichnungen. n ganze Zahlen 0 < a; < --- < a, sollen
Summen-separiert heifen, wenn die 2" — 1 Summen a, alle verschieden sind?. f(n) be-
zeichne das kleinste a,,, fiir das 0 < a; < --- < a, bei Wahl geeigneter ay, ..., a,—|
Summen-separiert ist. Wegen des Beispiels 1, 2, ..., 2" ist klar, dass f(n) < 2" gilt.

Seien die a; so, dass a, = f(n). Die 2" — 1 verschiedenen Summen liegen alle in 1,
2,...,n - f(n), und deswegen folgt, dass n - f(n) > 2" — 1, also f(n) > 2"/n. 1955
haben Erdés und Moser ([5]) gezeigt, dass sogar f(n) > 2"/(4./n) gilt, und im Buch
von Alon und Spencer ([1]) findet man dazu einen auf der Tschebyscheff-Ungleichung
beruhenden Beweis.

Abschiitzungen nach oben wurden wie folgt gefunden. Man konstruiert eine spezielle
Summen-separierte Familie 0 < a; < --- < ay,, so dass fiir ein (moglichst kleines) ¢
die Ungleichung a,, < c- 210~ gjlt. Dann ist natiirlich auch. £ (ng) < c¢-2"~!. Und dann
hilft eine elementare Uberlegung weiter: Ist 0 < a; < --- < a, Summen-separiert, s0
auch die aus n + 1 Zahlen bestehende Familie 0 < 1 < 2a; < --- < 2a,. Das impliziert
sofort f(n 4+ 1) < 2f(n), und man wiisste, dass f(n) < ¢-2""! fir alle n > ng gilt.
Die bisher beste mit dieser Technik gefundene asymptotische Konstante ist ¢ = 0.44004,
sie wurde von Bohmann in [3] angegeben. (Sie verbessert minimal den von Lunnon in [7]
gefundenen Wert ¢ = 0.44192.)

Ziel der vorliegenden Arbeit ist weniger die Herleitung asymptotischer Abschitzungen als
vielmehr die Entwicklung einer neuen Strategie zum Auffinden von Summen-separierten
n-Tupeln. Wir leiten auch eine neue untere Abschitzung fiir f(n) mit Hilfe eines Maf-
Konzentrations-Ergebnisses her, die fiir kleine n besser als die bekannten unteren Schran-
ken ist.

Fiir eine erste Orientierung kann man sich Computerhilfe zunutze machen. Die systemati-
sche Rechnung zu n = 8 wurde mit einem Programm des Autors durchgefiihrt.

— f(3) =4,und 1, 2, 4 sowie 2, 3, 4 (und keine weiteren 3-Tupel) geniigen der Bedin-
gung az < 4. B

— f(4) =7,und 3, 5, 6, 7 (aber kein weiteres 4-Tupel) geniigt der Bedingung as < 7.

— f(5) =13,und 3,6, 11, 12, 13 sowie 6,9, 11, 12, 13 (und keine weiteren 5-Tupel)
geniigen der Bedingung as < 13.

— f(6) = 24, und 11, 17, 20, 22, 23, 24 (aber kein weiteres 6-Tupel) geniigt der
Bedingung ag < 24.

— f(7) = 44, und 20, 31, 37, 40, 42, 43, 44 (aber kein weiteres 7-Tupel) geniigt der
Bedingung a7 < 44.

— f(8) =84, und 20, 40, 71, 77, 80, 82, 83, 84 sowie 39, 59,70, 77, 78,79, 81, 84 und
40, 60, 71, 77, 80, 82, 83, 84 (aber kein weiteres 8-Tupel) geniigen der Bedingung
ag < 84.

2In der englischen Literatur spricht man von der SSD property. Dabei steht SSD fiir Subset-Sum Distinctness.
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Weiter lassen sich die konkreten Rechnungen nicht fortsetzen. Schon fiir n = 9 sind ja
alle 9-Tupel 0 < a1 < --- < ag < 256 potentielle Kandidaten: Wie grof} ist das kleinste
ao, fiir das ay, ..., as Summen-separiert ist? Es wire die unrealistisch grofle Zahl von
(236) ~ 1.13 - 101° Moglichkeiten zu iiberpriifen.

Die Arbeit ist wie folgt gegliedert. Wir beginnen in Abschnitt 1 mit einer konkreten Kon-
struktion: Summen-separierte n-Tupel werden mit Hilfe schwach Summen-separierter n-
Tupel konstruiert. Sie liefert fiir ,,kleine” n optimale Ergebnisse und stets obere Schranken
fiir f(n). In der einfachsten Form ist sie mit der in [2] vorgeschlagenen Konstruktion ver-
wandt, die verfeinerte Version verbessert die Abschitzungen in [7]; auch werden neue
optimale n-Tupel angegeben.

In Abschnitt 2 gibt es dann einen Exkurs: Gewisse Mafle auf R tendieren dazu, auf ge-
eigneten kleinen Intervallen weit groBere Werte zu haben, als eine naive Abschitzung ver-
muten ldsst. Dieses MaBkonzentrations-Phdnomen wird dann in Abschnitt 3 ausgenutzt
werden, um untere Schranken fiir f(n) zu beweisen.

Das hier untersuchte Problem wurde, wie schon erwiihnt, durch ein Zauberkunststiick mo-
tiviert, das ich durch einen Artikel des Zauberers Werner Miller aus Osterreich kennen
gelernt habe. Eine stark vereinfachte Variante kann, mathematisch formuliert, wie folgt
beschrieben werden.

Es gibt n Spieler, vor denen ein Stapel mit roten und schwarzen Karten liegt. Der Zauberer
ist noch abwesend. Jeder nimmt sich eine rote oder eine schwarze Karte und befolgt dann
die Anweisung, die er in einem Umschlag findet: Im Umschlag des k-ten Spielers steht
die Anweisung: ,,Wenn Du eine rote Karte genommen hast, lege ay Cent-Stiicke auf den
Tisch®. Die restlichen roten und schwarzen Karten werden beiseite gelegt, der Zauberer
kommt dazu. Er sieht nur die Cent-Stiicke auf dem Tisch und kann dann genau sagen, wer
eine rote und wer eine schwarze Karte genommen hat. Die Losung: Er kennt die Summe
S der a; iiber die k, fiir die der Spieler eine roten Karte genommen hat, und wenn man
ai, ..., ax Summen-separiert gewihlt hat, lisst sich genau sagen, wie die Karten verteilt
sind. Besonders einfach ist es, wenn man a; = 25! festsetzt. Dann muss der Zauberer
nur in Gedanken die Binéirdarstellung von S ermitteln. Schéner wiiren ,,unauffilligere™ ay,
und es ist sicher auch wiinschenswert, dass diese Zahlen moglichst klein sind. So wurde
ich auf das Problem aufmerksam.

1 Schwach Summen-separierte n-Tupel und
eine obere Schranke fiir f(n)

Wir beginnen unsere Untersuchungen mit einer Plausibilitdtsbetrachtung. Damit0 < a; <

- < a, Summen-separiert ist, sollte a; + - - - + a, eher grof} als klein sein, denn dann
ist die Chance groBer, dass alle aa verschieden ausfallen. Das erreicht man dadurch, dass
die grolten a;, also a,, a,—1, . . ., nahe beieinander liegen. Mehr als 3 konnen aber nicht
direkt aufeinanderfolgen, denn eine Folge, die ¢,¢ + 1,7 + 2,1 + 3 enthiilt, kann nicht

3Eine drastische Verringerung der nachzupriifenden Mdglichkeiten ergibt sich daraus, dass f(8) = 84 schon

gezeigt ist. Deswegen muss, wie oben begriindet, f(9) < 168 gelten, und es sind folglich ,,nur* noch ('88) ~

2.36 - 10'* Kandidaten zu betrachten.
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Summen-separiert sein: Es wiire dannjat + (¢ +3) = (¢t + 1) + (¢ + 2). Wirklich enden
fast alle obigen Beispiele fiir n > 4 mit drei aufeinanderfolgenden Zahlen, nur fiirn = 8
gibt es ein Beispiel, in dem Zahlen &, k + 1, k + 2 zwar auftreten, aber nicht am Ende.
Es scheint auch so, dass die optimalen ay, . . ., a, zwar recht irregulir sind, dass sich aber
fiir die Abstinde zum letzten Element, also die @, — a;, eine gewisse RegelmiBigkeit
erkennen lisst. Zum Beispiel:
— Fiirn =51ist6,9, 11, 12, 13 optimal, und die a5 — a; sind die Zahlen 0, 1, 2,4, 7.
— Firn =6ist 11, 17, 20, 22, 23, 24 optimal, und die a¢ — a; sind die Zahlen 0, 1, 2,
4,7,13.
— Fiirn = 71ist 20, 31, 37, 40, 42, 43, 44 optimal, und die a5 — a; sind die Zahlen 0, 1,
2. 4.7,.13,. 24,
Welche Eigenschaften haben die a,, — a; ? Wir fiithren eine weitere Definition ein: Ganze
Zahlen by < --- < b, heiBen schwach Summen-separiert, wenn fiir jedes [ € {1, ..., n}
die (7) Zahlen bp := >, b; fiir die [-elementigen A C {1,...,n} verschieden sind.
(Fur diese Vorbereitung lassen wir also ausdriicklich ganze Zahlen zu.) Trivialerweise
wird diese Eigenschaft von der Summen-Separiertheit impliziert, doch die Umkehrung
muss nicht gelten. Unsere Strategie zum Auffinden Summen-separierter a; wird aus zwei
Schritten bestehen:
e Konstruiere schwach Summen-separierte by < by < --- < by,.

e Ordne einer schwach Summen-separierten Familie eine Summen-separierte Fami-
lie zu.

1.1 Lemma. by < --- < b, sei ein schwach Summen-separiertes n-Tupel. Fiir | =
1,...,n bezeichnet A; die Menge derjenigen Zahlen, die als Summen von | Summanden
aus {by, ..., by} entstehen.
(i) Fiir beliebige b, b’ € 7. mit b" # 0 ist b’'by — b,b'by — b, ..., b'b, — b schwach
Summen-separiert.
(i1) Die ganze Zahl b liege nicht in ULZ A; — Aj_1. (Dabei ist A — Aj—1 die Menge
{c—d|ceA,de Ai_1}.)
Dann ist auch {by, ..., b,} U {b} schwach Summen-separiert.
Ein Beispiel fiir so ein b kann wie folgt gefunden werden: Die Zahl b sei grofier als (b, 1+
byia+ - +b2y)— (b1 + -+ by_1) falls n = 2p gerade ist, und gréPer als (b,1 +
bpy2+ -+ byps1) — (b1 + -+ byy), falls n = 2p + | ungerade ist.

(iii) Es sei zusdtzlich by = 0, dann heif3it das Tupel normalisiert. Fiir einb € Nmith > b,
definiereay == b —bp,ap :=b—by_1,...,ay :=b—>b1. Dannistay, ..., a, genau
dann Summen-separiert, wenn die Mengen |l -b — Ay .= {l - b — ¢ | ¢ € Ay} fiir
[ = 1,...,n paarweise disjunkt sind. Das ist zum Beispiel dann erfiillt, wenn b
grofler ist als

bpr1+bpi2+--+bp)— b1+ +by1)
im Fall gerader n = 2p bzw. grofler als
(bpy1+bpy2+---+bapr1) — (b1 +---+b,_1)
im Fall ungeradern = 2p + 1.
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Beweis: (i) Das ist klar.

(i1) Der erste Teil der Behauptung ist leicht einzusehen. Fiir den zweiten Beweisteil richten
wir es so ein, dass alle Elemente von b+ A;_ grober als alle Elemente von A; sind. Das ist
gleichbedeutend damit, dass das kleinste Element von b+ A;_q (alsob+ by +---+b; 1)
groBer ist als das grofite Element von A; (also b, + b,—1 + - - - + by—+1). Das bedeutet

b>by+bp 1+ +byjy1— (b1 +---+bi1).

Die rechte Seite ist wegen by < --- < b, monoton steigend in / und von einer Stelle
an konstant, da sich fiir groere [ in b, + b, 1 + -+ + by_141 und by + -+ + bj_
einige Summanden wegheben. Das konkrete Maximum hiéngt davon ab, ob n gerade oder
ungerade ist. Es kann wie angegeben explizit dargestellt werden.

(i1i) Der erste Teil der Aussage ist klar. Fiir den zweiten Teil soll die paarweise Disjunktheit
der! - b — A; dadurch erzwungen werden, dass das grobite Element von ([ — 1) -b — A;—
(also (I —1)-b— (b1 + - - -+ b;—1)) kleiner ist als das kleinste Element von/ - b — A; (also
l-b—(by,+bp—1+---4 bp—i4+1)). Wir fordern also:

b > (bn ‘|‘bn—l+"“|‘bn—[+l)—(b1‘|‘""|‘bl—1)a [=2 TN

In Abhiingigkeit von n gerade/ungerade kann das (analog zum vorigen Beweis) wie in (iii)
angegeben explizit umgeformt werden. L

Der erste Versuch

Das Lemma motiviert die Konstruktion einer Folge g1 < g2 < --- ganzer Zahlen, so dass
81, --.,8n fiir jedes n schwach Summen-separiert ist. Wir definieren g; := 0, g2 = 1,
g3 := 2 und konstruieren dann die g, fiirn > 3 rekursiv wie folgt:

Ist n = 2p gerade, so sei
gn+1:=(gp+1+8pr2+---+82p) —(g1+---+gp—1)+ 1.
Ist dagegen n = 2p + 1 ungerade, so setze
gn+l = (Bp+1+ gp+2+---+82p+1)— (€1 +---+gp-1)+ 1.

Als Konsequenz des Lemmas sind alle n-Tupel g1, .. ., g, schwach Summen-separiert.

Hier sind die ersten g,:

81=0,820=1,83=2,84=4,85="7,806 = 13,87 = 24,83 = 46,89 = 88, ...
Obwohl sich die g, auf recht komplizierte Weise ergeben haben, lisst sich ein Bildungs-
gesetz angeben:

1.2 Lemma. Fiir n > 2 gilt: Ist n = 2p gerade oder n = 2p + 1 ungerade, so ist
8n+1 = 23!1 — &p-
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Beweis: Sei etwa n = 2p gerade. Aufgrund der Definition ist

gn+1=(@pt1+--+82p)—(@1+---+gp-1)+1
=8n—8/)+(8p+---+82p—l)—(81 +---+g,)_1)+l
=281 — &p-

Der Fall ungerader n kann analog behandelt werden. O

Mit Teil (iii) des Lemmas kann nun eine Summen-separierte Familie konstruiert werden.
Fixiert man n, so ist die Formel fiir das g in (iii) die gleiche, mit der das jeweils niichste g,
berechnet wurde. Deswegen ist ¢ = g,+1. Das ist die (ohne Motivation) in [2] vorgeschla-
gene Konstruktion Summen-separierter n-Tupel. Sie liefert fiir n < 6 optimale Ergebnisse.
Fiir n = 7 wird aber 22,33, 39, 42, 44, 45, 46 erzeugt, doch es ist f(7) = 44 (s.o0.). Fiir
grofbere n weicht das maximale Element der mit dieser Methode gefunden n-Tupel im-
mer mehr von f(n) ab. Es ist nicht schwer zu sehen, dass f(n)/2""! mitn — oo gegen
0.63336. .. konvergiert, asymptotisch sind also fiir das maximale a, viel bessere Werte
zu erreichen als 2"

Der zweite Versuch

Die Moglichkeiten von Lemma 1.1 wurden bei der vorstehenden Konstruktion nicht aus-
geschopft. Es gibt zwei Ansdtze fiir Verbesserungen.

Der erste Ansatz: Wie wurde das jeweils niichste Element gefunden? Wenn wir {b1, ...,
b, } schon konstruiert haben, so kann doch als nichstes Element ein beliebiges b genom-
men werden, das (mit den Bezeichnungen des Lemmas) nicht in U,(A; — Aj—1) liegt.
Im zweiten Teil von Lemma 1.1 (ii) wurde das dadurch erreicht, dass alle Elemente von
b + A;_1 groBer sind als alle Elemente von A; (I =2, ..., n).

Das ist aber nicht zwingend. Wir betrachten die folgende Variante. Ist B = {by, ..., b,}
schon als schwach Summen-separierend identifiziert, so sei

e Bt die Menge B, vermehrt um das kleinste positive Element, das nicht in |, (A; —
Aj—1) liegt.
e B~ die Menge B, vermehrt um das betragsmilig kleinste negative Element, das
nicht in | J,(A; — A;—1) liegt.
Wegen des Lemmas sind B* wieder schwach Summen-separiert, und das Verfahren kann
iteriert werden. Zur Abkiirzung setzen wir (zum Beispiel) B*~ = (B")~, Bt~ =
(BT7)", usw. Auf diese Weise entstehen viele neue schwach Summen-separierte Men-

gen, durch die dann mit Lemma 1.1 (iii) neue Summen-separierte n-Tupel erzeugt werden
konnen.

Hier ist ein Beispiel, wir starten mit B := {0}:

BT ={0,1}, BT~ ={0,1,—1}, B*¥~*t ={0,1, -1, 3}
Bt—*t-=10,1,-1,3,-5}, BTt~ =1{0,1, -1, 3, =5, —11}.
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Die Elemente miissen dann nur noch sortiert und so verschoben werden, dass eine nor-
malisierte Familie entsteht, um mit Lemma 1.1(iii) ein Summen-separiertes n-Tupel zu
erhalten.

Der zweite Ansatz: Wenn 0 = by < --- < b, schwach Summen-separiert ist, so kann man
b in 1.1(ii1) so wihlen, dass das groBte Element von (/ — 1) - b — A;—1 jeweils kleiner ist
als das kleinste Element von [/ - b — A;. Dann muss man nur noch zu den b — b; iibergehen.

Die paarweise Disjunktheit der [ - b — A ldsst sich aber manchmal auch mit kleineren &
erreichen. Der Grund: Diese Mengen sind oft an den Réndern ,,ausgefranst*. Als Beispiel
sieht man hierdie [ -b — A; fiirl = 2,3,4,5,61im Fall n = 7 und b = 46. (Oben links: die
(;) Elemente von 46 — A, jeweils durch einen kleinen senkrechten Strich markiert, in der
nichsten Zeile die (Z) Elemente von 46 — A3 usw.) Es ist naheliegend zu versuchen, diese
Mengen noch ein bisschen nach links zu schieben, ohne die Bedingung der paarweisen
Disjunktheit zu verletzen:

| [ T T W
DL R TR g
POORLOR R G )
T T TV O TV I
mao | 1

Diel-b— A;firl =2,3,4,5, 6 imFalln =7 und b = 46.

Unser zweiter Ansatz besteht damit in folgender Konstruktion bei vorgelegten 0 = b <

- < by:
Suche erstens ein b (zum Beispiel mit Lemma 1.1 (ii1)), so dass die b — b;,i = 1,...,n
Summen-separiert sind. Teste dann ,viele“ k = 1, 2, ... daraufhin, ob auch die b — b; —
k,i =1,...,n Summen-separiert sind.

In unserem zweiten Versuch kombinieren wir beide Ansitze: Er soll die +=-Konstruktion
genannt werden:

Fiir gegebenes n berechne mit B := {0} alle B, wo ¢; € {—,+}. Sortiere und
verschiebe so, dass by = 0. Die 2"~ verschiedenen (n — 1)-Tupel der &; miissen dabei
nicht zu verschiedenen by < --- < b, Anlass geben.

Suche ein b wie im zweiten Ansatz beschrieben.

Das Verfahren ist sehr rechenintensiv. Es werden aber alle bekannten optimalen Summen-
separierten Tupel gefunden und auch noch einige, die schon bekannte Beispiele verbes-
sern. Um das zu prizisieren, muss die in [7] beschriebene Conway—Guy-Konstruktion be-
schrieben werden. Da setzt man ug := 0, #1 := 1 und dann rekursiv u, 1 = 2u, —up—m,
wobei m die grioBte ganze Zahl z mit z < 0.5 + +/2n ist. Man weiB, dass fiir jedes n die
up, —u; (i =0,...,n — 1) Summen-separiert sind, und mit dieser Konstruktion kann die
asymptotische Abschiitzung f(n) < 0.44192-2"~! gefunden werden. Es folgt ein direkter
Vergleich:

n =2,3,4,5, 6: Alle Verfahren finden die optimalen n-Tupel.

n = 7. Das Conway—Guy-Verfahren und das £-Verfahren finden das 7-Tupel 20, 31, 37,
40, 42, 43, 44.
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n = 8. Das Conway—Guy-Verfahren und das 4--Verfahren finden 40, 60, 71, 77, 80, 82,
83, 84. Das £-Verfahren erzeugt auch 39, 59, 70, 77, 78, 79, 81, 84, aber das
Tupel 20, 40, 71, 77, 80, 82, 83, 84 mit ebenfalls minimalem ag = 84 wurde nur
durch brute-force-Rechnung ermittelt.

n = 9, 10, 11. Conway—Guy-Verfahren und +-Verfahren erzeugen jeweils die gleiche
Summen-separierte Familie:
77, 117,137, 148, 154, 157, 159, 160, 161 fiirn =9
148, 225, 265, 285, 296, 302, 305, 307, 308, 309 fiir n = 10.
285, 433, 510, 550, 570, 581, 587, 590, 592, 593, 594 fiirn = 11.

n = 12. Beide Verfahren finden 570, 855, 1003, 1080, 1120, 1140, 1151, 1157, 1160,
1162, 1163, 1164. Durch das +-Verfahren wird die Schranke aber verbessert:
Auch 556, 845, 995, 1073, 1112, 1134, 1145, 1151, 1155, 1156, 1157, 1159 ist
Summen-separiert.

n = 13. Beide Verfahren finden 1120, 1690, 1975, 2123, 2200, 2240, 2260, 2271, 2277,
2280, 2282, 2283, 2284. Durch das +-Verfahren wird die Schranke aber verbes-
sert: Auch 1085, 1649, 1942, 2094, 2170, 2213, 2235, 2246, 2254, 2256, 2257,
2258, 2262 ist Summen-separiert.

n = 14. Beide Verfahren finden 2200, 3320, 3890, 4175, 4323, 4400, 4440, 4460, 4471,
4477, 4480, 4482, 4483, 4484. Durch das 4-Verfahren wird die Schranke aber
verbessert: Auch 2213, 3298, 3862, 4155, 4307, 4383, 4426, 4448, 4459, 4467,
4469, 4470, 4471, 4475 ist Summen-separiert.

Die Rechnungen sollen hier abgebrochen werden, da die asymptotischen Abschiitzungen
im Vergleich zu den bekannten Verfahren nur unwesentlich besser sind*.

2 MaBkonzentration

MaBkonzentrations-Phinomene sind in der Wahrscheinlichkeitsrechnung wohlbekannt.
Zum Beispiel konzentrieren sich bei Abfragen unabhingiger Zufallsvariablen die Mittel-
werte um den Erwartungswert, und durch das schwache Gesetz der grolen Zahlen und den
zentralen Grenzwertsatz kann das auch quantifiziert werden.

Hier soll ein Phinomen beschrieben werden, das fiir die Untersuchung unterer Schranken
fiir £ (n) von Interesse ist (vgl. das nichste Kapitel). Wir fixieren eine natiirliche Zahl r und
wiihlen irgendwelche reelle Zahlen 0 < x| < --- < x, = 1. Das gibt Anlass zu einem MaB}
@ = iy dy;, wobei d, das Diracmal bei x bezeichnet. Fiir nichtleere A C {1, ..., r}
setzen wir xp 1= » ;A X;, auf diese Weise werden 2" — 1 (nicht notwendig verschiedene)
Zahlen erzeugt. Wir verabreden: Ist z.B. A = {2, 3, 5}, so werden wir x2 3 5 schreiben,
obwohl es eigentlich etwas schwerfilliger x(2 3 5) heiflen miisste.

Setze u* = Zm;&Ac{l ..... 7} dx,- Dieses Mal} hat seinen Triger in ] 0, r |, und das Mal
dieses Intervalls ist 2" — 1. Fiir eine Borelmenge A ist ;1*(A) die Anzahl der xa in A.

4Zum Beispiel kénnte es statt ., f, < 0.5473 - 2"~ fiir n > 14 nun . f, < 0.5462 - 2"~ fiir n > 14* heiBen.
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Zerlegt man |0, r | disjunktin ]O, 1 JU]1,2]U---U]r — 1, r ], so muss folglich fiir min-
destens eines dieser Intervalle u*(]1i,i + 1) > (2" — 1)/r gelten. Uberraschenderweise
lidsst sich viel mehr aussagen: Es gibt, wenigstens fiir kleine r, ein Intervall | x — 1, x ], auf
das viel mehr Masse konzentriert ist als durch die vorstehende Abschitzung angegeben.
Es ist offen, ob auch bessere Abschitzungen fiir beliebige r moglich sind.

Die hier relevante Definition ist die folgende. S, soll die Menge derjenigen y € R sein, die
der folgenden Bedingung geniigen: Egal, wie man die 0 < xy < --- < x, = | wihlt, es
gibt immer ein x, so dass x*(Jx — 1, x]) > y. Es wurde schon bemerkt, dass (2" — 1)/r
zu S, gehort. Wir setzen y, := max S,. Klar ist dann, dass (2" — 1)/r <y, < 2" — 1.
Aufgrund des folgenden Lemmas gilt y, < 271

2.1 Lemma. Fiir jedes x ist u*(Jx —1,x]) <271

Beweis: Sind die x; so, dass Zf;ll x; < 1, liegen alle xp mitr ¢ A und x, in ]0, 1], es

istalso u*(]0, 1)) =21

GroBer kann das Mab eines Intervalls | x — 1, x | aber auch nicht werden. Sei irgendein
x € R vorgegeben. Mit Fy bzw. Gy bezeichnen wir die Menge der nichtleeren A C
{1,...,r — 1}, fir die xo < x — 1 bzw. xo > x — 1 gilt. Die Anzahl der Elemente in
diesen Mengen nennen wir f, bzw. g,. Es ist also fy + g« = 2! — 1. Fiir A € F,
bzw. A € G, liegt xpo bzw. xao + x, nicht in | x — 1, x ], als Kandidaten fiir Elemente aus
]x — 1, x | bleiben also hochstens die xpo mit A € G, die Zahl x, und die xp + x, fiir
A € Fyx.Das sind hochstens gy + fy + 1 = 2r=1 Zahlen. O

Man kann zunichst durch Computerexperimente obere Schranken fiir y, finden. Es ist
leicht einzusehen, dass man sich bei der Untersuchung der Intervalle | x — 1, x | auf die
,,,,, x, = f{xa | @ # A C{l,...,r}} beschrinken kann. Und dann erzeuge man
wviele zufillige r-Tupel xq, . . ., x, und bestimme die maximale Anzahl der Elemente aus
Xxi,...x,» die in einem Intervall |x — 1, x| liegen, wobei x alle Elemente aus X,
durchlduft. So ergaben sich die folgenden Abschitzungen:

r 3141516 |78 9 10 | 11
yr< | 4|7 |13]23 43|83 | 158 | 283 | 566

Wenn die Anzahl der Versuche groll genug ist, sollte y, mit der durch Simulation gefun-
denen Zahl iibereinstimmen. Die Werte sind weit groBer, als unsere erste Abschitzung
vermuten lisst. So wird sich zum Beispiel wirklich y6 = 23 ergeben, das ist deutlich
groBer als 2°/6 = 32/3 = 10.666. . ..

Um untere Schranken zu finden, werden wir wie folgt vorgehen.

e Wir beobachten: Ist Ag beliebig, so ist y, mindestens so grolb wie die Anzahl der A
mit xp, — I < xa < xa,.Das ist offensichtlich.

e Stelle mit Computerhilfe fest, welche Ag ,aussichtsreich™ sind, also solche, bei de-
nen voraussichtlich fiir ,,viele” A die Zahl x in ]xAO —1, xAO] liegt. Es zeigt sich:
Ist ¥ = 2p + 1 ungerade, so sollte man es mit Ag = {1, 3,...,2p + 1} versuchen,
und ist r = 2p gerade, so arbeite man mit Ag = {2,4,...,2p}.
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e Ermittle fiir solche Ay mit kombinatorischen Methoden die Anzahl der A, fiir die
garantiert xo, — 1 < xa < xa, gilt.

Fiir die von uns favorisierten Ag ist also r € Ag, und das bedeutet x5, — 1 = XALs wobei

Aj = Ag \ {r}. Konsequenterweise werden wir ein Ergebnis benotigen, mit dem sich fiir
beliebige A, A’ feststellen lisst, ob stets xp < x - gilt.

Wir definieren: Fiir A, A" C {l,...,r} werden wir A < A’ (bzw.A < A’) schreiben,
wenn bei jeder Wahl der x; die Ungleichung xp < xur (bzw. xpo =< xar) gilt. So ist

etwa offensichtlich {1, 2,5} < {3,4,5}und {2,3,4,5} < {3,4,5, 6,7}, doch es ist nicht
richtig, dass {1,4} < {5}, da man aus x; < x3 < x3 < x4 < x5 nicht auf x; + x4 < x5
schliefen kann.

2.2 Lemma. Sei A ={iy,...,is} und A" ={j1,..., J;}, wo iy <--- <igund j; <--- < j;.
(i) Es ist genau dann A < A', wenn s <t sowie iy < i, is 1< Ji—1s-esi1 < J1—st1-
(ii) A < A’ ist gleichwertig zu A <A und A # A,

Beweis: (i) Eine Richtung ist offensichtlich. Fiir die andere gehen wir von A < A’ aus. Es
ist zu zeigen: Wenn die Implikation nicht stimmt, kann man ein geeignetes (x;)-Tupel mit
XA > Xar angeben.

Angenommen, es wire s > ¢. Wir wiihlen die x; alle sehr nahe bei 1. Dann ist xp =~ s und
xar & t, ein Widerspruch. Dann zeigen wir durch Induktion nach &, dass iy < j;—x. Wir
beginnen mit k = 0 und nehmen j; < i an. In diesem Fall betrachten wir ein (x;)-Tupel,
bei dem die x; fiir i < iy sehr nahe bei Null und die anderen sehr nahe bei 1 liegen. Dann
ist 0 &~ xpr < xa ~ 1. Im Induktionsschritt wird dhnlich verfahren.

(i) Ist A < A’und A # A’ so gibtes in A’ mehr Summanden, oder es ist ein iy < j; .
In jedem Fall ist xo < xa’. Die Umkehrung ist klar. ]

Nach diesen Vorbereitungen konnen untere Abschitzungen fiir die y, gefunden werden.
Wir stellen zwei Ansitze dar, fiir den zweiten ist eine neue Idee erforderlich.

Der erste Ansatz

Setze Ap = {1,3,...,2p + 1} und A{) =:{1,3,...,2p — 1} firungerade r = 2p + 1
bzw. Ag = {2,4,...,2p}und A := (2,4, ...,2p — 2} fiir gerade r = 2p. Unter A,
verstehen wir die Menge der ,,sicheren Kandidaten®, also die Menge der nichtleeren A mit
A6 < A < Ay. Die Anzahl der Elemente von A 5, (wir werden sie a(A¢) nennen) ist eine
untere Schranke fiir y,. Fiir nicht zu grofle r kann man a(Ag) leicht durch systematische
Suche mit Computerhilfe berechnen. Die Tabelle auf der nichsten Seite zeigt die ersten
a(Ag) und die sich daraus ergebenden Abschitzungen.

Fiir a(Ag) ldsst sich aber auch fiir beliebige r mit Hilfe von Lemma 2.2 unter Verwendung
elementarer Kombinatorik ein expliziter Ausdruck herleiten. Man geht so vor:

1.Seip € {2,3,...}.

¢, bezeichnet die Anzahl der ganzzahligen p-Tupel ay, ..., a,, die den Ungleichungen
O<ai<ay <---<ap,a1=<2,2<a3;=<4,...2p—2=<a, <2p geniigen.
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r Ao a(Ag) | Simulation | Schranken fiir y,
4 {2, 4} 7 7 TE9 <7

5 {1, 3,5} 12 13 12<vy,<13

6 {2,4, 06} 20 23 20<y, <23

7 {1.3,5, 7] 33 43 33 <y, <43

8 {2,4,6,8} 54 83 54 <y, <83

9 {1,3,5,7,9} 88 158 88 <y, <158
10 | {2,4,0,8,10} 143 283 143 <y, <283
111 {1,3,5,7,9,11} | 232 566 232 <y, <566

Und unter y, verstehen wir die Anzahl der ganzzahligen (p — 1)-Tupel ay, ..., a, 1, fir

die die Ungleichungen 0 < a; <a» < --- <ap-1,2<a;1 <4,4<a» <6,....2p -4 <
a,—1 <2p — 2 gelten.
Zusitzlich setzen wir noch ¢y := 2 und y; := 1.
2. Fiir die ¢,,, v, gelten die Rekursionsformeln
¢p+l = 2¢/) + W, Yot = 415/) +wy.
(Das folgt leicht aus der Definition.)
3. Explizit gilt, mit 1 = 3 ++/5)/2 und 11 = (3 — V/5)/2,

5++/5 5—4/5 NG V5
- A ’, P e X
Z ( 10 ) +( 10 )” Ve =75 5 1

(Wir wissen, dass stets
(45/)-1-1):(2 1)(¢p)
Yp+1 11 Yp

gilt, und die Eigenwerte der Matrix ( % i ) ergeben sich als A = (3 + +/5)/2 und

u = (3 —+/5)/2. Die ¢, v, sind folglich Linearkombinationen der A", u", die Koeffizi-
enten findet man durch Losen eines Gleichungssystems.)

4. r = 2p sei gerade, und Ag = {2,4,...,2p}. Dann ist a(Ag) = ¢, + y, — 1. Ist
r =2p + lungeradeund Ag = {1,3,...,2p + 1}, s0ista(Ag) = ¢,41 — 1.

(Hier wird Lemma 2.2 wichtig.)

Fiir groBe p wachsen die ¢,, y, und damit die a(A¢) asymptotisch wie die Folge
((3 + «/5—)/2)/). Es folgt, da r = 2p oder r = 2p + 1, dass y, nach unten (bis auf ei-

-
ne Konstante) durch ((3 + «/5)/2)”2, also durch (,/ G+ \/g)/Z) beschrinkt ist. Dabei

ist interessanterweise /(3 + V5)/2 = (1 4+ +/5)/2 = 1.618... die Zahl des goldenen
Schnitts.
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Der zweite Ansatz

Sei Ag wie vorstehend. Bisher haben wir uns nur um die A € A, gekiimmert, die , si-
cheren Kandidaten™. Es gibt daneben auch noch die ,,Versager”, also diejenigen A, fiir die
garantiert nicht xa, — 1 < xp < xa, zu erwarten ist. Offensichtlich ist das die Menge
Bay :={A | A < Ajoder Ag < A}.

Es bleiben die A, fiir die in Abhingigkeit von den konkreten x; die Ungleichungen x4, —
I < xa =< xa, gelten konnen oder auch nicht. Das ist zum Beispiel fiir {1, 2, 3, 4} im Fall
r = 5 der Fall: Esist sicher x; +x3 < x1+x2+x3+x4, aber x1+x2+x3+x4 < x14+x3+x5
gilt nur dann, falls x2 + x4 < xs5. Diese A wollen wir zur Menge C, zusammenfassen.

Ausgangspunkt der weiteren Untersuchungen ist die folgende Beobachtung, die wir am
Fall r = 5 beschreiben wollen. Dort besteht Ca,, aus {4}, {2, 3,4}, {1,2, 3,4}, {5} und
{4, 5}. Wir betrachten insbesondere {4}, {4, 5} und behaupten, dass bei beliebigen xq, .. .,
x5 eine dieser Mengen ein A mit xp, — 1 < xap =< xa, ist. Die Begriindung:
— Esist {4} < {1,3,5} und {1,3} < {4,5}, in jedem Fall gilt also x4 < xy 35 und
X1,3 < X4,5.
— Wenn x1 4 x3 < xgist, soist x13 < x4 < x13,5.

— Ist dagegen x4 < x1 + x3, so folgt x1 3 < x4,5 < x1,3,5.

Anders ausgedriickt: Genau eine der Zahlen x4, x4 5 wird zu | xa, — 1, xa, | gehoren. Die
xa mit den 12 Kandidaten A € A, findet man sowieso, es sind also immer mindestens
13 Elemente. Und das beweist ys = 13.

Diese Idee soll nun verallgemeinert werden:

2.3 Definition. Wie bisher seien Ag = {2,4,...,2p}und A} = {2,4,...,2p — 2} fiir
geradesr = 2p bzw. Ag = {1,3,...,2p+ 1} und A{) =1{1,3,...,2p — 1} fiir ungerades
r=2p+1.

Sei A eine nicht leere Teilmenge von {1, ...,r — 1}. Die Mengen A, A U {r} heilen ein
Bonuspaar fiir r, wenn A6 < AU{r}und A < Ag gil?.

Wir haben gerade gesehen, dass {4}, {4, 5} ein Bonuspaar fiir r = 5 ist. Es soll gezeigt
werden, dass es fiir ,,grobe” r ,,viele” Bonuspaare gibt und dass das zur Verbesserung der
unteren Schranken der y, ausgenutzt werden kann. Bonuspaare geniigen den Erwartungen:

2.4 Lemma. Gibt es k Bonuspaare in Ca,, so ist yr > a(Ag) + k.

Beweis: Wie in der Motivation zeigt man: Ist x,; < xa, 80 ist x5 € ]xao — 1, xaq |, und
gilt xaur) < xa, (gleichwertig: xao < x,/), SO ist XAy} ein Element dieses Intervalls.
xa und xaugr) werden auch nicht beide dazugehdren, denn sie haben den Abstand Eins.
Da bei k verschiedenen Bonuspaaren 2k Elemente aus Cja,, beteiligt sind, heiit das: k
Bonuspaare geben zu genau k zusitzlichen Elementen in ]x Ky — Lydifn ] Anlass®. L]

Die Bonuspaar-Bedingung kann auch fiir die A € A, erfiillt sein. Genauer gilt

SDar er6bBer ist als das gréfite Element von Aa, darf A6 < AU {r}durch A/, < A U {r} ersetzt werden.

6Sie miissen nicht verschieden sein, aber jedes derartige x5 (oder XAu(r)) erhoht ,u*(]on — 1, %A, ]) um
Eins.
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2.5 Satz. Wir verwenden die bisherigen Bezeichnungen.

(i) Sei A eine nichtleere Teilmenge von {1, ...,r — 1}. Dann gilt A6 < AU {r}und
A < Ag genau dann, wenn A oder A U {r} zu Aa, gehort oder A, A U {r} ein
Bonuspaar in Ca ist.

(i1) Die Anzahlder A C {1,...,r — 1} mit A6 < AU{r}und A < Ay ist gleicha(Aa,)
plus der Anzahl der Bonuspaare in C . Folglich ist die Anzahl dieser A eine untere
Schranke fiir y,.

Beweis: (i) A geniige den Bedingungen Ay < AU {r}und A < A,.

Fall 1: Es ist auch Aj < A.Dann gilt A € Ap,.

Fall 2: Es ist auch A U {r} < Ag. In diesem Fall ist AU {r} € Ax,. (Beachte, dass im Fall
Af < AU {r}sogar Ay < AU {r}gilt.)

Fall 3: Es gilt weder Fall 1 noch Fall 2. Wir miissen zeigen, dass A und A U {r} zu Cx,
gehoren, ein Bonuspaar sind sie dann nach Voraussetzung.

Fall 1 liegt nicht vor, A liegt also nicht in Aa,. Es ist auch nicht A U {r} < Ay, also
AU{r} ¢ Ap,. Wire A € Ba,, so wire entweder A < A6 oder Ag < A. Im ersten Fall
folgte A U {r} < Ag (Fall 2), der zweite kann nicht eintreten, dar ¢ A.

Und AU{r} € BAo istauch nicht méglich. Es miisste dann AU{r} < Aj oder Ag < AU({r}
gelten. Die erste Ungleichung ist wegen r ¢ A() nicht moglich, die zweite wiirde Ajy < A
(Fall 1) implizieren. A und A U {r} liegen also in Ca,,.

Fiir den Beweis der Umkehrung ist nur zu beriicksichtigen, dass A < A U {r}.

(i1) Das folgt sofort aus (i). Es ist nur noch zu beachten, dass niemals A und A U {r}
gleichzeitig in A5, liegen konnen. Aj geniigt der Bedingung und muss hier mitgeziihlt
werden, da in Wirklichkeit Aj U {r} = Ag gezihlt wird. O

Nun wollen wir die A zihlen, die der Bedingung des vorigen Satzes geniigen. Wieder kann
das wegen Lemma 2.2 auf ein kombinatorisches Problem zuriickgefiihrt werden.

2.6 Definition. Sei p € {2,3,...}. Fir j, ;' € {0,1,2,3,4} sei C;) ., die Anzahl der
ganzzahligen p-Tupel a; < az < --- < a,, die den Bedingungena; =2+ j,4 < as < 8,
6<a3<10,..2p—-2<a, 1 <2p+2,a,=2p+ j geniigen.

Die Gesamtheit der Cj.’,j, definiert eine 5 x 5-Matrix C), := (C;)’j,)j,j’:(),l,z’3’4

So ist zum Beispiel C§’4 = 4, denn die fraglichen Tupel sind (4,5, 10), (4,6, 10),
(4,7, 10) und (4, 8, 10). Und C; ist gleich

I 1 1 11
I 1 1 11
c=1011 11
0 0 I 1 1
00 0 1 1

Zum Beispiel steht unten links deswegen eine Null, weil es keine Tupel a; < a; mit
a; = 6und ap = 4 gibt.

2.7 Lemma. Fiir p > 2 ist Cy1 = CC),. Es folgt C), = cr-1,
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Beweis: Wie wird zum Beispiel C" "1 berechnet? Wir schauen uns in den fraglichen (p +
1) Ungleichungen msbesondere a,, an Fira, = 2p und a, = 2p + 1 liefert das einen

Kandidaten fiir C’-’ , denn dann ist @, < a,41 = 2p + 2. Ist dagegen a, = 2p + j’
mit einem j' > 1, so llefert das keinen Beitrag. Das bedeutet: C’H'I = C‘” + Cj.’l. Bei
der Berechnung von C; . werden dagegen alle Cj. jnd=0,1,2,34 berucksichtigt. Das

kann nach entsprechenden Uberlegungen fiir die anderen Eintriige in der Matrixgleichung
C,+1 = CC, zusammengefasst werden. O

Das Ergebnis soll nun zum Zihlen der in Satz 2.5 (i) auftretenden A verwendet werden.
Wir beginnen mit der Diskussion des Falls, dass r = 2p gerade ist. Wie iiblich setzen wir
Ag = 12,4 : .oy 29} uid A6 = {2,4,...,2p — 2}. Uns interessieren doch die A, die r
nicht enthalten, und fiir die AE) < AU{r}und A < Ay gilt. Wegen Lemma 2.2 kann A
nuraus p — 2, p — 1 oder aus p Elementen bestehen.

L. Die A mit Linge p — 2. Sei A = {ay,...,a,2} mit0 <a; <--- <a,—2 <2p (es
muss a,_2 < 2p sein, denn A soll r nicht enthalten). Die Bedingungen A6 < AU{r},
A < Ag implizieren wegen Lemma 2.3

2<a1£6,4<a3 <8, ...,2(p—2)<a, 3 <2(p-—-1)+1.

Wenn die letzte Bedingung a,-2 < 2(p — 1) + 2 wiire, wiirden alle Tupel, die bei der
Berechnung aller C 3 i > auftreten, gefragt sein. Die Anzahl wire also Z C” C'3 . Wegen
a, > < rdarfj = 4 nicht beriicksichtigt werden. Die Anzahl der fraghchen Tupel ist
also 3 i_0.1.2.3.4./-0.1.2.3 Cf;,z Wir setzen noch Df_z = 20123 Cﬁ}z, dann ist

. 4 p—2
die gesuchte Anzahl 37 _o D .
2. Die A mit Linge p — 1. Diesmal gehtes um (p — 1)-Tupel 0 < a; <--- <a, | <2p
mit

a;<4,2<a<6,4<a3 <8, ...,2(p—2)<a, 1 Z2(p—-1)+ 1L

Wie viele solche Tupel gibt es, wenn a; = 2 + j fiirein j € {0, 1, 2, 3, 4} ist? Das hingt
von j ab. Istetwa j = 0, so gibt es fiir ) nur eine einzige Moglichkeit, d.h., es gibt Dg_z
Maoglichkeiten. In den Fillen j = 1, 2, 3, 4 kann a; mehr Werte annehmen: 2 fiir j = 1,3
fiir j = 2,4 fiir j =3 und j = 4. So folgt: Es gibt

D 242.D0 2 4+3. D82 +4. D072 4 4. D72
geeignete Tupel.
3. Die A mit Linge p. Das liuft auf die Suche nachden 0 < ay < --- <a, <r mit
a1 <2,a3<4,2<a3<6,4<a1<8,...,2(p-2)<a, <2(p -1 +1

hinaus. Ist a3 = 2 + j, so kennen wir die Anzahl der (a3, ..., a,) mit den richtigen

Eigenschaften schon: Sie ist gleich Dﬁ-)_z. Es hiingt aber von j ab, wie viele aj, ax moglich
sind:
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— Ist j = 0, also a3 = 2, so gibt es keine aj,a; mit 0 < a; < az < az und a; <
2,a2 < 4.

— Eine einzige Wahl a;, a2 (ndmlich (1, 2)) gibt es im Fall j = 1.

— Drei Moglichkeiten (ndmlich (1, 2), (1, 3), (2, 3)) sind im Fall j = 2 erlaubt.
— Fiinf Moglichkeiten (namlich (1, 2), (1, 3), (1, 4), (2, 3), (2, 4) fiir j = 3.

— Ebenfalls fiinf Moglichkeiten (die gleichen wie eben) im Fall j = 4.

Zusammen heiBt das: Geeignete p-Tupel gibt es genau

0-D8>+1.-D¢243.D0245.D5+5.D072,

Um zur Anzahl der A in Satz 2.5 (i) zu kommen, muss man die Ergebnisse fiir p —2, p — 1,
p nur addieren:

(14140) DL 2+ (1424 1) DY 24 (14343)DE 2+ (1+4+5)DL 2+ (14+4+5)D) 2.
So gelangen wir zu
2.8 Satz. Ist r = 2p gerade, so gilt

e = (2,4,6,10,10)C, 2(1,1,1,1,0)".

(Der Ausdruck in der Formel ist das Produkt der Matrizen (2, 4,6, 10, 10), C, 2 = C” —1
und (1,1,1,1,0)")

Hier folgen einige konkrete Werte:

3 6 7 8 9 10 11
r g | 10 | 12 14 16 18 20 22
ve= || 75 | 244 | 793 | 2576 | 8366 | 27167 | 88215 | 286439

Es fehlt noch die Diskussion des Falles ungerader r = 2p + 1. Diesmal ist
Ao={1,3,...,2p+1} und Aj={1,3,...,2p—1}.

Uns interessiert die Anzahl der A mit r ¢ A und A6 < AU{r}sowie A < Ag. Wegen
Lemma 2.2 sind nur A mit p — 1, p, p + 1 Elementen moglich, und wir werden wieder
auf kombinatorische Probleme gefiihrt. Ahnlich wie im Fall gerader r zeigt man:

— Die A mit Lidnge p — 1: Davon gibt es Zafzo D
— Die A mit Linge p: Die Anzahl ist

p—1
j .

0.0 ' +1.007 +2.D57 +3.- D57 3. D27,
— Die A mit Linge p + 1: Hier erhiilt man als Anzahl

0-py" 0.0/ 1.0 v2.007 42 D07,
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Fasst man die drei Fille zusammen, so folgt fiir die Gesamtzahl
(14+0+0)DE " +(A+1+0)D2 7 + (1 424+ D™ + (143 +2) D8 + (143 4+2) D27,

und unter Verwendung der C,, kann das als Matrixprodukt umgeschrieben und zu einer
Abschiitzung ausgenutzt werden:

2.9 Satz. Ist r = 2p + 1 ungerade, so gilt
yr = (1,2,4,6,6)Cp1(1,1,1,1,0) .

Konkret ergibt das die folgenden Abschitzungen:

p 3] 4] 5 6 7 8 9 10
ro 719 [t ] 131 15 17 19 21
ye > || 42 | 136 | 441 | 1431 | 4645 | 15080 | 48961 | 158970

Wie gut sind die bisherigen Abschiitzungen? Es ist zu erwarten, dass y, durch die appro-
ximativ ermittelten Werte gut zu approximieren ist. Bisher haben wir y, fiir r < 6 exakt
identifiziert, bei y7 sind wir sehr nahe am Zielwert, doch dann wird die Liicke zwischen
dem erwarteten y, und der beweisbaren Schranke immer grofer.

Ganz am Anfang hatten wir schon bemerkt, dass y, > (2" — 1)/r. Die hier ermittel-
ten Schranken erweisen sich fiir r < 31 als besser, fiir groBe r sind unsere Untersu-
chungen also nicht besonders hilfreich. Es ist auch leicht festzustellen woran das liegt.
Fiir das asymptotische Verhalten der von uns ermittelten Ausdriicke spielen doch die Po-
tenzen der Matrix C eine Rolle. Die Eigenwerte dieser Matrix sind (MAPLE sei Dank)
0,0,0.1981, 1.5549,3.2470. Es ist r = 2p oder r = 2p + 1, das Wachstum wird also
asymptotisch wie (+/3.2470)" = 1.802" sein. Oder anders formuliert: Durch den zwei-
ten Ansatz wurde die untere Schranke auf ¢ - 1.802" gegeniiber ¢ - 1.618 aus dem ersten
Ansatz verbessert. Es sollte aber angesichts der Liicke zwischen Experiment und strenger
Abschiitzung noch viel besser gehen.

3 Untere Schranken fiir Summen-separierte n-Tupel

Durch Umskalieren konnen die Ergebnisse des vorigen Abschnitts fiir untere Abschitzun-

gen von f(n) nutzbar gemacht werden. Nach Definition von y, gilt doch: Ist 0 < x; <
- < x, = 1, s0 gibt es ein x, fiir das die Anzahl der x5 in ] x — 1, x | mindestens gleich

yr ist. Und fiir y, gibt es einige konkrete Abschiitzungen.

Unmittelbar folgt: Sind 0 < x| < --- < x, := y reelle Zahlen, so gibt es ein x, fiir das die

Anzahl der x5 in ] x — y, x | mindestens gleich y, ist.

Und nun sei eine Summen-separierende Familie 0 < a; < --- < a, vorgelegt. Wir
withlen ein x wie vorstehend: y, Zahlen aa liegen in | x — a,, x |. Die aa sind aber nach
Voraussetzung verschiedene natiirliche Zahlen, es ist also a, > y,. Wir folgern:

3.1 Satz. Es ist y, < f(n) fiir alle n.

Bis n = 8 ist f(n) exakt bekannt. Fiir gréBere n ldsst sich aufgrund unserer Ergebnisse
folgendes aussagen:



136 < f(9) < 161
244 < f(10) < 309
441 < f(11) < 594
793 < f(12) < 1159
1431 < f(13) < 2262
2576 < f(14) < 4475.

Das vergleiche man mit der bekannten Abschiitzung f(n) > 2" /(4./n):

n 9 10 11 12 13 14
f(n) = | 42.66 | 80.95 | 154.37 | 295.60 | 568.01 | 1094.70

4 Zusammenfassung

Die Atkinson—Negro—Santoro-Konstruktion ([2]) und die Conway—Guy-Konstruktion ([4],
[7]) erweisen sich als Spezialfiille einer neuen systematischen Konstruktion schwach Sum-
men-separierter n-Tupel. Dadurch konnten die oberen Schranken fiir optimale Summen-
separierte Familien leicht verbessert werden. Das Auffinden neuer unterer Schranken wur-
de auf ein MaB-Konzentrations-Ergebnis zuriickgefiihrt.

Der Autor dankt Herrn Noga Alon, durch den er auf die Ergebnisse in [1] und [3] aufmerk-
sam gemacht wurde.
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