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Magische Eigenschaften linearer Rekursionen

Nina Strasser und Annegret Weng

Nina Strasser studierte an der Hochschule fiir Technik in Stuttgart und schloss 2017
mit dem Master in Mathematik ab. Seitdem ist sie bei der Wiirttembergischen Versi-
cherung beschiiftigt.

Annegret Weng promovierte 2001 an der Universitit Duisburg-Essen iiber ein zah-
lentheoretisches Thema mit Anwendung in der Kryptographie. Nach ihrer beruflichen
Praxis bei verschiedenen Versicherungsunternechmen wurde sie 2012 auf eine Profes-
sur im Studiengang Mathematik an der Hochschule fiir Technik berufen.

1 Einleitung

Wir betrachten den folgenden Zaubertrick (vgl. auch Kapitel 9 in [1] und in leichter Mo-
difikation Kapitel 10 in [3]): Der Zauberer schreibt eine Vorhersage auf ein Blatt Papier.
Dann bittet er den Zuschauer, zwei beliebige Zahlen v und » € {0, ..., 6}, (u,v) # (0,0)

Wer sich mit mathematischen Zaubertricks beschiftigt, weil}, dass es Tricks gibt, die
auf interessanten nicht-trivialen mathematischen Phiinomenen beruhen. So ldsst sich
beispielsweise eine magische Eigenschaft der Fibonacci-Folge publikumswirksam ein-
setzen: Der Zauberer schreibt eine Vorhersage auf ein Blatt, das er einem Zuschauer
zur Aufbewahrung gibt. Anschliefend lisst er einen weiteren Zuschauer zwei belie-
bige Zahlen u, v zwischen 0 und 6 (mindestens eine sollte von 0 verschieden sein)
wiihlen. Mit Unterstutzung des Publikums werden nun die ersten sechzehn Glieder der
Folge g0 = u, g1 = v und g, = gy—1 + gn—2 mod 7 ermittelt und deren Summe
berechnet. Es zeigt 51ch, dass der Zauberer die Summe — in diesem Fall die Zahl 49
— korrekt prognostiziert hat. Die Arithmetik solcher Zaubertricks wurde von Ehrhard
Behrends in einer Arbeit untersucht, die im Heft 4/2014 dieser Zeitschrift erschienen
ist. Die Autorinnen der vorliegenden Arbeit beschreiben eine Verallgemeinerung, die
es beispielsweise auch erlaubt, das Alter eines 50jahrigen Geburtstagskindes zu for-
- cieren. Dabei entpuppt sich der Zaubertrick als schone Anwendung von Resultaten der
~ linearen Algebra tiber endlichen Korpem - ] e
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zu wiihlen, die Folge

&n + &nii falls gn+ &ny1 < 6,

= u, — l)’ =
50 &l Andd [ &n + &nt1 — 7T sonst,

firn =0, ..., 13 und die Summe s7 = Z}io gi zu berechnen. Obwohl der Zuschauer bei
den Startwerten u und v freie Wahl hatte, stimmt das Ergebnis s7 = 49 mit der Vorhersage
des Zauberers iiberein.

Der Trick verwendet Eigenschaften der Primzahl p = 7. Fiir einen Mathematiker ist es
natiirlich zu fragen, welche Primzahlen eine dhnliche Eigenschaft aufweisen, die es er-
laubt, die Summe einer Fibonacci-artigen Sequenz vorgegebener Linge vorherzusagen.
Diese Frage wurde bereits von Behrends (siehe [1] oder [2]) untersucht. So funktioniert
der Trick auch mit p = 23,43, 67, 83, .. .. Wenn wir die Summe iiber die ersten 2 - p + 2
Folgenglieder berechnen, erhalten wir fiir diese Primzahlen stets s, = p? unabhiingig von
den Startwerten u, v € {0, ..., p — 1}, (1, v) # (0, 0).

In unserem Beitrag werden wir die Ergebnisse weiter verallgemeinern. Dazu betrachten
wir (a, b)-Fibonacci-Folgen (auch unter dem Begriff ,Lucas-Folgen® bekannt, siehe [8],
Kapitel 2, Abschnitt IV). Durch diese Verallgemeinerung konnen wir andere Primzahlen
p verwenden und andere Werte fiir s, realisieren.

Dabei setzen wir nur bekannte Resultate iiber Eigenwerte und -vektoren bzw. iiber die
Diagonalisierung von Matrizen aus der Linearen Algebra und Eigenschaften endlicher
Korper voraus, wie sie in einer einfiihrenden Vorlesung zur elementaren Zahlentheorie
vermittelt werden.

2 Ergebnisse fiir (a, b)-Fibonacci-Folgen

Wir starten mit der Definition einer (a, b)-Fibonacci-Folge.

Definition 2.1. Esseiena, b € Z, u, v € Ny mit a>+4b # Ound (1, v) # (0, 0) gegeben.
Die Folge definiert durch fy = u, fi = v und

fm=a- fa_1+b- faofirn>2
heilit (a, b)-Fibonacci-Folge.

In der Literatur sind (a, b)-Fibonacci-Folgen auch unter dem Begriff ,,LLucas-Folgen™ be-
kannt. P. Ribenboim behandelt Lucas-Folgen ausfiihrlich in [8], Kapitel 2, Abschnitt I'V.

Fiir die urspriingliche Fibonacci-Folge gilta =b = lundu = 0,0 = 1.

Dreh- und Angelpunkt unserer weiteren Argumentation ist die folgende Matrixdarstellung.

Lemma 2.2. Betrachte die Matrix A = (2

1. Dann gilt A - (fu—2, fu_1)" = (fu_1, fu)!. Folglich haben wir

A" (fo, T = (fns fasD)T.

:l) mit a + 4b £ 0.
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2. Das charakteristische Polynom von A is ps(x) = x*> — ax — b. Es hat zwei verschie-
dene Nullstellen in C, und A" lésst sich in der Form

a0
A”:S—‘-(' )-s (1)
0 i

fiir eine invertierbare Matrix S mit Eintréiigen in C schreiben.

Wenn die Diskriminante a® + 4b des charakteristischen Polynoms positiv ist, dann
liegen A1, A2 in R und es existiert bereits eine Diagonalisierung iiber den reellen
Zahlen.

Beweis. Die erste Eigenschaft konnen wir einfach durch Induktion zeigen. Fiir die zweite
Behauptung verwenden wir, dass die Diskriminante a* + 4b des Polynoms p4 (x) von 0
verschieden ist und dass sich Matrizen mit paarweise verschiedenen Eigenwerten diago-
nalisieren lassen. ([l

Im Folgenden betrachten wir nun (a, b)-Fibonacci-Folgen modulo einer Primzahl p. Es
sei g; € {0,..., p— 1} der Rest von f; bei Division mit p. Weiter beschrinken wir uns
auf Primzahlen mit der folgenden Eigenschaft:

p ist ungerade, p teilt weder a, b noch a®> + 4b (kurz: 24 p, p t a, b, a*> + 4b).

Damit werden fiir eine vorgegebene (a, b)-Fibonacci-Folge nur endlich viele Primzahlen
ausgeschlossen.

Auch iiber endlichen Korpern lisst sich eine Diagonalisierung der Matrix A :== A mod p
wie in Lemma 2.2 erreichen. Dazu betrachten wir in Analogie zu R und C die endlichen
Korper '), und ¥ > mit p bzw. p? Elementen. Wie fiir R unterscheiden wir zwei Fille:

1. Wenn die Diskriminante a® + 4b ein Quadrat modulo p ist, dann hat das charakteri-
stische Polynom p (x) = x%—ax —b zwei Nullstellen in IF,. Diese sind voneinander
verschieden, weil wir p { a® + 4b gefordert haben.

2. Im anderen Fall ist a® 4 4b kein Quadrat modulo p und das Polynom p 4 (x) ist iiber
IF,, irreduzibel. Analog zur Konstruktion der komplexen Zahlen durch Adjunktion
der Nullstelle des iiber R irreduziblen Polynoms x* + 1 konnen wir nun den Korper
IF > definieren, in dem jedes Polynom mit Koeffizienten iiber I, vom Grad 2 zwei
Nullstellen A1, 4> € ]sz besitzt.

Die Folgenglieder einer (a, b)-Fibonacci-Folge nehmen modulo p nur endlich viele Werte
an. Somit ist die Folge stets periodisch. Im Folgenden betrachten wir die kleinste natiirliche
Zahl y mit A’ = E iiber F p- Die Zahl y bestimmt, iiber wie viele Werte fiir den Zauber-
trick summiert wird. In vielen Fillen ist sie gleich der Periodenlinge. Auf die Ausnahmen
werden wir noch in Bemerkung 2.4.1 eingehen. In jedem Fall teilt die Periodenlinge die
Zahl y .

Das Resultat des ndchsten Lemmas ist bereits bekannt (siehe z.B. [7], Theorem 3 oder [5],
Abschnitt 3). Mit den oben beschriebenen Grundlagen zu endlichen Korpern kénnen wir
einen kurzen Beweis geben.
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Lemma 2.3.

1. Falls a*> + 4b ein Quadrat modulo p ist, folgt y | p — 1.

2. Es sei ord,(—b) die Ordnung von —b in I¥,. Falls a® + 4b kein Quadrat modulo p
ist, ergibt sich y | ord,(—b) - (p + 1).

Beweis. Wir betrachten die Matrix A := A mod p.

1. Falls a® +4b ein Quadratin F p ist, hat das charakteristische Polynom von A genau zwei
verschiedene Nullstellen 41, 4> € F,,. Die Matrix A ldsst sich iiber IF), in der Form

— <1 (A& 0 <
A=§5 (0 /12) S (2)
fiir A1, 42 € ) und eine invertierbare Matrix S mit Koeffizienten in IF, schreiben. Aus

dem kleinen Satz von Fermat folgt nun if-' = 1 mod p und somit ist A" die Ein-
heitsmatrix E. Da y die kleinste Zahl mit A’ = Eist, folgty | p — 1.

2. Falls x2 —ax — b iiber IF,, irreduzibel ist, hat das Polynom zwei Nullstellen 4, A2 € sz.
In Analogie zur komplexen Konjugation gibt es bei endlichen Korpern den Frobenius-
Automorphismus gegeben durch 4 — A7. Die beiden Nullstellen sind zueinander konju-
giert, das bedeutet, 1o = /lf (vgl. auch Abschnitt 11 in [4]). Aus der Zerlegung x> — ax —
b= (x—A)(x —47)inF . folgt

A= Ddy = —binF 2 baw. AP = 1 mod p,

—-ord,

Somit ist A (=) p+1) die Einheitsmatrix. 0

Offensichtlich ist fiir y nur eine Teilbarkeitsaussage moglich, da selbst fiir die Ordnungen
von Elementen in [F, keine geschlossenen Formeln existieren.

Bemerkung 2.4.

1. Es kann Startwerte # und v geben, fiir die die (a, b)-Fibonacci-Folge eine Peri-

odenlidnge kleiner als y hat. Wenn das charakteristische Polynom bereits iiber I,
zerfillt und die Eigenwerte A1 und A2 in IF, unterschiedliche Ordnung haben, defi-
nieren die Eintrige der zugehorigen Eigenvektoren Startwerte, die zu unterschiedlich
langen Perioden fiihren.
Als Beispiel betrachten wir die Folge mit @ = b = 1 fiir die Primzahl p = 11. Ein
Eigenwert ist A; = 4 mit ord,(4;) = 5 und zugehorigem Eigenvektor (1, 4)". Die
Startwerte # = 1 und » = 4 definieren eine Folge der Periodenldnge 5. Der zweite
Eigenwert ist 12 = 8 mit ord, (42) = 10 und zugehorigem Eigenvektor (1, 8)". Die
Folge beginnend mit « = 1 und v = 8 hat Periodenlinge 10.

2. Falls das charakteristische Polynom jedoch iiber I, irreduzibel ist, ist die Peri-
odenlinge immer von u# und » unabhiingig und damit immer gleich y: Die Kon-
jugation A — A7 ist wegen (A”)” = A eine bijektive Abbildung (sogar ein Korper-
automorphismus). Somit haben beide Eigenwerte die gleiche Ordnung in ¥ > und
der oben beschriebene Fall kann hier nicht auftreten.
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3. Fiir den Spezialfall a = b = 1 ist y immer gerade (siehe [1], Proposition 2). Dies ist
fiir allgemeine a, b nicht zwingend. Beispielsweise ergibt sich fiira = 1, » = 3 und
p =37 der Wert y = 171.

Analog zu [1] nennen wir eine Primzahl p nun eine ,,gute Primzahl®, falls y gerade ist und
auberdem A'/* = —E gilt.

Lemma 2.5.
1. Falls das charakteristische Polynom modulo p irreduzibel und y gerade ist, ist p

eine gute Primzahl.

2. Falls das charakteristische Polynom modulo p zerfdllt und zudem —b kein Quadrat
modulo p ist, kann p keine gute Primzahl sein.

3. Wenn das charakteristische Polynom modulo p zerfdillt, —b ein Quadrat modulo p
istund y = p — 1 gilt, ist p eine gute Primzahl.

Beweis. Wir betrachten wieder die Diagonalisierung von A, d.h. die Darstellung

- 1 5 < _ <1 (A 0) <
A=S§ «~D-5=§ .(O /12)-5 (3)
mit Ay, A2 € ]Fl,z. Es gilt Xy/z = —FE genau dann, wenn D' = —E.

Falls y gerade ist, haben wir stets /13'/2 = +1. Da y minimal mit der Eigenschaft A" =E,
kann nicht 17;/2 = /1; 2 =1 gelten. Somit folgt iiy/z = —1 fiir mindestens ein i. Eine

Primzahl p ist genau dann eine gute Primzahl, wenn 41 = A = —1 gilt.

Falls das charakteristische Polynom modulo p irreduzibel ist, haben die beiden Nullstellen
A1, 42 die gleiche Ordnung in F > (siche auch Bemerkung 2.4.2). Daraus folgt die erste
Behauptung.

Wir betrachten nun den Fall, dass das charakteristische Polynom zwei Nullstellen A1, 42 €
IF, hat und ﬂl’/z = A;/z = —1 gilt. Nach Lemma 2.3 gibteseink € Nmitk-y = p—1.Da
A1-22 = —b mod pist, ergibtsich (—b)P~1/2 = (=p)? 2k = ((4, -12)?/2)" =1k=1
mod p. Nach dem Euler-Kriterium ist eine Zahla € [F, genau dann ein Quadrat modulo p,
falls aK_T] =1 mod p gilt (vgl. auch [6], Satz 8.5.2). Somit kann es keine gute Primzahl
p geben, fiir die das charakteristische Polynom zerfillt und —b kein Quadrat modulo p ist.
Sei nun p eine Primzahl, fiir die das Polynom x> — ax — b mindestens eine Nullstelle
Ji € F, der Ordnung y = p — 1 hat und fiir die (—b)?~"/2 = 1 mod p gilt. Ohne
Beschrinkung der Allgemeinheit gelte ord,(41) = p — 1, also insbesondere Agp_l)/z
—1 mod p. Aus 1 = (—b)P=D/2 = 3P~/ 300=D2 164 p folgr APV = —

bzw. Z(p_])/z = —E.

O ~ |

Der Beweis des nichsten Satzes benotigt die Werte @ und b nicht und unterscheidet sich
somit nicht vom Beweis der Proposition 3.1 in [1].
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Satz 2.6. Sei p eine gute Primzahl und sei v die Anzahl der Nullen in der Folge go, g1,
.-+ &y —1- Dann folgt
go+--+g-1=p-(y/2—v/2).

Da der Satz zum Verstiindnis des Zaubertricks von zentraler Bedeutung ist, skizzieren

wir kurz die Beweisidee: Fiir eine gute Primzahl p gilt A o —E. Zusammen mit der
Aussage 1. in Lemma 2.2, die ebenso fiir endliche Korper gilt, folgt

o fiir g;, gy 2+i # 0,dass gy 24+ = p — g bzw. g; + gy 2+i = p und
o fiir g; = Oauch g, 24, =0, also g; + gy 2+i = 0.
Wir konnen die Summe go + - - - + g, —1 dann in der Form (go + gy /2) + (g1 + gy /241) +

- schreiben. Diese Summe enthilt v/2 Summanden, die gleich 0 sind, und y /2 — v/2
Summanden, die den Wert p annechmen.

Wenn wir nun an den Zaubertrick zu Beginn denken, dann suchen wir gute Primzahlen, fiir

die die Anzahl v der Nullen in der Menge {go, ..., g, 1} nicht von den Anfangswerten
go = u und gy = v abhingt. Solche Primzahlen nennen wir analog zu [1] sehr gute
Primzahlen.

Lemma 2.7. Sei p eine sehr gute Primzahl. Dann gilt (p + 1) - v = y. Insbesondere teilt
p+ 1 die Zahl y.

Beweis. Wir definieren eine Aquivalenzrelation ~¢ auf Fp,xF,\{(0,0)}: Es gilt (x, y) ~g
(x', y') genau dann, wenn es ein k € N gibt mit A" (x, )7 = (¢, y')7. Dies ist genau
dann der Fall, wenn x’, y’ zwei aufeinanderfolgende Folgenglieder in der (a, b)-Fibonacci-
Folge modulo p mit Anfangswerten u = x, v = y sind. Die GroBe einer Aquivalenzklasse

entspricht gerade der jeweiligen Periodenlinge. Wir identifizieren die Nullen in einer Fol-
ge mit den Tupeln {0} x ]F; = {0} x F, \ {(0, 0)}. Diese Menge hat p — 1 Elemente.

Wir zeigen zunichst, dass fiir eine gute Primzahl p alle Aquivalenzklassen die gleiche
Ordnung haben miissen: Unterschiedliche Ordnungen sind nach Bemerkung 2.4.2 nur
moglich, wenn das charakteristische Polynom iiber IF, zerfillt und somit nach Lemma
23y | p—1gilt. Wegeny - (p—1) < (p—1)> < p> — 1 gibtes in diesem Fall mehr als
p — 1 Aquivalenzklassen und deshalb auch solche, die keine Null enthalten.

Wenn alle Aquivalenzklassen die gleiche Linge y haben, ist die Anzahl der Aquivalenz-

2 -
klassen durch £ y_l gegeben. Wenn nun alle Aquivalenzklassen v Nullen enthalten, ergibt
sich

pr-1
y

-v=p-—1. L]

Der Beweis zu Lemma 2.7 zeigt insbesondere, dass fiir jede sehr gute Primzahl p das
Polynom x2 — ax — b iiber I, irreduzibel sein muss.

Wir betrachten jetzt die Anzahl der Nullen in einem Periodenzyklus fiir den speziellen Fall
mit Startwerten u = 0 und » = 1. Das Ergebnis des folgenden Lemmas findet sich in einer
etwas anderen Darstellung und von hier abweichendem Beweis auch in [7], Theorem 4
und [5], Abschnitt 3.
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Lemma 2.8. Sei p eine Primzahl mit p 4+ 1 | y. Wir betrachten den Spezialfall u = 0 und
v = 1. Dann ist die Ordnung der Menge {gr : 0 <k <y — 1, gk = 0} gleich

ord,(—b), falls —b kein Quadrat in I, ist und

b= 2-ordy(=b), falls —b ein Quadrat in IF ist.

Beweis. Aus A"t = —pEin [Fp, folgt g, = 0. Sei m > 0 die kleinste natiirliche Zahl mit
gm = 0. Dann ergibt sich A" 0, DT = (0, gmy1)7, also ist gmir € IFp, ein Eigenwert
von A, und es gilt A" = 11’2” = gm+1 € Fp.

Sei n = ggT(p + 1, m). Mit dem erweiterten Euklidischen Algorithmus kénnen wir n =

ni - (p + 1) + na - m fiir geeignete ny, ny € 7Z schreiben und erhalten A7 € IF,,. Aus der
Minimalitit von m folgern wirm = ggT(p + 1, m) bzw.m | p + 1.

Aus dem kleinen Satz von Fermat erhalten wir l:.?"("_l) = 1 und wegen p + 1 | y muss
p + 1 die Zahl m - (p — 1) teilen. Dies ist nur fiirm = (p + 1)/2 oderm = p + 1
moglich. Es gilt m = (p + 1)/2 genau dann, wenn lf’“ ein Quadrat modulo p ist. Die
Menge {gr : 0 < k <y — 1, gx = 0} hat somit y /m = ord, (—b) Elemente, falls —b kein
Quadrat ist, und sonst y /m = 2 - ord,(—b) Elemente. O

Damit konnen wir jetzt die Primzahlen p fiir unseren Zaubertrick charakterisieren.

Lemma 2.9. Eine gute Primzahl p, fiir die das charakteristische Polynom x*> — ax — b

iiber I, irreduzibel ist, ist eine sehr gute Primzahl genau dann, wenn die Periodenldnge
gleich ord, (=b) - (p + 1) ist und —b kein Quadrat in I, ist.

Beweis. Betrachte ein Element (0, v)T in {0} x IF*, das nicht in der Bahn von (0, l)T unter
der Operation von A enthalten ist. Wir nehmen an, dass

A" 0,0)" = (0,0
Dann folgt
A" 0, DT =0,0" -0 .

Somit gibt es eine 1-1 Beziechung zwischen Nullen in der Folge mit Startwerten 4 = 0
und » = 1 und den Nullen in Folgen mit beliebigen Startwerten, die mindestens eine Null
enthalten.

Falls p eine Primzahl maximaler Ordnung ist, die die Voraussetzungen des Lemmas erfiillt,
gibt es (p — 1)/ ord, (—b) verschiedene Bahnen und nach Lemma 2.8 enthilt die Folge
u = 0und v = 1 in diesem Fall ord,(—b) Nullen. Durch einfaches Abzihlen sehen wir,
dass p eine sehr gute Primzahl ist.

Wenn p eine sehr gute Primzahl ist, dann gilt nach Lemma 2.7, dass y = v - (p + 1), und
nach Lemma 2.8, dass v = ord,(—b) oder v =2 - ord,(—b). Da y | ord,(—b) - (p + 1),
folgern wir v = ord, (—b). Somit muss p eine Primzahl maximaler Ordnung sein und —b
ist kein Quadrat modulo p. u
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Bemerkung 2.10. Wir erinnern daran, dass das charakteristische Polynom genau dann
modulo p irreduzibel ist, wenn a® + 4b kein Quadrat in IF,, ist. Eine Primzahl p ist somit
eine sehr gute Primzahl genau dann, wenn a® + 4b und —b keine Quadrate in IF, sind und

p-1

y = ord,(=b) - (p + 1) ist. Nach Eulers Kriterium muss in diesem Fall (a2 4 4b) 2 =
p—1

(—b)’T = —1 mod p gelten.

In néchsten Abschnitt werden wir explizite Beispiele fiir gute und sehr gute Primzahlen
geben.

3 Beispiele und Anwendungen

Unsere Verallgemeinerung erlaubt es, den Trick auf weitere Primzahlen p anzuwenden
und damit mehr Werte s, abzudecken. Bereits in [1] finden wir die folgende Modifikation:
Wenn wir die Folge g/ definiert durch

’ / ’ ’
+ falls ¢/ + o
86 =4a, 8; = b, g,/z+2 = /g,, /g"H Bn Tt =P

8n 4 g”_l_l — p sonst

mitu,v € {1,..., p}, (u,v) # (p, p) betrachten, konnen wir statt 5, = p? die Summe
s;, — p? + 2p erzeugen. Der Fibonacci-Trick kann damit zum Beispiel mit p = 7 auf

einem 49. oder 63. Geburtstag prisentiert werden.

Mit (a, b)-Fibonacci-Folgen sind weitere Werte moglich. Aus Satz 2.6 und Lemma 2.9
konnen wir leicht das folgende Lemma ableiten.

Lemma 3.1. Fiir eine (a, b)-Fibonacci-Folge und eine sehr gute Primzahl p gilt
1 2 / 1 2
Sp = > rordp(=b) - p“unds, = 5 ~ord,(—b) - p* +ord,(—b) - p.

Man beachte, dass fiir eine sehr gute Primzahl —b kein quadratischer Rest modulo p ist
(vgl. Lemma 2.9). Somit ist ord, (—b) stets gerade.

In Tabelle 1 auf S. 112 geben wir fiir kleine Primzahlen p (a, b)-Fibonacci-Folgen an, fiir
die diese sehr gute Primzahlen sind, zusammen mit der Periode y und den Summenwerten
sp bzw. s;,.

Uber die praktische Anwendbarkeit in der Zauberkunst lisst sich diskutieren. Sicher ist die
Addition von 168 Zahlen dem Zuschauer nicht zuzumuten. Wenn der Zauberer das Publi-
kum einbindet, erst einmal selbst einige Folgenglieder vorrechnet und sich dann vom Au-
ditorium die restlichen Zahlen im Chor zurufen ldsst (damit es nicht so langweilig wird),
sind 24 Werte vielleicht noch machbar. In diesem Fall konnen neben den bekannten Zah-
len 9, 15, 49 und 63 noch die runden Geburtstage 50 und 70 produziert werden. Mit der
Primzahl 11 ldsst sich in 24 Runden auch das Datum 12. Januar oder 14. Miirz forcieren.

Interessanter, weil sie auf geringere Periodenlinge fiithren, sind Primzahlen, die zwei mog-
liche Summenwerte generieren. Stellen wir uns beispielsweise ein Hochzeitspaar vor, das
33 und 44 Jahre alt ist. Mit p = 11 und (a, b) = (1, 10) erhalten wir y = 6 und die beiden
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Primzahl p  fiir (a, b) Y Sp 5!

P
3 (1, 1) 8 9 15
5 3,2) 24 50 70
7 (1,1) 16 49 63

3,2) 48 147 189

11 @2, 1) 24 121 143

(1,3) 120 605 715
13 (1,5) 56 338 390

4,2) 168 1014 1170

Tabelle 1 Beispiele fiir (a, b)-Fibonacci-Folgen, fiir die p < 13
eine sehr gute Primzahl ist, die Periodenlinge y und
die Werte s, und s,

moglichen Ordnungen S,/n = 33 und 44. Die Folge lisst sich statt g, = g,—1 + 10- g, »
mod 11 auch durch die Vorschrift g, = g,—1 — gn—2> mod 11 erzeugen, da (1, 10) =
(1, —1) mod 11. Eine der beiden Summen konnen wir nun durch beliebige Wahl der
Anfangswerte von einem Zuschauer forcieren. Dann geben wir selbst Anfangswerte vor,
die auf die zweite Summe fiihren und lassen die Folge ein zweites Mal durchrechnen.

Tabelle 2 gibt interessante Zahlenpaare fiir Hochzeiten, gemeinsame Geburtstage oder gol-
dene Hochzeiten an.

Primzahl p  fiir (a,b) v Sp s;,
5 (1,4) 6 (10,15) (20, 15)
2,1) 12 (20,30)  (40,30)
7 (1,3) 24 (63,84) (105,84)

(1,6) 6 (14,21)  (28,21)

(3, 6) 8 (21,28)  (35,28)

1 2,2) 10 (44,55)  (66,55)
3,1) 8 (33,44)  (55,44)

(1, 10) 6 (22,33)  (44,33)

(5,100 12 (55,66) (77,66)

13 @4,12) 12 (65,78) (91,78)
(1, 12) 6 (26,39)  (52,39)

8,1) 12 (52,78) (104,78)

(3,12) 14 (78,91) (104,91)

Tabelle 2 Beispiele fiir (a, b)-Fibonacci-Folgen und Primzahlen p <
13, die auf zwei mogliche Ordnungen fiihren

Bemerkung 3.2. Die Ergebnisse lassen sich noch weiter verallgemeinern, indem lineare
Rekursionen k-ter Ordnung betrachtet werden. Diese sind durch die Vorschrift

fa=a1- fac1+ax- fa2+ -+ ak - fux firn >k
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mit Koeffizienten ay, . . ., a; und mit Startwerten fo = uo, f1 = u1, ..., fr—1 = Ug—1 mit
(uo,uy,...,ux—1) #(0,0,...,0) gegeben.

Auch hier lassen sich analog zu Abschnitt 2 sehr gute Primzahlen definieren. Die Peri-
odenlingen steigen aber fiir k > 3 stark an, so dass sich kein prisentierbarer Zaubertrick
daraus ableiten ldsst.
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