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I Elemente der Mathematik

Magische Eigenschaften linearer Rekursionen

Nina Strasser und Annegret Weng

Nina Strasser studierte an der Hochschule für Technik in Stuttgart und schloss 2017
mit dem Master in Mathematik ab. Seitdem ist sie bei der Württembergischen
Versicherung beschäftigt.

Annegret Weng promovierte 2001 an der Universität Duisburg-Essen über ein zah-
lentheoretisches Thema mit Anwendung in der Kryptographie. Nach ihrer beruflichen
Praxis bei verschiedenen Versicherungsunternehmen wurde sie 2012 auf eine Professur

im Studiengang Mathematik an der Hochschule für Technik berufen.

1 Einleitung

Wir betrachten den folgenden Zaubertrick (vgl. auch Kapitel 9 in [1] und in leichter
Modifikation Kapitel 10 in [3]): Der Zauberer schreibt eine Vorhersage auf ein Blatt Papier.
Dann bittet er den Zuschauer, zwei beliebige Zahlen n und ne {0,..., 6}, (w, v) / (0, 0)

Wer sich mit mathematischen Zaubertricks beschäftigt, weiß, dass es Tricks gibt, die
auf interessanten nicht-trivialen mathematischen Phänomenen beruhen. So lässt sich

beispielsweise eine magische Eigenschaft der Eibonacci-Folge publikumswirksam
einsetzen: Der Zauberer schreibt eine Vorhersage auf ein Blatt, das er einem Zuschauer
zur Aufbewahrung gibt. Anschließend lässt er einen weiteren Zuschauer zwei beliebige

Zahlen u, v zwischen 0 und 6 (mindestens eine sollte von 0 verschieden sein)
wählen. Mit Unterstützung des Publikums werden nun die ersten sechzehn Glieder der
Folge go — u, gi v und g„ g„_i + g„_2 mod 7 ermittelt und deren Summe
berechnet. Es zeigt sich, dass der Zauberer die Summe - in diesem Fall die Zahl 49

- korrekt prognostiziert hat. Die Arithmetik solcher Zaubertricks wurde von Ehrhard
Behrends in einer Arbeit untersucht, die im Heft 4/2014 dieser Zeitschrift erschienen
ist. Die Autorinnen der vorliegenden Arbeit beschreiben eine Verallgemeinerung, die
es beispielsweise auch erlaubt, das Alter eines 50jährigen Geburtstagskindes zu
forcieren. Dabei entpuppt sich der Zaubertrick als schöne Anwendung von Resultaten der
linearen Algebra Uber endlichen Körpern.
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zu wählen, die Folge

go u, g| v, g„+2
gn + gn+1 falls g„ + g„+1 < 6,

g« + gn 11—7 sonst.

für n 0,..., 13 und die Summe s-j Xj=o £< 7X1 berechnen. Obwohl der Zuschauer bei

den Startwerten u und v freie Wahl hatte, stimmt das Ergebnis s-j 49 mit der Vorhersage
des Zauberers überein.

Der Trick verwendet Eigenschaften der Primzahl p 7. Für einen Mathematiker ist es

natürlich zu fragen, welche Primzahlen eine ähnliche Eigenschaft aufweisen, die es

erlaubt, die Summe einer Fibonacci-artigen Sequenz vorgegebener Länge vorherzusagen.
Diese Frage wurde bereits von Behrends (siehe [1] oder [2]) untersucht. So funktioniert
der Trick auch mit p — 23, 43, 67, 83, Wenn wir die Summe über die ersten 2 • p + 2

Folgenglieder berechnen, erhalten wir für diese Primzahlen stets sp p2 unabhängig von
den Startwerten u, u e {0,..., p — 1}, (u, v) -f (0, 0).

In unserem Beitrag werden wir die Ergebnisse weiter verallgemeinern. Dazu betrachten

wir (a, Z>)-Fibonacci-Folgen (auch unter dem Begriff „Lucas-Folgen" bekannt, siehe [8],
Kapitel 2, Abschnitt IV). Durch diese Verallgemeinerung können wir andere Primzahlen

p verwenden und andere Werte für sp realisieren.

Dabei setzen wir nur bekannte Resultate über Eigenwerte und -vektoren bzw. über die

Diagonalisierung von Matrizen aus der Linearen Algebra und Eigenschaften endlicher
Körper voraus, wie sie in einer einführenden Vorlesung zur elementaren Zahlentheorie
vermittelt werden.

2 Ergebnisse für (a, £)-Fibonacci-Folgen

Wir starten mit der Definition einer («, /?)-Fibonacci-Folge.

Definition 2.1. Es seien u, b e Z, u,v e Nu mit a2+4b / 0 und (u, v) / (0, 0) gegeben.
Die Folge definiert durch /o u, f\ v und

fn a frl 1 + b- fn 2 für n > 2

heißt («, ^(-Fibonacci-Folge.

In der Literatur sind (a, Z?)-Fibonacci-Folgen auch unter dem Begriff „Lucas-Folgen"
bekannt. P. Ribenboim behandelt Lucas-Folgen ausführlich in |8], Kapitel 2, Abschnitt IV.

Für die ursprüngliche Fibonacci-Folge gilt a — b 1 und u — 0, v — 1.

Dreh- und Angelpunkt unserer weiteren Argumentation ist die folgende Matrixdarstellung.

Lemma 2.2. Betrachte die Matrix A \, mit a2 + 4b + 0.
V a)

1. Dann gilt A (fn-2, /n-l)7 (fn i ,/„)' Folglich haben wir

A" (fo, f\)T (fn, fn+ xY
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2. Das charakteristische Polynom von A is pa(x) x2 — ax — b. Es hat zwei verschiedene

Nullstellen in C, und A" lässt sich in der Form

*" s"'-(o «)'s (l)

für eine invertierbare Matrix S mit Einträgen in C selireiben.

Wenn die Diskriminante a2 + Ab des charakteristischen Polynoms positiv ist, dann

liegen Ai, Ii in R und es existiert bereits eine Diagonalisierung über den reellen
Zahlen.

Beweis. Die erste Eigenschaft können wir einfach dureh Induktion zeigen. Für die zweite
Behauptung verwenden wir, dass die Diskriminante a2 + Ab des Polynoms pa (x) von 0
verschieden ist und dass sich Matrizen mit paarweise verschiedenen Eigenwerten diago-
nalisieren lassen.

Im Folgenden betrachten wir nun (a, /;)-Fibonacci-Folgen modulo einer Primzahl p. Es

sei gi e {0,..., p — 1 der Rest von /', bei Division mit p. Weiter beschränken wir uns
auf Primzahlen mit der folgenden Eigenschaft:

p ist ungerade, p teilt weder a, b noch a2 + Ab (kurz: 2 \ p, p \ a, b, a2 + Ab).

Damit werden für eine vorgegebene (a, /f)-Fibonacci-Folge nur endlich viele Primzahlen
ausgeschlossen.

Auch über endlichen Körpern lässt sich eine Diagonalisierung der Matrix A := A mod p
wie in Lemma 2.2 erreichen. Dazu betrachten wir in Analogie zu M und C die endlichen

Körper Fp und ¥pi mit p bzw. p2 Elementen. Wie für R unterscheiden wir zwei Fälle:

1. Wenn die Diskriminante a2 + Ab ein Quadrat modulo p ist, dann hat das charakteristische

Polynom p,\ (x) x2—ax—b zwei Nullstellen in F/;. Diese sind voneinander
verschieden, weil wir p \ a2 + Ab gefordert haben.

2. Im anderen Fall ist a2 + Ab kein Quadrat modulo p und das Polynom pa(x) ist über

Fp irreduzibel. Analog zur Konstruktion der komplexen Zahlen durch Adjunktion
der Nullstelle des über R irreduziblen Polynoms .r2 + 1 können wir nun den Körper
¥p2 definieren, in dem jedes Polynom mit Koeffizienten über Fp vom Grad 2 zwei
Nullstellen A\, A2 ¥pi besitzt.

Die Folgenglieder einer (a, 6)-Fibonacci-Folge nehmen modulo p nur endlich viele Werte

an. Somit ist die Folge stets periodisch. Im Folgenden betrachten wir die kleinste natürliche
Zahl y mit A} — E über Die Zahl y bestimmt, über wie viele Werte für den Zaubertrick

summiert wird. In vielen Fällen ist sie gleich der Periodenlänge. Auf die Ausnahmen
werden wir noch in Bemerkung 2.4.1 eingehen. In jedem Fall teilt die Periodenlänge die
Zahl y.
Das Resultat des nächsten Lemmas ist bereits bekannt (siehe z.B. [7], Theorem 3 oder [5],
Abschnitt 3). Mit den oben beschriebenen Grundlagen zu endlichen Körpern können wir
einen kurzen Beweis geben.
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Lemma 2.3.

1. Falls a2 + 4b ein Quadrat modulo p ist, folgt y \ p — 1.

2. Es sei ordp(—b) die Ordnung von —b in Fp. Falls a2 + 4b kein Quadrat modulo p
ist, ergibt sich y | ord,,(—b) (p + 1

Beweis. Wir betrachten die Matrix A := A mod p.
1. Falls a2 +4b ein Quadrat in Fp ist, hat das charakteristische Polynom von A genau zwei

verschiedene Nullstellen X\, A2 e¥p. Die Matrix A lässt sich über Fp in der Form

s r''(o 1°2)'S ,2)

für A\, X2 6 Fp und eine invertierbare Matrix S mit Koeffizienten in Fp schreiben. Aus

dem kleinen Satz von Fermât folgt nun Xj'
1

1 mod p und somit ist Ar '
die

Einheitsmatrix E. Da y die kleinste Zahl mit Ay E ist, folgt y \ p — 1.

2. Falls x2—ax —b über Fp irreduzibel ist, hat das Polynom zwei Nullstellen A \, A g e F;g.
In Analogie zur komplexen Konjugation gibt es bei endlichen Körpern den Frobenius-

Automorphismus gegeben durch A m- )f. Die beiden Nullstellen sind zueinander konjugiert,

das bedeutet, X2 — X\ (vgl. auch Abschnitt 11 in [4]). Aus der Zerlegung a'2 — ax —

b — (x — A1)(x — A|') in Fp2 folgt

A^'+1 À\ Ag —b in F/)2 bzw. A°rdp(' b^p+^
1 mod p.

Somit ist A°rd''' jj,. Einheitsmatrix.

Offensichtlich ist für y nur eine Teilbarkeitsaussage möglich, da selbst für die Ordnungen
von Elementen in Fp keine geschlossenen Formeln existieren.

Bemerkung 2.4.

1. Es kann Startwerte u und v geben, für die die (a, i>)-Fibonacci-Folge eine

Periodenlänge kleiner als y hat. Wenn das charakteristische Polynom bereits über F;,
zerfällt und die Eigenwerte A1 und Ag in Fp unterschiedliche Ordnung haben,
definieren die Einträge der zugehörigen Eigenvektoren Startwerte, die zu unterschiedlich

langen Perioden führen.
Als Beispiel betrachten wir die Folge mit a — b 1 für die Primzahl p II. Ein

Eigenwert ist A1 —4 mit ord;)(A 1) 5 und zugehörigem Eigenvektor (1,4)'. Die
Startwerte u 1 und v 4 definieren eine Folge der Periodenlänge 5. Der zweite

Eigenwert ist Ag 8 mit ord,,(Ag) 10 und zugehörigem Eigenvektor 1, 8)'. Die

Folge beginnend mit u 1 und v 8 hat Periodenlänge 10.

2. Falls das charakteristische Polynom jedoch über Fr irreduzibel ist, ist die Peri-

odenlänge immer von u und v unabhängig und damit immer gleich y : Die
Konjugation À Ap ist wegen (Xp)p — X eine bijektive Abbildung (sogar ein

Körperautomorphismus). Somit haben beide Eigenwerte die gleiche Ordnung in Fp2 und
der oben beschriebene Fall kann hier nicht auftreten.
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3. Für den Spezialfall a b 1 ist y immer gerade (siehe [ 11, Proposition 2). Dies ist

für allgemeine a, b nicht zwingend. Beispielsweise ergibt sich für a l,b 3 und

p 37 der Wert y 171.

Analog zu [1] nennen wir eine Primzahl p nun eine „gute Primzahl", falls y gerade ist und
—i /2

außerdem A' — E gilt.

Lemma 2.5.

1. Falls das charakteristische Polynom modulo p irreduzibel und y gerade ist, ist p
eine gute Primzahl.

2. Falls das charakteristische Polynom modulo p zerfällt und zudem —b kein Quadrat
modulo p ist, kann p keine gute Primzahl sein.

3. Wenn das charakteristische Polynom modulo p zerfällt, —b ein Quadrat modulo p
ist und y — p — 1 gilt, ist p eine gute Primzahl.

Beweis. Wir betrachten wieder die Diagonalisierung von A, d.h. die Darstellung

A S~l DS S '
• ("' -S (3)

-1 (X\ 0\
'
V° W

mit X\,X2 e F 2. Es gilt A2 ^ — E genau dann, wenn D' ^ — —E.

Falls y gerade ist, haben wir stets XyJ2 ±1. Da y minimal mit der Eigenschaft Ay E,

kann nicht Xy^2 — rf^2 — 1 gelten. Somit folgt XyJ2 — 1 für mindestens ein i. Eine
Primzahl p ist genau dann eine gute Primzahl, wenn X\ À 2 — 1 gilt.

Falls das charakteristische Polynom modulo p irreduzibel ist, haben die beiden Nullstellen
X], X2 die gleiche Ordnung in ¥pi (siehe auch Bemerkung 2.4.2). Daraus folgt die erste

Behauptung.

Wir betrachten nun den Fall, dass das charakteristische Polynom zwei Nullstellen X\, Xs G

Fp hat und Xy^2 XyJ2 — — 1 gilt. Nach Lemma 2.3 gibt es ein k G N mit k-y p— 1. Da

X\-X2 —b mod /? ist, ergibt sich (—7z)</7
1 ),/2 (—b)yl2k ((X) /O)7-72/ 1^ 1

mod p. Nach dem Euler-Kriterium ist eine Zahl a g Fp genau dann ein Quadrat modulo p,
p— 1

falls a 2 =1 mod p gilt (vgl. auch [6], Satz 8.5.2). Somit kann es keine gute Primzahl

p geben, für die das charakteristische Polynom zerfällt und —b kein Quadrat modulo p ist.

Sei nun p eine Primzahl, für die das Polynom x2 — ax — b mindestens eine Nullstelle
X[ e der Ordnung y p — 1 hat und für die (—bYp~1^2 1 mod p gilt. Ohne

Beschränkung der Allgemeinheit gelte ordp(2i) — p — l, also insbesondere a /'
— 1 mod p. Aus 1 (—£)(/>-'>/2 x\p~X)/2 X{rf l)/2 mod p folgt —1

bzw. A(p ')/2
— E.

Der Beweis des nächsten Satzes benötigt die Werte a und b nicht und unterscheidet sich
somit nicht vom Beweis der Proposition 3.1 in [1 ].
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Satz 2.6. Sei p eine gute Primzahl und sei v die Anzahl der Nullen in der Folge go, g

gy-\. Dann folgt
£0 +•••+£;'-I P-iy/2-v/2).

Da der Satz zum Verständnis des Zaubertricks von zentraler Bedeutung ist, skizzieren

wir kurz die Beweisidee: Für eine gute Primzahl p gilt A1 " — E. Zusammen mit der

Aussage 1. in Lemma 2.2, die ebenso für endliche Körper gilt, folgt

• für gi, gy/2+i Ä 0, dass gy/2+, p-gi bzw. g, + gy/2+i p und

• für gj 0 auch gy/2+i 0, also g, + gy/2+, 0.

Wir können die Summe go H H gy -1 dann in der Form (go + gy /2) + (gl + gy /2-t 1 +
• • • schreiben. Diese Summe enthält v/2 Summanden, die glcieh 0 sind, und y /2 — v/2
Summanden, die den Wert p annehmen.

Wenn wir nun an den Zaubertrick zu Beginn denken, dann suchen wir gute Primzahlen, für
die die Anzahl 1» der Nullen in der Menge {go,..., g7 -1} nicht von den Anfangswerten
go u und gi v abhängt. Solche Primzahlen nennen wir analog zu [1] sehr gute
Primzahlen.

Lemma 2.7. Sei p eine sehr gute Primzahl. Dann gilt (p + 1) • v y. Insbesondere teilt

p+ 1 die Zahl y.

Beweis. Wir definieren eine Äquivalenzrelation auf Fp xFp \{(0, 0)}: Es gilt (x, y)
(x\ v') genau dann, wenn es ein k e N gibt mit Ak(x, v)7 (x', v')'. Dies ist genau
dann der Fall, wenn x', v' zwei aufeinanderfolgende Folgenglieder in der (a, 7>)-Fibonacci-
Folge modulo p mit Anfangswerten u x, v y sind. Die Größe einer Äquivalenzklasse
entspricht gerade der jeweiligen Periodenlänge. Wir identifizieren die Nullen in einer Folge

mit den Tupeln {0} x F* := {0} x ¥p \ {(0, 0)}. Diese Menge hat p — 1 Elemente.

Wir zeigen zunächst, dass für eine gute Primzahl p alle Äquivalenzklassen die gleiche
Ordnung haben müssen: Unterschiedliche Ordnungen sind nach Bemerkung 2.4.2 nur
möglich, wenn das charakteristische Polynom über Fp zerfallt und somit nach Lemma
2.3 y 1/7—1 gilt. Wegen y (p — 1 < (p — l)2 < p2 — 1 gibt es in diesem Fall mehr als

p — 1 Äquivalenzklassen und deshalb auch solche, die keine Null enthalten.

Wenn alle Äquivalenzklassen die gleiche Länge y haben, ist die Anzahl der Äquivalenzklassen

durch gegeben. Wenn nun alle Äquivalenzklassen v Nullen enthalten, ergibt
sich

p2 — 1

v p- 1.

r

Der Beweis zu Lemma 2.7 zeigt insbesondere, dass für jede sehr gute Primzahl p das

Polynom .v2 — ax — b Uber Fp irreduzibel sein muss.

Wir betrachten jetzt die Anzahl der Nullen in einem Periodenzyklus für den speziellen Fall
mit Startwerten u 0 und v 1. Das Ergebnis des folgenden Lemmas findet sich in einer
etwas anderen Darstellung und von hier abweichendem Beweis auch in |7|, Theorem 4
und [5], Abschnitt 3.
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Lemma 2.8. Sei p eine Primzahl mit p+ 1 | y. Wir betrachten den Spezialfall u 0 und

o l. Dann ist die Ordnung der Menge {gk : 0 < k < y — 1, gk 0} gleich

ordn(—b), falls —b kein Quadrat in Fp ist und
\»

2 • ordp(—b), falls —b ein Quadrat in Fp ist.

Beweis. Aus Ap+X —bE in ¥p folgt gp 0. Sei m > 0 die kleinste natürliche Zahl mit

gm 0. Dann ergibt sich a'" (0, 1)' (0, gm+1)7, also ist gm+1 e Fp ein Eigenwert
von Am und es gilt /tj" 2"' gm+1 e Fp.

Sei n ggT(/t + 1, m). Mit dem erweiterten Euklidischen Algorithmus können wir n —

n i • (p + 1) + n2 m für geeignete 01,02 e 2 schreiben und erhalten A" e ¥p. Aus der
Minimalität von m folgern wir/n ggT(p + 1 ,m) bzw. m \ p + 1.

Aus dem kleinen Satz von Fermât erhalten wir 1 und wegen p + 1 | y muss

p + 1 die Zahl m (p — 1) teilen. Dies ist nur für 111 (p + l)/2 oder m p + 1

möglich. Es gilt m (p + l)/2 genau dann, wenn Ap+l ein Quadrat modulo p ist. Die
Menge {gk : 0 < k < y — 1, gk 0} hat somit y jm ordp(—b) Elemente, falls —b kein

Quadrat ist, und sonst y/m — 2 ordp(—b) Elemente.

Damit können wir jetzt die Primzahlen p für unseren Zaubertrick charakterisieren.

Lemma 2.9. Eine gute Primzahl p, für die das charakteristische Polynom x2 — ax — b

über Fp irreduzibel ist, ist eine sehr gute Primzahl genau dann, wenn die Periodenlänge
gleich ordp(—b) {p + 1) ist und —b kein Quadrat in Fp ist.

Beweis. Betrachte ein Element (0, v)' in {0} x F*. das nicht in der Bahn von (0, l)7 unter

der Operation von A enthalten ist. Wir nehmen an, dass

Ä'"-(0, v)T — (0, v')T.

Dann folgt
a"' (0, l)7 (0, v' v

Somit gibt es eine 1-1 Beziehung zwischen Nullen in der Folge mit Startwerten u 0

und 0 I und den Nullen in Folgen mit beliebigen Startwerten, die mindestens eine Null
enthalten.

Falls p eine Primzahl maximaler Ordnung ist, die die Voraussetzungen des Lemmas erfüllt,
gibt es (p — 1)/ ordp(—b) verschiedene Bahnen und nach Lemma 2.8 enthält die Folge
u — 0 und v 1 in diesem Fall ordp{—b) Nullen. Durch einfaches Abzählen sehen wir,
dass p eine sehr gute Primzahl ist.

Wenn p eine sehr gute Primzahl ist, dann gilt nach Lemma 2.7, dass y — v (p + 1 und
nach Lemma 2.8, dass v ordp(—b) oder v 2 • ordp(—b). Da y \ ordp(—b) (p + 1),

folgern wir v ordp(—/;). Somit muss p eine Primzahl maximaler Ordnung sein und —b

ist kein Quadrat modulo p.
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Bemerkung 2.10. Wir erinnern daran, dass das charakteristische Polynom genau dann

modulo p irreduzibel ist. wenn a2 + 4b kein Quadrat in F;, ist. Eine Primzahl p ist somit
eine sehr gute Primzahl genau dann, wenn er + 4b und —b keine Quadrate in F;, sind und

p- 1

y ordp(—b) (p + 1) ist. Nach Eulers Kriterium muss in diesem Fall (a2 + Ab) 2

P~ 1

(—b) 2 — 1 mod ^gelten.

In nächsten Abschnitt werden wir explizite Beispiele für gute und sehr gute Primzahlen

geben.

3 Beispiele und Anwendungen

Unsere Verallgemeinerung erlaubt es, den Trick auf weitere Primzahlen p anzuwenden
und damit mehr Werte sp abzudecken. Bereits in 11] finden wir die folgende Modiiikation:
Wenn wir die Folge g) deliniert durch

So a> s\ b, g'n 2
?'n+8n+1 ta"« < P

+ g'n+\~P sonst

mit u,v e {1,..., p}, (w, v) (p, p) betrachten, können wir statt sp p2 die Summe

s'p — p- + 2p erzeugen. Der Fibonacci-Trick kann damit zum Beispiel mit p — 7 auf
einem 49. oder 63. Geburtstag präsentiert werden.

Mit (a, b)-Fibonacci-Folgen sind weitere Werte möglich. Aus Satz 2.6 und Lemma 2.9

können wir leicht das folgende Lemma ableiten.

Lemma 3.1. Für eine («, b)-Fibonacci-Folge und eine sehr gute Primzahl p gilt

sp i • ordp(—b) p2 unds'p ^ • ordp(—b) p2 + ordp(—b) p.

Man beachte, dass für eine sehr gute Primzahl —b kein quadratischer Rest modulo p ist

(vgl. Lemma 2.9). Somit ist ord,,(—/;) stets gerade.

In Tabelle 1 auf S. 112 geben wir für kleine Primzahlen p (a, ft)-Fibonacci-Folgen an, für
die diese sehr gute Primzahlen sind, zusammen mit der Periode y und den Summenwerten

sp bzw. s'p.

Über die praktische Anwendbarkeit in der Zauberkunst lässt sich diskutieren. Sicher ist die

Addition von 168 Zahlen dem Zuschauer nicht zuzumuten. Wenn der Zauberer das Publikum

einbindet, erst einmal selbst einige Folgenglieder vorrechnet und sich dann vom
Auditorium die restlichen Zahlen im Chor zurufen lässt (damit es nicht so langweilig wird),
sind 24 Werte vielleicht noch machbar. In diesem Fall können neben den bekannten Zahlen

9, 15, 49 und 63 noch die runden Geburtstage 50 und 70 produziert werden. Mit der
Primzahl 11 lässt sich in 24 Runden auch das Datum 12. Januar oder 14. März forcieren.

Interessanter, weil sie auf geringere Periodenlänge führen, sind Primzahlen, die zwei mögliche

Summenwerte generieren. Stellen wir uns beispielsweise ein Hochzeitspaar vor, das

33 und 44 Jahre alt ist. Mit p 11 und («, b) 1, 10) erhalten wir y 6 und die beiden
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Primzahl p für (a,b) )' Sp s'p

3 (FD 8 9 15

3 (3,2) 24 50 70
7 0,1) 16 49 63

(3,2) 48 147 189
11 (2,1) 24 121 143

(1,3) 120 605 715

13 (1,3) 56 338 390

(4,2) 168 1014 1170

Tabelle 1 Beispiele für (a, è)-Fibonacci-Folgen, fur die p < 13

eine sehr gute Primzahl ist, die Periodenlänge y und
die Werte sp und s'p

möglichen Ordnungen s'p 33 und 44. Die Folge lässt sich statt gn gn~\ + 10 • gn-2
mod 11 auch durch die Vorschrift gn gn-\ — gn-2 mod 11 erzeugen, da (1, 10) s
(1, —1) mod 11. Eine der beiden Summen können wir nun durch beliebige Wahl der

Anfangswerte von einem Zuschauer forcieren. Dann geben wir selbst Anfangswerte vor,
die auf die zweite Summe führen und lassen die Folge ein zweites Mal durchrechnen.

Tabelle 2 gibt interessante Zahlenpaare für Flochzeiten, gemeinsame Geburtstage oder
goldene Hochzeiten an.

Primzahl p für(«, b) 7 Sp S'p

5 (1,4) 6 (10, 15) (20, 15)

(2,1) 12 (20,30) (40, 30)
7 (1,3) 24 (63,84) (105,84)

(1,6) 6 (14,21) (28,21)
(3, 6) 8 (21,28) (35,28)

11 (2,2) 10 (44,55) (66,55)
(3, 1) 8 (33,44) (55,44)

(1, 10) 6 (22, 33) (44, 33)
(5, 10) 12 (55,66) (77,66)

13 (4, 12) 12 (65, 78) (91,78)
(1, 12) 6 (26, 39) (52, 39)

(8, 1) 12 (52,78) (104,78)
(3, 12) 14 (78,91) (104,91)

Tabelle 2 Beispiele für (a, fr)-Fibonacci-Folgen und Primzahlen p <
13, die auf zwei mögliche Ordnungen führen

Bemerkung 3.2. Die Ergebnisse lassen sich noch weiter verallgemeinern, indem lineare
Rekursionen Ä-ter Ordnung betrachtet werden. Diese sind durch die Vorschrift

fn «1 • fn-l + «2 • fn-2 H + i'k • fn-k für/t > k
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mit Koeffizienten a\,...,dk und mit Startwerten fo — uq, f\ — u\, fk-\ Uk-i mit
(«o, «i uk-\ / (0, 0 0) gegeben.

Auch hier lassen sich analog zu Abschnitt 2 sehr gute Primzahlen definieren. Die
Periodenlängen steigen aber für k > 3 stark an, so dass sich kein präsentierbarer Zaubertrick
daraus ableiten lässt.
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