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1 Introduction

Let/ be a line in 3-dimensional space, and let r be a positive real number. The set of points
in R whose distance from [ is not greater than r is called the infinite circular cylinder (or
just the cylinder, for short) of axis [ and radius r. Two cylinders are parallel if their axes
are parallel. A collection of congruent cylinders whose interiors are mutually disjoint is
called a cylinder packing.

Given a cylinder packing, C = {C;}?2,, one may inquire what portion of the space is oc-
cupied by the cylinders in C. This question naturally leads to the concepts of local density

and global density of C defined below.

Let B(R) be the ball of radius R centered at the origin. Then the local density of C with
respect to B(R), denoted 4(C, R), is the ratio between the volume within B(R) that is

Versucht man kongruente Kreiszylinder so dicht wie moglich und ohne Uberschnei-
dung im Raum zu packen, so ist die beste Konstruktion, alle Zylinder parallel im Bie-
nenwabenmuster anzuordnen: Jeder Zylinder beriihrt dann sechs andere. Diese Anord-
nung liefert eine asymptotische Dichte mit dem Wert 7 /+/12 = 0.90689 . . ., d.h. dieser
Anteil des Raums wird von den Zylindern beansprucht. Die Autoren der vorliegenden
Arbeit gehen nun der Frage nach, wie dicht man Zylinder packen kann, wenn keine
zwel parallel sein diirfen. Zwei Resultate werden gezeigt: Erstens gibt es Anordnun-
gen der Zylinder, so dass ihre lokale Dichte derjenigen bei paralleler Packung beliebig
nahe kommt. Zweitens wird eine Anordnung vorgestellt, deren globale Dichte den Wert
1/2 hat. Dies verbessert ein Resultat von K. Kuperberg, C. Graf and P. Paukowitsch.
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covered by the cylinders, and the volume of B(R). More formally,

%o; Vol(C; N B(R))
5, R) = =

4r R3/3
The global density of C, denoted 6(C), is simply

3(C) = lim 3(C, R),

provided the limit exists.

One may ask what is the greatest possible value of 4(C). In lay terms, what is the most
efficient way to pack congruent cylinders in space?

Under the restriction that all cylinders are parallel, the problem is equivalent to finding the
maximum density of a packing of the plane with congruent circles. One can easily see this
by writing R? as the union of the planes perpendicular to the cylinders’ axes.

The planar problem was solved by Thue [7], who proved that the most efficient way to
pack congruent circles in the plane is to arrange them such that each circle is tangent to
six others — see Figure 1.

Figure I The densest packing of congruent circles in the plane has density @ /+/12

The density of such an arrangement is given by the ratio between the area of a circle and
the area of the regular circumscribed hexagon, and it equals 7 /+/12 = 0.90689 . . ..

It follows that if all cylinders are parallel, then 6(C) < 7 /+/12.

Can one do better? This disarmingly simple question remained unsolved until 1990 when
A. Bezdek and W. Kuperberg proved in [2] that the answer is negative.

Theorem 1.1 ([2]). The maximum global density of any space packing with congruent
cylinders is w /+/12.
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This result is significant because this was the first example of a solid that does not tile the
space, and whose maximum packing density was explicitly determined.

This prompted Moser and Pach to raise the following challenge:

Problem 1.2 ([6]). Find nontrivial examples of bounded convex bodies in R? that are not
tiles but whose maximum packing density can be computed exactly.

A first answer was provided by Bezdek [1], who determined the maximum packing density
of a rhombic dodecahedron that has one corner removed so that it no longer tiles the space.
In this case, the packing density equals the ratio of the volume of the truncated rhombic
dodecahedron to the volume of the full rhombic dodecahedron.

A few years later, Hales settled a long-standing conjecture of Kepler regarding the max-
imum packing density of the sphere. Hales showed that this value equals z/v/18 =
0.7404 .. .. Hales’ proof relies heavily on computers, and for this particular reason, a cer-
tain level of uncertainty about the validity of the proof lingered within the mathematical
community. In order to remove any such doubts, Hales embarked on a 15-year collabora-
tive project to produce a complete formal proof of the Kepler conjecture. In January 2015,
Hales and 21 collaborators submitted a paper titled A formal proof of the Kepler conjecture
[4] to arXiv, claiming to have proved the conjecture. In 2017, the paper appeared in print
in the Forum of Mathematics journal.

Returning to the cylinder case, it is not obvious at first glance whether there exists a cylin-
der packing that does not contain two parallel cylinders but has positive density. Under the
restriction that no two cylinders are parallel, one might expect that the cylinders need so
much room to avoid each other that in effect the packing density always turns out to be
Zero.

Surprisingly, this is not true. A subtle construction of K. Kuperberg [5] produces a cylinder
packing with density 72/576 = 0.017..., in which no two cylinders are parallel. Her
construction was refined by Graf and Paukowitsch [3], who obtained a nonparallel cylinder
packing with density 5/12 = 0.4166. . ..

In this paper, we prove two results. First, we show that there exist cylinder packings with
no two cylinders parallel, whose local density is arbitrarily close to the local density of
a cylinder packing with parallel cylinders. Second, we construct a nonparallel cylinder
packing whose global density is 1/2, thus improving Graf’s and Paukowitsch’s result.

2 A local result

For any cylinder packing in space, there exists a plane which intersects the axes of all
the cylinders. This is because the number of cylinders in any packing is countable, and
therefore, so is the number of unit vectors representing the directions of their axes. Since
the unit sphere cannot be expressed as a countable union of great circles, one can select
a unit vector which is not orthogonal to any of these direction vectors. Then, any plane
having that vector as its normal vector will have the desired property.

Thus, every cylinder packing can be constructed in the following manner:

Step 1. Start with a point set A in the xy-plane.
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Step 2. Through each point A € A, construct a line [ € R3.

Step 3. Consider the cylinders of radius » whose axes are the lines constructed in Step 2. If
the distance between any two such lines is > 2r, then the resulting collection of cylinders
is a packing.

Let A = {Ay, A2, ..., Ay, ...} be a set of points in the xy-plane such that the distance
between any two distinct points of A is at least 2r, where r > 0 is given. Foreach A; € A,
let 1,’1.l be the line passing through A; and perpendicular to the x y-plane.

Further, let CI-J' (r) be the cylinder of radius r whose axis is lt-J‘. Then {CEJ' (r)} is a cylinder
packing with all cylinders parallel to each other. For any R > 0, denote the local density
of this packing by
|A|
> Vol (Ci+(r) N B(R))
S (A, R) ==

4r R3 /3 ’ i

where B(R) is the ball of radius R centered at the origin.

—_—>
Forevery A; € A, A # O, letl; be the image of li-l under a rotation around the axis O A;.
Note that irrespective of the rotation angle, /; is also perpendicular to (—)Z

For some 0 < p < r,let C;(p) be the cylinder of radius p having line /; as its axis. Under
the assumption that the distance between any two lines /; and /; is at least 2p, then {C;(p)}
is also a cylinder packing. Denote the local density of this new packing by

| Al
> Vol (Ci(p) N B(R))
S(A, p, R) = =

47 R3/3 @)

What we intend to prove is that the lines /; can be chosen in such a way that no two
cylinders in {C;(p)} are parallel, and the local density d(A, p, R) is not too much smaller
than the local density of the parallel packing, 0~ (A, r, R). This will be made precise in the
sequel. We start with a

Lemma 2.1. Let r > 0, R > 0 be two fixed positive reals. Consider Ay(xy, y1,0) and
Aa(x2, y2,0), two distinct points in the xy-plane such that ||A{Az|| > 2r. Let 0(0,0,0)

be the origin, and denote |OA)| = di, |OAs| = da. Assume that 0 < d; < R, and
0 <dr <R Fori = 1,2, let l; be the line passing through A; and having a direction
vector vi = (yi, —xi, T} where T is chosen such that 8r>T > R*. Then the lines || and l»
are not parallel, and the distance between them is at least

dist(ly, 1) = 2r (l — %) : 3)

Proof. Note first that the angles formed by the lines [, [, with the xy-plane are
arctan(7'/dy) and arctan(T /d>),

respectively. So, if di # da, the lines cannot be parallel.
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If di = dy, then ||v(]| = ||v2]|, and under the assumption that [ || [, we immediately
obtain that vi = v». But this then leads to A = A», a contradiction. Hence, the lines
cannot be parallel.

_ e _
We denote by ¢ the cosine of the angle determined by the vectors OA| and OA; : ¢ =
cos(ZA10A3). Note that

OA;-0OA +
c= _>1 _2> oy DA T HLED from which  xjx2 + y1v2 = cd\d>.
10AY |0 AL drd

Also, by the law of cosines
. a2 2 ) 9 3
[[A1A2]|" = a'l + d2 — 2d1d> cos(LZA10A») = a'] +ily’ — 2cdyd».

It is well known that the distance between two skew lines can be computed with the for-
mula

|A1As - ( )]
(V] XV
distlly, o) = 1 = H2L (4)

lvi x vl

We will express the numerator and denominator separately. For the numerator, we have

x2—xy y2—y1 0

—_—
AlAz2-(vixv2)=| yi —X1 T
2 —X2 T
_ T 2oy 2T X 2y 5)
Y2 —X2 ha —X1
=T (xlz +y2 a2+ — 2xxn — 2y|y2) = T(d*+d% —20A) - OA3)
- (d% +d2 — 2dyd; cos(éAloAg)) = T | A1 As)2.
Computing the denominator, it follows that
Ivi x vall* = |[vi[I*lIvall* = [V - 2|
= (d? + TH)(d2 + T?) — (x1%2 + y1y2 + T)?
= (d? + TH(d2 + T?) — (cdidy + T?)? ©

= d?d2 + &2T* + &2T% + T* — 2d2d2 — 2cd\dpT? — T
= (d? + d? — 2cd1do)T? + (1 — ?)d?d>

—_—
= T2||A; Ax|)> 4 (1 — P)dids.

Using (5) and (6) into (4), we obtain that

—
1 Ivi x v2l>  T2ALALP 4 (1 — P)did;

dist(1,12)> ~ |4, Ay- (v x V)[I2 T2 | A Az |*
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1 (1 — cHdjd; 1 R*
B 2 o 2 4 = 2 T 2 4
[A1A2]2 T2 [|AiA2lI* [[A1 A2 T2 Ar Azl

<1+8r27‘<1 1+12
~ 4r? 0 16r3T2 — 412 T)

2 I
dist(ly, b)) > ——— > 2r (1 - —) ,

from which

14+ 1T = T
as claimed. |

We can now prove our first result.

Theorem 2.2. Let R, r be positive real numbers, and let A be a point set in the xy-plane,
such that the distance between any two points in A is at least 2r, and A is contained in
the ball of radius R centered at the origin. Then, for every 0 < € < 8r%/R*, there exists a
collection of congruent cylinders {C;}, all of radius r (1 —€), with the following properties:

(a) the axis of C; passes through A; € A.
(b) no two cylinders are parallel.

(c) every two cylinders have disjoint interiors.

(d) 5(A, r(1 =€), R) = 0-(A, r(1 — €), R).

Proof. Use Lemma 2.1 with T = 1/e. For each A;(x;, y;,0) € A, consider the line /;,
which passes through A; and has direction vector v; = (y;, —x;, 1 /€). Also, recall that ll-J'
is the line passing through A; and has direction vector (0, 0, 1). Note that both /; and [,.J-

are perpendicular to O—At

Let C; and C ,.L be the cylinders of radius r (1 — €) having axes [; and lil, respectively. Parts
(b) and (c) follow immediately from Lemma 2.1. For proving part (d), note that C; N B(R)
and C ;L N B(R) are congruent as solids in R3, as they can be obtained from each other via

a rotation having O A; as its axis. Since both {C;} and {CiJ'} are packings, it follows that

lA] lAl
> Vol(C; N B(R)) = Vol (C}* N B(R)).

i=1 i=1

Dividing both sides by the volume of B(R), part (d) follows. (]

Theorem 2.2 states that for given R, and r positive numbers, if one starts with a packing
of parallel cylinders of radius r, then one can first replace each of these cylinders with a
cylinder of radius r (1 — €) and then rotate these thinner cylinders slightly such that no two
of the perturbed cylinders are parallel. The resulting arrangement is still a packing, and
the local density with respect to B(R) is the same as the local density of the packing with
thinner parallel cylinders.

Note that in our construction, the direction vectors of the axes of the nonparallel cylin-
ders depend on R, the radius of the circle centered at the origin that contains the set A.
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Indeed, ¢ must be no greater than 8r2 / R* for the construction to work. Hence, the implicit
assumption is that the set A is bounded.

If we want to produce a cylinder packing with high global density, the set A has to be
unbounded, and therefore, we must use a different approach. We will present such a con-
struction in the next section.

3 An infinite packing with density 1/2
Let D(R) be the disk in R? of radius R and centered at the origin.
Definition 3.1. Let A be a set of points in the plane. The point density of A is defined as

: AN D(R

provided the limit exists.

We next consider a special point set in the xy-plane, which we will also denote by A.

For every positive integer d > 32, let m be the unique integer such that 2" < d < 2"+,
Define

Finally, set
(8)

150
Figure 2 |J A, as a subset of the set A
d=32
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Lemma 3.2. The distance between any two distinct points of A is at least 1, and its point
density, regarded as a subset of R?, equals 2 /7.

— —
Proof. Let Ay, A2 be two distinct points in A. Denote di = [|[OA]l, d2 = ||OA2]. If
di # dp then ||A1Az|| > |da — dy| > 1 follows from the triangle inequality and the fact
that d; and d> are integers.

If di = dy, then ZA1OA> > w/(3 -2™), where m is the positive integer for which
2Mm < dy =dp < 2MT1 Tt follows that

||A1A2||22dlsin( )22’"“sin( " )21,

T
3. 2m+l 3. om+l

since the function x sin (%) is strictly increasing, and already for x = 2 it takes value 1.

Let m > 5 be an integer and let D(2™) be the disk with center O and radius 2™. The
cardinality of the set A N D(2™) is equal to

6'322-‘1—6'642—1-“'—{-6-(2"1_1)2—1—6‘2”1:6'(210+212+-‘-+22m_2+2m)
:22m+1+6_2m_2ll.

Hence, the point density of A equals

22m—[—1+6_2m_211 2
lim = —. O
m—00 - 22m T
3.1 The construction
Fix a real constant L. > 6 and define K = /L2 — 1. Note that
L'Z
F<1.03 and K <L <2K. ©))

The exact value of L is not important as long as both inequalities (9) are satisfied. The
reason for these choices of L and K is going to become clear soon.

; : Ax: Vs A - 2 2 alt
For a given point A;(x;, y;,0) € A we denote d; = [|OA;|| = \/x7 + y;. Let ;- be the
line that passes through A; and is orthogonal to the xy-plane.

We associate with A; another line, /;, in the following way:
e the line [; passes through A;
e the direction of /; is given by the vector v; = (y;, —x;, Kd; + L).

The selection of the direction vectors is the critical part of the construction. Let us look at
our choice for v; a bit more closely.

= ; .
First, notice that v; - OA; = 0, so [; is obtained by rotating ll.J- around A; in the plane that

. ——
passes through A; and is orthogonal to O A;.
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Second, let f(d;) be the tangent function of the angle formed by the line /; with the xy-

plane. Then
Kdi+ L Kdi + L L
e L F (10)

Sz 4 4

Hence, £ (d;) gets smaller as d; increases. In particular, for any two distinct points A;, A; €
A such that d; < d; we have f(d;) > f(d;). This means that lines /; and /; cannot be
parallel. Also, if A; and A; are two distinct points in A with d; = d;, then it is still
impossible for /; and /; to be parallel.

Bdi) =

Indeed, in this case ||v;|| = ||v;[l, which implies v; = v;, that is, (y;, —x;, Kd; + L) =
(vj, —xj, Kdj + L). But this forces A; = A}, a contradiction.

At this point we have the lines /;, no two of which are parallel. These lines are going to be
the axes of the cylinders in the packing we are planning to construct. The delicate part is
to prove a lower bound for the distance between any two such lines.

Our choice of the set A is very similar to those in Kuperberg [5], and Graf and Paukowitsch
[3] papers, although our set has higher point density. Also, in both those papers, f(d) is a
strictly decreasing function of d.

Kuperberg takes f : [2, 00) — (1, +/3 ], to be some strictly decreasing function of d, such
that #(2) = /3, and dlim p(d) = 1. So the lines intersecting the xy-plane close to the
—00

origin form angles of about 60° with the x y-plane, and this angle decreases to about 45°
for lines intersecting the x y-plane far from the origin.

Next, Kuperberg proves that the distance between any two lines is at least 7/8+/3 =
0.226 . . ., and shows that this eventually leads to a cylinder packing of density 72/576 =
0.0171....

Graf and Paukowitsch select their f(d) = 2.0896/ arctan(d), for d > 1. For this explicit
choice of f(d), they prove that the distance between any two lines is at least 1, which is
optimal, and then present a cylinder packing with density 5/12 = 0.4166. . ..

While this result is much better than Kuperberg’s original estimate, their choice of the
function f(d) leads to some awkward computations, which require heavy use of compli-
cated Taylor series estimates. On the other hand, our definition (10) of f(d) generates a
much simpler algebra and eventually helps us produce a better result.

We will need the following result later on.

Lemma 3.3. Let L > 6 be a fixed real number;, and let K = ~/L? — 1. Then for every
x > 32, the following inequalities hold true

12 L2 12
I_COS(£)21_03.C‘+_)>_.(”7)_
3x 2x4 K?2 2x4

(11)

Proof. Consider the function

P(x) = (x2—|——xi)2 . (l — COoS (;—x)) . (12)
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It is easy to show that ¢(x) is increasing for x > 32, and that lim ¢(x) = 72/9 =
X—=>00

1.0966. . ..
Substituting x = 32, we get ¢(32) = 1.03017. ., as claimed. The second inequality is an
immediate consequence of (9). O

3.2 A lower bound for the distance between two lines

We will next study the most critical part of our construction, namely providing a lower
estimate for the distance between any two lines.

Lemma 3.4. Let Ay = (x1,y1,0) and Ay = (x2, y2,0) be two distinct points in A as
defined in (8). Fori = 1,2, let d; = 1/xi2 -+ y,-2 and v; = (yi, —xi, Kd; + L), with L, K

satisfying (9). Fori = 1,2, let l; = A; + tv; be the line passing through point A; and
having direction vector v;. Then

dist(ly, ) > 1. (13)

Proof. Note the result above is optimal, as there are infinitely many pairs of points Ay,
—
Az in A with ||A|Az|| = 1. A key role in the sequel is played by the cosine of the angle
—
determined by the vectors O A; and O A,. Thus we introduce the following notation:

¢ =cos(ZLA10A).
Note that

— —>
OA1-0Ay xixa+y1y2

—_—
IOAT|[0As] didy

c= from which  x1x2 + y1y2 = cdd>. (14)

Again, we use the formula that gives the distance between two nonparallel lines in space:

[A1Az - ( )|
<V XV
dist(ly, lp) = =2 1 = T2 (15)
lvi x va

As before, we will compute the numerator and denominator separately. For the numerator,
we have

— X2 — X1 Y2 =1 0
AlAz - (Vi xv2)=| ¥ -x1  Kdi+L
»2 —X0 Kdy + L
= —(Kdy + 1) [ - 2T ks ) [ yz_qu“

= (Kdi + L) (x% +y22 — X1Xg — )’1)’2) + (Kd2 + L) (x12 +y12 — X155 — )’1)’2)
= (Kdy + L)(d; — cdidy) + (Kdy + L)(d} — cdidy).
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After rearranging with respect to the powers of 1 — ¢ we finally obtain

é 2

A1Az - (vi xv2) = (1 —o)d1d2(Kdy + Kdo + 2L) + L(dy — dy)”. (16)
As for the denominator of (15), similar computations give that

Ivi x vall” = IvilP[vall* = (vi - v2)°
= (v + o+ (Kay + 1?) (M3 + 33+ (Kdy + L)
— (y1y2 + x1x2 + (Kdy + L)(Kdy + L))>
= (47 + (Kdy + 1)) (& + (Ko + 1)°) — (cdida + (Kdy + L)(Kdz + L)Y
=did;y +di(Kd> + L)* +d5(Kdy + L)
— c*djd5 — 2c didy(Kdy + L)(Kdy + L).

After arranging with respect to the powers of (1 — ¢) we obtain

Ivi x v2|* = —(1 — ¢)*did; +2(1 — c)dida [(K2 + Ddids + L? + K L(d; +d2)]
+L(dy — ),

and taking into account that K + 1 = L? we end up with

Ivi x vall? = —(1 — ¢)*did3 + 2(1 — ¢)dida [Lz(l +dvdr) + K L(d; + a’z)]
+1L2(dy — dy)*.

a7

Since we intend to show that |[A{ A2 - (vi x v2)| > ||v; x va]| it is natural to consider the
difference

A= A1A2- (V1 x )P = [Ivi x val .
Using equalities (16) and (17) we obtain
A = (1 —c)*did;(Kdy + Kdy + 2L)*
+2(1 — ¢)ddo(K Ldy + K Ldy + 2L*)(d> — dy)?
+ L% (dy — d1)* + (1 — ¢)*d}ds
=21 = iy [ L2(1 + dio) + K L(dy + o) | = L2 (o — d)?,

which after some simplifications can be written as

A= (1= Pdd3 |1+ (Kdy + Kdo + 210 | + 12 — d)?* [ (o — d)* — 1] (18)

+2(1 — ¢)did> [KL(d| +d2)((d2 — dv)* — 1) + L>(2d2 — 5dydy + 2d7 — 1)] :
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Observation 3.5. Note that by our selection of the set A we have that

L2(dy — d)? [(d2 = di* ~ 1] 2 0.

- . ——+ - ) 3
This is true since for any point A; € A, the distance ||O A;|| = d; is a positive integer.

Hence, L*(dy —d1)* [(d2 — d1)* = 1] = 0, 1+ (Kdi + Kda +2L)* > K*(dy +d>)?, and
I — ¢ = 0, from which it immediately follows that

A > (1 —c)’d?d2K*(d) + d2)? +2(1 — ¢)dydaK L(dy + d2)((d2 — d1)* — 1)
+2(1 — ¢)d1d2 L (2d3 — Sdydy + 2d7 — 1).
The right-hand side becomes 0 if 1 — ¢ = 0, and therefore in this case A > 0, done.

Assume that ¢ < 1, and let A’ be the quantity obtained after dividing the right-hand term
of the inequality above by 2(1 — ¢)dd>:

KZ
K = T(I—C)dldg(ch +d2)* + K L(dy +do)((d2—dy)* — 1)+ L2 (2d> —5d1d2+-2d? — 1).

We plan to prove that A" > 0.

Clearly, A’ is symmetric with respect to d; and d», so we can assume without loss of

generality that di < d>. We also know that there exists an m > 5 such that 2" < d) <
2m+1‘

We will now prove the following statement:

[os L2 dt1y

— s g 19
> B2 (19)

Since 2™ < dy < 2m+1 it follows by our choice of the set A that ZA{OA; > n/(3-2™) >
7 /(3 - d2), from which

2

L* (dy+1)?
l—¢>1-cos(——)>1—cos (= 2_.(2—H_
3.2m 3-dh) K2 24

1
X
function and the third inequality follows from Lemma 3.3 with x = d>, and thus, (19) is
true.

where the second inequality is due to the fact that the function 1 — cos ) is a decreasing

Looking at A" we can see that the first term is clearly nonnegative and so we can plug in
the lower bound we obtained into (19) to get

KL (@d+1)

2 K2 2df

A dida(dy + d2)* + K L(dy + d2)((d> — di)* — 1)

+ L*(2d5 — 5dydy + 2dE — 1).
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We know that d; < d> and since these are integers there exists a nonnegative integer n so
that d» = d; + n. Next, we substitute this expression into our inequality and simplify to
obtain the following lower bound for A’:

L*(dy +n + 1)%d,(2d, + n)? >
KLQd —1
TERE + KLQ2d +n)(n” = 1) 20)
+ L2(2d? — 5di(d1 + n) + 2(d1 +n)? - 1).

Clearly, if we show that (20) is nonnegative, then so is A’. Multiply (20) by 4(d; + n)?
as that does not change the sign. After factoring and tidying up the expression we are left
with a quartic polynomial in d;:
(8Kn* —4Ln — 8K +8L)d} + (28Kn® — 3Ln* — 28Kn + 16Ln)d;

+ (36K n* 4 14Ln3 — 36Kn® + 10Ln> — 8Ln)d?

+ (20K n° +21Ln* — 20K n® + 2Ln® — 11Ln%)d,

+ (4Kn® 4+ 8Ln> —4Kn* — 4Ln>).
To make things simpler, we give numerical values to K and L. Taking L = 7 and K =

V49 — T = 44/3 it would suffice to prove that the coefficients of the above polynomial are
nonnegative for all n > 0.

Indeed, we have

32+/3n% — 324/3 — 28n + 56 = n(32+/3n — 28) + (56 — 32+/3) > 0,
112+/3n® — 112+/3n — 21n% + 112n

= n(112+/3n(n — 1) + (112+/3 — 21)(n — 1) +91) > 0,
144+/3n* — 144+/3n° + 981> 4 700> — 56n

= 2n(72v/3n(n* — 1) 4+ 490% + (350 — 28)) > 0,
80+/3n° — 80v/3n> + 147n* + 140> — 771>

= n?(804/3n(n® — 1) + (147n% — 77) + 14n) > 0,
163/3n° — 16v/3n* + 56n° — 28n°

= n?(16+v/3n(n” — 1) + (56n° — 28)) > 0.

Now it is clear that the whole expression is nonnegative. Thus A" > 0 and the proof of
Lemma 3.4 is complete. 0

We are now in position to prove the main result of this paper.

Theorem 3.6. There exists a cylinder packing C whose global density is 1/2, and no two
cylinders in C are parallel.



102 D. Ismailescu and P. Laskawiec

Proof. Consider the set A as defined in (8). For each point A; (x;, yi, 0) € A, define two
lines as follows:

I = A + (0,0, 1)t
and
li = A; + (yi, —xi, Kdi + L)t,

where d; = \/x}? + y}, L =7,and K = 4/3.

Let Cf‘ and C; be the cylinders of radius 1/2 whose axes are lil and /;, respectively.
Then, clearly {Cil} is a packing with parallel cylinders, while by Lemma 3.4 {C;} is also a
cylinder packing, but no two cylinders are parallel to each other. Moreover, since for every
R > 0 we have that B(R) N Cf' and B(R) N C; are congruent, it follows that

d({C ), R) = 8({Ci}, R),

and after letting R — 00, the global densities of the two cylinder packings are also equal
to each other:

S(CH = o({Ci).

But it is easy to see that the density of {Ct-i} can be expressed as the product of the point
density of A (which by Lemma 3.2 equals 2/7) and the area of the perpendicular cross-
section of a cylinder in {C ,.i}. Hence, the global density of {C ‘.L} equals

2 1\ 1
5({Cil})=;'7f('2‘) :E'

Combining the last two equalities, we obtain the desired result. O

4 Conclusions and directions for future study
We constructed a cylinder packing with global density 1/2, with no two cylinders being
parallel. The natural question is whether we can do better.

In fact, K. Kuperberg [5] conjectured that there exist such packings with density arbitrarily
close to 7 /+/12. In light of our result in Theorem 2.2, this may very well be the case.

The weak part of our proof is the choice of the point set A; this set has point density of
only 2/7 = 0.6366 .. .. In comparison, the point set

A= {(m/Z,nw/?_)/Z) :m +n even, m,n integers}

has point density 2/+/3 = 1.1547 .., and the minimum distance between any two points
of A is still equal to 1. Of course, A is the unit equilateral triangle lattice, hence by Thue’s
result, it is the densest planar point set with this property.

So why not use A instead of A? The answer is simple: for every point A; € A, the distance
— ; ’
d; = ||OA;| is an integer. This is not the case with the lattice A.

We used this fact in estimating the quantity A defined in (18); see also observation 3.5.
To be precise, the term L*(d> — d})* [(d> — di)? — 1] is always nonnegative if d; are
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all integers. This allowed us to ignore this term altogether and, in the process, reduce the
problem to a linear inequality in 1 — ¢; see the step that lead to the definition of A" in (3.2).

But of course, if we choose A instead of A, L*(dy — d)* [(d> — d1)* — 1] could very
well be negative. And then, showing that A > 0 becomes a quadratic inequality in (1 —¢).
Not only is this inequality more difficult to work with, but several computer experiments
indicated that it may not even be true.

One final remark regarding our cylinder packing.

The angle formed by the line /; with the xy-plane is arctan(K + L/d;). This means that
lines that intersect the x y-plane closest to the origin have slopes of K + L /32, while the
lines that intersect the xy-plane far from the origin have slopes close to K. Once L (and
therefore K') is fixed, this creates a cone having Oz as its axis, which is completely free of
any cylinders. In other words, there are arbitrarily large holes in our packing. We measure
the size of the hole by the radius of the largest sphere that can fit in that region.

One interesting question is whether a nonparallel cylinder packing exists, all of its holes
being of bounded size.
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