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I Elemente der Mathematik

Packungen aus Kreisscheiben
Wie eine wahrscheinlichkeitstheoretische Sichtweise eine

geometrische Analyse vervollständigen kann

Charlotte Dombrowsky, Myriam Fradon und Sylvie Rœlly
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Myriam Fradon promovierte in Paris bei Patrick Cattiaux. Zu ihren Forschungsthemen
gehören reflektierende Diffusionen und zufällige Dynamiken harter Kugeln. Seit 1996

ist sie Maitre de Conférences an der Université de Lille.

Sylvie Rœlly promovierte in Paris, wo sie auch habilitierte. Seit 2003 ist sie Professorin

für Wahrscheinlichkeitstheorie an der Universität Potsdam. Ihre Forschungsinteressen

sind zufällige interagierende Systeme und Diffusionsprozesse. Sie engagiert
sich auch im Bereich der Schülerförderung, insbesondere im Rahmen des Projektes
MATh.en.JEANS.

Einführung
Schon immer fragten sich Ingenieurinnen, Technikerinnen, Händlerinnen, wie man am
besten gleichgrosse Kugeln im Raum stapelt, zum Beispiel Kanonenkugeln, Orangen oder

Der englische Seefahrer Sir Walter Raleigh fragte sich einst, wie er in seinem
Schiffsladeraum möglichst viele Kanonenkugeln stapeln könnte. Johannes Kepler entwickelte

daraufhin 1611 eine Vermutung über die optimale Anordnung der Kugeln. Diese

Vermutung sollte sich als eine der härtesten mathematischen Nüsse der Geschichte
erweisen. Selbst in der Ebene sind dichteste Packungen kongruenter Kreise eine
Herausforderung. 1892 und 1910 veröffentlichte Axel Thue (kritisierte) Beweise, dass die
hexagonale Kreispackung optimal sei. Erst 1940 lieferte Läszlö Fejes Töth schliesslich
einen wasserdichten Beweis für diese Tatsache. Eine Variante des Problems verlangt,
Packungen mit endlich vielen kongruenten Kugeln zu finden, die eine gewisse quadratische

Energie minimieren: Diese spannende geometrische Aufgabe wurde 1967 von
Töth gestellt. Sie ist auch heute noch nicht vollständig gelöst. In diesem Beitrag schlagen

die Autorinnen eine originelle wahrscheinlichkeitstheoretische Methode vor, um
in der Ebene Näherungen der Lösung zu konstruieren.
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Heidelbeeren (siehe Abbildung 1). Einige versuchen, aus naheliegenden Gründen, das von
den Kugeln beanspruchte Volumen zu minimieren, andere wollen die Dichte der erhaltenen

Figur maximieren.

Abbildung 1 Feine Heidelbeerpackungen

Diese Art geometrischer Fragen kann man unter unterschiedlichen Aspekten betrachten:

• Geht es um Segmente (eindimensionale Sphären), Kreisscheiben (zweidimensionale
Sphären), Kugeln (Dimension 3) oder Hypersphären (in einer grösseren Dimension
als 3)?

• Ist die Anzahl der Sphären endlich oder unendlich?

• Falls sie endlich ist, versucht man, den Anteil des von den Sphären eingenommen
Volumens in der konvexen Hülle der Konfiguration zu maximieren? Oder minimiert
man die Oberfläche dieser konvexen Hülle? Oder versucht man, die Kusszahl - die
Anzahl der Sphären, die eine einzige andere Sphäre berühren, ohne sie zu überlappen

- zu maximieren? Oder versucht man, eine möglichst kompakte Konfiguration zu
finden, deren Energie minimal ist?

Der*Die Leser*in, der*die an diesen unterschiedlichen Problemstellungen und ihrer
mathematischen Erläuterung interessiert ist, kann dazu die aktuelle und sehr klare Monografie
[1] betrachten.

Wir werden uns im Folgenden auf Konfigurationen von gleichgrossen sich nicht
überschneidenden Kreisscheiben in einer Ebene konzentrieren, die eine gewisse Energie
minimieren.

Diese Konfigurationen finden Anwendungen in sehr vielen Bereichen, zum Beispiel in
der Clusterchemie, wo diese als Aggregate von Atomen (siehe [15]) vorkommen; bei
Verschlüsselungen, die für das Senden von Signalen benötigt werden (siehe [5]); in der Optik,
um optimale optische Fasern zu entwerfen (siehe [12]); oder in der Logistik, zum
Beispiel um folgende (wichtige!) Frage zu beantworten: Wie verpackt man möglichst viele
Frankfurter Würstchen in einer zylinderförmigen Dose?

Wir verfolgen zwei Ziele, ein theoretisches und ein angewandtes.
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Zuerst analysieren wir die Kreispackungen vom Standpunkt der diskreten Geometrie. Wir
werden uns insbesondere mit sechseckigen Konfigurationen beschäftigen, welche
bemerkenswerte Eigenschaften besitzen. Unter anderem berechnen wir explizit eine charakteristische

Grösse, ihre quadratische Energie. Wir werden zeigen, dass kleine sechseckige

Konfigurationen (deren Seitenlänge kleiner oder gleich 7 ist) optimale gitterartige Packungen

sind. Das heisst, dass das Minimum der quadratischen Energie über alle
Kreisscheibenkonfigurationen erreicht wird, in dem die Kreisscheiben auf dem dreieckigen Gitter
angeordnet sind.

Diese Eigenschaft gilt jedoch nicht für grössere sechseckige Packungen. Auf der Suche
nach Hinweisen zur Lösung der Frage, die Töth 1967 stellte,

What is the shape ofa cluster ofn spheres with equal radii minimizing their
quadratic energy, i.e., their 2nd moment about their center ofmass?

verwenden wir eine ganz andere Methode, eine wahrscheinlichkeitstheoretische Methode.
Wir konstruieren eine zufällige Dynamik von Kreisscheiben, die sich nach langer Evolution

in einer fast optimalen Konfiguration stabilisiert. Mit der Simulation dieser Bewegung
(nach einer sinnvollen Wahl der Parameter), kann man folgende vernünftige These aufstellen:

Die Packungen aus Kreisscheiben, die die quadratische Energie minimieren,
sind kreisförmig und aufeinem dreieckigen Gitter zentriert,

1 Optimale Kreispackungen und quadratische Energie

In diesem Abschnitt werden wir uns mit Packungen aus Kreisscheiben (häufig auch pennies

im englischsprachigen Raum) beschäftigen, mit dem Ziel ihre quadratische Energie
(auch second moment genannt) zu minimieren. Obwohl dieses Problem einfach und sehr

angewandt scheint, ist es grösstenteils noch ungelöst, sobald die Anzahl der Kreisscheiben

grösser als sieben ist.

In diesem Abschnitt werden wir die für unsere Analyse notwendigen mathematischen
Grössen einführen, einige explizite Berechnungen der Energie ausführen und die
Vielfältigkeit der noch verbleibenden unbeantworteten Fragen hervorheben.

1.1 Die quadratische Energie einer Konfiguration von Kreisscheiben

Wir nennen Konfiguration von n Kreisscheiben eine Menge x aus n offenen Kreisscheiben
mit Radius eins in der Euklidischen Ebene. Die Scheiben dürfen sich nicht überschneiden.
Jede Konfiguration ist demnach durch die Position der Mittelpunkte der Kreisscheiben

gegeben:

x j.vi v,,} C K2

die selbstverständlich, für alle 1 < i < j < n, die Bedingung \x; — xj | > 2 erfüllt, wobei
| • | die für die euklidische Norm verwendete Notation ist.
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Definition 1.1. Wir nennen quadratische Energie einer Konfiguration x von n Kreisscheiben

die Summe der Quadrate der Distanzen zwischen jedem Paar von Mittelpunkten:
Xi <i<j<n lxi ~ xi I2- I-*'6 mittlere quadratische Energie ist dann gegeben durch

£n(x) - ^ \xj — xi\2. (Mittlere Energie)
n

1<i<J <n

Bemerkung. Man kann auch £,,(x) als Zweites Moment, mit Hilfe des Abstandes
zwischen jeder Kreisscheibe und dem Gravitationszentrum der Konfiguration, ausdrücken:

En(x) ^ \xi — x\2 wobei x :=
X"

' ni<i<«

Wir können nun das weiter oben erwähnte Konzept der Optimierung definieren.

Definition 1.2. Eine Konfiguration xmm von n Kreisscheiben wird optimal genannt, falls
ihre quadratische Energie minimal unter allen Konfigurationen mit n Kreisscheiben ist:

En(xmin) min{£„(x); x Konfigurationen mit n Kreisscheiben}.

Wir nennen Cm\n die Menge der optimalen Konfigurationen, modulo Drehungen, Spiegelungen

und Verschiebungen in der Ebene.

Schränkt man sich auf die Ebene ein, so kann man die Frage von Töth für n > 2

beantworten, indem man

(1) die minimale quadratische Energie von Konfigurationen von n Kreisscheiben be¬

rechnet und

(2) die Menge Cm;n von Konfigurationen, bei denen diese minimale Energie erreicht
wird, bestimmt.

CO *'"min) 2 min) — 4

Abbildung 2 Optimale Konfigurationen von zwei, bzw. drei Kreis¬
scheiben und ihre respektive mittlere Energie

Für n 2 und n 3 ist die Situation trivial und die Fragen (1) und (2) sind in der

Abbildung 2 beantwortet. Die Menge Cmin der optimalen Konfigurationen besteht jeweils
aus einer einzigen Konfiguration.

Der Fall n 4 ist etwas subtiler. Die durchschnittliche Energie ist minimal für unendlich
viele unterschiedliche Konfigurationen: card Cmin +oo. Alle diese optimalen Konfigurationen

zeigen eine trapezartige Form. Man erhält sie, indem man zwei obere Kreisscheiben
auf zwei unteren Kreisscheiben rollen lässt, so dass die Zahl der Kontaktpunkte wenigstens
gleich 4 ist, siehe Abbildung 3.
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Abbildung 3 Beispiele der optimalen Konfigurationen für vier Kreisscheiben: ^4(xmjn) f

Bis auf Rotationen und Translationen sind diese Konfigurationen durch den Winkel 8
zwischen den beiden roten Segmenten bestimmt. Indem man den Ursprung der Euklidischen
Ebene auf das Zentrum der unteren, linken Scheibe legt, erhält man:

{(0,0), (2,0), 2(cos0, sinö), 2(1 + cosö, sinö)}
TT 2 71 1[f3 3 J

Durch Nachrechnen überprüfen wir, dass in dieser Menge die mittlere Energie konstant
ist: für beliebige 6 e [y, ^],

f4(Xmin) ^(4 x 22 + |2(1 + cosff, sinö)|2 + |2(cosö, sinö) - (1,0)|2^

22 + (2 + 2 cos 9) + (2 - 2 cos ff) 8.

Für n — 5 oder n 6 ist die Antwort auf die Frage von Töth nicht offensichtlich. Die in

Abbildung 5 ersten beiden dargestellten optimalen Konfigurationen kann man als Teilmengen

der Margerite, der optimalen Konfiguration für n — 7, interpretieren. Diese letztere
wurde 1974 durch die Mathematikerin A. Temesvari in einer bemerkenswerten und fast
unbekannten geometrischen Arbeit [16] in ungarischer Sprache beschrieben, siehe Abbildung

4.

L k, * k, körbe ütközik, a többi tivoliig Kl (12. ibra). Ugyamlyen tiputü
alakzat keletkezik, ha k, A,-ba ütközik.

II. k, kr*» ülközik Ekkor A,A,A,A, it rombusz, igy A,A,A,Ak para-
là (13. ibra). Ha i, *,-bc ütközik. a konvex burok ugyanctak paraldog.

Z*,A1 SÎ+ ï'+î-lT.

(6) ai.

Az I. eaetben A, A,yA,Ak miau A, A,*-A,A„ lebil a 10. segidtitelt ûgjr alkal-
mazzuk, hogy A,A, nöjön ét AtAt kit egytignyi legycn (k, csak akkor Otköibei
A,-ba az A, 4,A,-3 ?180° esctcn. ha A,A, il egytignyi volt éi ekkor A,A,-2).
Mivel AtA,3i, igy A,A,A,<i S60°, igy A,A,« )'3, Az A,A45l. vagyis A,A, A, <• ti
»60°, Igy az A,A,A, hiromizögre rdlrt connut titdböl

A,AJ^14-4-4.colA,A,A,.l Si
adödlk. amiböl A,A,*< f5. fgy

2 + r+A,Al+A,A;u2*V+2-f}\ ha 0«v*2

A kôzéppontok konvex burka az A,A,A,A,A, üuzog is a k, Jr. körök
irinlik k,-cI, tehit a k, k, körök kö/ipponljai egy egységsugarû A, közipponlü
körön vannak 4» mindegyik oldalhoz Urtozö közippomi tzög ki " *

et nagyobb-cgyenlö 60° (15. ibra).
Egy sokszög mâsodszomszéd estimait öM/ckb-

lA illöil a kisöbbiekben „miiodillöknak" nevez-
täk. Az öltzögünk minden ..misodillâjihoz" tar-
tozö kö/cpponU szög a [120°: 180°) iotervaljiun-

A V5I ctetben a hatvinyöaszeg mcgfeldA
y»Ilona tilival a követkczökippen julhaiunk el a
<é,(6t-nak mcgfdelö elrendeztshcz. Legyen pl. az
A,A, a legnagyobb otdal. A, körül t,-öi i^ig.
kr** *,-ig. majd együtt A,-Öt é» A,-ot *,-ig vigül
*,-et is *,-at együil k,-ig forgatjuk. A 4. tegidtà-
tdböl következik, hogy egy-tgy forgalis vegere
tj>6) megfeleWen viltozotl és vigül djfiynak meg-
felclb drendezia kaptuk.

Az l-evai2 eselbcn tegyflk fei, hogy pl. A,A, a legnagyobb „misoditlö" is
A,.t,*A,A, Forgassuk A, körül *, il k, köröket együtt, mig k,a Aj-ba nein ütkö-
ak. A 3. ii a 9. legedtitd mialt a hatvinyöuzeg csökkent H A.A.sA.A,. Ezutin
X, körül k, 6» k, köröket rorgaliuk együil, mig k, a *rbe nem ütközik Ha ezutin
pl. A,A,aA,A„ akkor A, körül együtt forgatjuk a A, it a k, kört, mig A, A,-ba

A,(S)a74-r+2.|'5". ha 0<v*
3.(5) S 7+2'+2 • ha > -r 0.

(5)-öt it (6)-ot ötszeadva

3.(6) »- d.(6). ha 0 « v S
ill.

3.(6) «cf.(6), ha r-eO

adödik. mivel az egyenlöaig (5>btn is (6)-ban egytzeire nem liphet fet.
A II. eaetben az A, A,A,<-et caökkcnljük az A,AtA,A, paraldog

(13. ibra). Ekkor az itlök nigyzelötazege illandö, igy az 1. jcgédtételbôl következtk.
hogy A,Al+AtAl ctökken. ha 0-»vK2 it nö, ha v<0. A többi tävoUig ugyanaz
marad ta vigül A, is k„ k,ts k, körök il érintkeznek (14. ibra). A vàltoztatii utin
a tivolaigösszeg: 3.(6)-9+2-2*+3-rT'+ î*. atnire 446)»</.(6). ha 0--.S2, ill.
3.(6)-:d/O. ha v-:0.

338

ütközik. SM a vigtö helyzetre nyilvin caökkent is A,A,A,<-180°. A 3. segéd-
tdcl tzerim tovibb csökkentünk, ha *,-ct A, körül *,-ig forgatjuk. Igy djutottunk
a d,(6>-nak mcgfddö clrendezcshcz.

A tovibbi csetek [Ij-hez haionlöao viztgAlhatök.
Legyeii ««7.
Ha a kôzéppontok konvex burka hétzzôg, a 2. wgidtitd miau elegendö az

egytignyi oldalil ctcttcl foglalkozni.
Egy aokuög harraadtzomizid csùcsait önzekötö itlökat a kfaöbbtckben

Abbildung 4 Ausschnitt aus dem Artikel [16] von A. Temesvâri
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Wir heben hervor, dass die Mittelpunkte dieser optimalen Konfigurationen als benachbarte
Punkte auf einem dreieckigen Gitter liegen, das wir von nun an T nennen.

Abbildung 5 Die einzigen optimalen Konfigurationen von 5 (bzw. 6 oder 7) Kreisscheiben in der Margeriten-
Form, in der ein bzw. zwei Blütenblätter fehlen. Die Mittelpunkte der Kreisscheiben sind auf dem Gitter T.

Für« > 7 ist die Beschreibung von Cmi„ bis heute unvollständig. Das erfolgreichste Ergebnis

erreichte Chow [3], der die quadratische Energie nur für gitterartige Konfigurationen -
deren Mittelpunkte auf T liegen - minimieren konnte.

Wir bemerken auch, dass die Margerite eine sechseckige Konfiguration ist, was kein Zufall
ist, da die Zahl 7 die erste nicht triviale zentrierte Sechseckszahl ist. Darum werden wir
uns nun auf Konfigurationen konzentrieren, deren Kardinalität eine dieser interessanten
Zahlen ist.

1.2 Schönheit und Nutzen der zentrierten Sechseckszahlen

Wir wiederholen zuerst die algebraische Definition.

Definition 1.3. Eine zentrierte Sechseckszahl n ist eine ganze Zahl n(h), die sich auf
folgende Art zerlegen lässt:

für eine feste ganze Zahl Ii.

Abbildung 6 Zerlegung der Sechseckszahl n(h) in sechs Blütenblätter (erster Term in (1)), oder in die Differenz
von zwei konsekutiven Würfeln (letzter Term in (1)

Sie entspricht der Anzahl ähnlicher Kreisscheiben, die man in einem regelmässigen Sechseck

auf dem dreieckigen Gitter T um eine zentrierte Kreisscheibe mit Gravitationszentrum

n(h) 1 + 6—~ 3h2 - 3h + 1 h3 - {h - l)3 (1)
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x der Konfiguration anordnen kann. Die Zahl h stellt also die Anzahl der angeordneten

Kreisscheiben auf jeder Seite des Sechseckes dar oder auch die Anzahl der Schichten

im Sechseck (der graphische Beweis ist in der Abbildung 6 gegeben.) Man überprüft
leicht, dass jedes der sechs farbigen Blütenblätter aus Kreisscheiben besteht. Abbildung

7 zeigt die graphische Darstellung der sechseckigen Konfigurationen der Seitenlänge
h 1, 2, 3, 4 und 5.

Abbildung 7 Abbildung der sechseckigen Konfigurationen Xhexü). resP- xhex(2). xhex(3)> xhex(4) und Xhex(5).

von Kardinalität n(l) 1 resp. n(2) 7, n(3) 19, n(4) 37 und n(5) 61.

1.3 Berechnung der mittleren quadratischen Energie
einer sechseckigen Konfiguration

Zur Vereinfachung nennen wir E (h die mittlere quadratische Energie der sechseckigen
Konfiguration Xhex(/i) der Seitenlänge h, und der Kardinalität n(h):

E(h) := £n(h)(xhex('O)

1.3.1 Konfigurationen von kleiner Grösse

In diesem Abschnitt werden wir die zwei kleinsten, nicht trivialen sechseckigen Konfigurationen

behandeln.

Wir beginnen mit der Margerite der Seitenlänge h 2. Wir nummerieren zuerst die
Kreisscheiben, dabei fangen wir im Mittelpunkt an und folgen den zwei Schichten. Wir

benutzen nun den Ausdruck des zweiten Momentes, um die quadratische Energie dieser

Konfiguration zu berechnen. Da xi, der Mittelpunkt der zentralen Kreisscheibe, dem
Gravitationszentrum entspricht, erhalten wir : E(2) Xj=2 Ix> — xi |2 6 • 22 24.

o

Abbildung 8 Nummerierung der sechseckigen Konfiguration
der Seitenlänge h 2 und Kardinalität n(2) 7
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Abbildung 9 Links: Nummerierung der sechseckigen Konfiguration xj,ex(3) und ihrer 3 Schichten;
Rechts: Abstand der Mittelpunkte der Kreisscheiben zum Gravitationszentrum x x\

Wir berechnen nun die Energie einer Konfiguration der Seitenlänge h 3. Auch hier
benutzen wir den Ausdruck des zweiten Momentes und führen das Gravitationszentrum xi
und die bereits berechnete Energie ein, um die mittlere quadratische Energie dieser
Konfiguration zu beschreiben.

E(3) E(2) + 6 ((2n/3)2 + 42) 192.

Wir stellen nun zwei sehr unterschiedliche Kontexte vor, in denen die Packung aus n(3)
Kreisscheiben auftaucht. Eine Skulptur in der Kathedrale von Magdeburg aus dem
13. Jahrhundert stellt den germanischen Kaiser Otto I. und seine Frau Editha dar. Er hält
stolz eine sechseckige Konfiguration mit 19 Kreisscheiben in seiner rechten Hand,
deren Interpretation bis heute ein Mysterium bleibt (und somit eine Quelle der Uneinigkeit
zwischen Historikerinnen).

Ingenieurinnen haben empirisch herausgefunden, dass die sechseckige Geometrie einen

optimalen Widerstand bildet. Darum wurde sie beispielsweise beim Bau von Kabeln
benutzt: Die Kabel der 1883 eingeweihten Brooklyn Bridge bestehen aus 19 n(3) Leitungen,

die wiederum aus 331 «(11) metallischen Fäden des Durchmessers 1/8 bestehen,
siehe Abbildung 11.

1.3.2 Energie einer sechseckigen Konfiguration beliebiger Grösse

In diesem Abschnitt präsentieren wir eine explizite Formel. Die Grundlage für den Beweis
bildet das zweite Moment, sowie die Invarianz jeder sechseckigen Konfiguration unter
einer Rotation von n/3, illustriert in Abbildung 6.

Proposition 1.1. Die mittlere quadratische Energie einer sechseckigen Konfiguration
Xhex(^) ist gegeben durch

E(h) h(h - 1)(5h(h - 1) +2)
{nih) ~

1)^5n(/t) + 1}
(2)

Bemerkung. Die Energie E(h) ist in der Tat eine Funktion von h\h~x) ('( )s wobei (2)
nichts anderes ist als die Kardinalität jedes Blütenblattes der sechseckigen Konfiguration
der Seitenlänge h. Darüber hinaus verallgemeinert sich diese Formel ohne Weiteres für
Kreisscheiben vom beliebigen Radius r: E(h) (2r)2 (*) ^5(2) + 1^.
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Abbildung 11 Brooklyn Bridge (New York City Brooklyn Bridge - Currier & Ives 1877) und ihre Kabel

Beweis. Indem wir wie oben die Kreisscheiben schichtweise nummerieren, erhalten wir
die rekursive Formel

h (h+1

E(h + 1) E(h) + ^ I*/ ~x'l2- <3)

i=n(h)+1

Dank der Zerlegung der Sechsecke in sechs identische Blütenblätter (siehe Abbildung
6), ist der Zuwachs der mittleren Energie E(h + 1) — E(h) sechs mal der Anteil der
rosafarbigen Kreisscheiben der Abbildung 12. Wenn wir den Ursprung in x x\ fixieren,

so haben alle diese Kreisscheiben die gleiche Ordinate, gegeben durch ^2h \/3/;.

'Dieses Wikipedia und Wikimedia Commons Bild des Users Chris 73 ist frei verfügbar unter
//commons.wikimedia.org/wiki/File:HerscherpaarMagdeburgCathedral.jpg

unter der creative commons cc-by-sa 3.0 Lizenz.
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h 6 Kreisscheiben
h 5 Kreisscheiben

h + 1

6 Schichten

h + 1

7 Schichten

Abbildung 12 Die äusseren Kreisscheiben eines Blütenblattes, hier in rosa, sind verantwortlich für 1/6 der

Steigerung der mittleren Energie E(h + 1 — FAh).

Der Unterschied der Abszissen zweier nebeneinanderliegenderrosafarbigen Kreisscheiben
beträgt zwei, dabei ist die niedrigste Abszisse —h und die höchste h — 2. Die Abszisse der

orangefarbigen Scheibe, die nicht zu dem Blütenblatt gehört, ist h. Somit folgt:

n(h+1) ,h-1 v h—l h-l
Y \xi — .Vi I2 6 f £(-A + 2k)2 + 3h3) 24 Y^ - h Yk + h3 + 3/i3 J.

i=n(h)+\ ^ k=()
' ^ k=0 k=0

'

Da Zk=i k2 "i('"+lf'"+l) und Xt'=i k folgt

"(4tn 9 /(/t - l)/;(2/t - 1) (A-l)A AY \xi — -*11 24 I ^ J--hy +h3\ 4h(5h + 1).

i=n(l,)+l ^ '

Die Formel (3) zusammen mit dem obigen Ergebnis ergibt:

h-1 h—l h-l
£(/i) ^4/ (5/2 + 1) 20^]/3 +4^/.

1=0 1= 1 /=i

Zusammen mit X/li '3 ^4+l) und (/; - l)/t "W~' folgt die Aussage.

1.4 Sind die grossen sechseckigen Konfigurationen noch immer optimal?

Kehren wir zu der Suche nach der Menge Cmm zurück, die bei der Betrachtung der
quadratischen Energie optimal ist (siehe Definition 1.2).

Aus der Arbeit von Temesvâri [16] folgt, dass die Margerite Xhex(2) die einzige Konfiguration

unter allen Konfigurationen mit n(2) =7 Kreisscheiben ist, die die quadratische
Energie minimiert: für n 7 gilt Cmjn {xhex(2)]. Aber was ist mit der sechseckigen
Konfiguration der Seitenlänge h 3? Ist sie optimal unter den Konfigurationen mit 19

Kreisscheiben? Und sind die anderen grösseren sechseckigen Konfigurationen auch
optimal?

Wir beantworten diese Fragen in der unterstehenden Proposition. Die Antwort ist bejahend
für hinreichend kleine Konfigurationen (h < 7) und falls man für die Optimierung nur die

gitterartigen Konfigurationen betrachtet. Für grössere sechseckige Konfigurationen (h >
8) werden wir diese Aussage durch Gegenbeispiele widerlegen.
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h n(h) E(h)

1 1 0

2 7 24
3 19 192

4 37 744
5 61 2040
6 91 4560
7 127 8904
8 169 15792
9 217 26064

10 271 40680
11 331 60720
12 397 87384
13 469 121992
14 547 165984
15 631 220920
16 721 288480
17 817 370464
18 919 468792
19 1027 585504
20 1141 722760

h n(h) E(h)

21 1261 882840
22 1387 1068144
23 1519 1281192
24 1657 1524624
25 1801 1801200
26 1951 2113800
27 2107 2465424
28 2269 2859192
29 2437 3298344
30 2611 3786240
31 2791 4326360
32 2977 4922304
33 3169 5577792
34 3367 6296664
35 3571 7082880
36 3781 7940520
37 3997 8873784
38 4219 9886992
39 4447 10984584
40 4681 12171120

Tabelle 1 Die mittlere Energie der vierzig ersten sechseckigen Konfigurationen in Abhängigkeit der Seitenlänge
des Sechseckes.

Proposition 1.2. Unter den gitterartigen Konfigurationen ist die sechseckige Packung der
Seitenlänge h optimal genau dann, wenn h <7. In diesem Fall gilt

E(h) min{£„p,)(x); x Konfiguration aus n(h) Kreisscheiben mitx C T).

Um diese Proposition zu beweisen, beweisen wir zuerst, dass eine sechseckige Packung
Xh.ex CO (in einem noch zu erläuternden Sinn) genau dann kreisförmig ist, wenn sie klein

genug ist, das heisst falls 2 < h < 7. Anschliessend verwenden wir das mächtige
Ergebnis von Chow, der bewiesen hat, dass die optimalen gitterförmigen Konfigurationen
kreisförmig sind.

Definition 1.4. Eine gitterartige Konfiguration x C T wird kreisförmig genannt, falls ein
Radius R > 0 existiert, so dass alle Punkte auf dem dreieckigen Gitter T, deren Abstand

zum Gravitationszentrum x kleiner oder gleich R ist, zu dieser gehören. Andersgesagt, x
ist kreisförmig falls x {x; e T, |x; — x\ < R).

Lemma 1.1. Die sechseckige Konfiguration der Seitenlänge h ist kreisförmig genau dann,

wenn h <7.

Beweis. Jede sechseckige Konfiguration ist gitterartig: X\KK(h) C T. Sei x\ x 0. Der
Radius der kleinsten Kugel mit Zentrum x 0, der alle Punkte xi_,..., x„(/,) umschliesst,
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ist 2(A — 1). Daraus folgt, dass X|lex(A) eine kreisförmige Konfiguration ist genau dann,

wenn Xt,ex(A) B(0, 2(A — 1)) n T. Wir unterscheiden zwei Fälle.

(i) A ist gerade: Falls B(0, 2 (A — 1)) n7~\Xhex(A) ^ 0 befindet sich der Punkt (0 A</3)
in der Kugel ß(0, 2(A — 1)), siehe Abbildung 13. Aber

|(0,A>/3)| < 2(A - 1) 4» A >—^-=«7,46.
2 -

Daraus folgt, dass A mindestens 8 sein muss.

(ii) A ist ungerade: Falls B(0, 2(A — 1)) fl T \ Xhex(A) ^4 0 befindet sich der Punkt
1, A \fï>) in der Kugel B(0, 2(A — 1 Aber

|(1,AV3)| <2(A- 1) <4 h >4+ x/Î3 « 7, 6.

Dies bedeutet, dass A mindestens 9 sein muss.

Um den Beweis der Proposition 1.2 abzuschliessen, verwenden wir die Charakterisierung
der optimalen gitterartigen Packung, die von Chow in der Proposition 3 des Artikels [3]
bewiesen wurde. Diese sind kreisförmig (auf englisch: Circular cluster). Daraus folgt,
dass für 2 < h < 7 die sechseckigen Packungen kreisförmig und somit optimal unter der

gitterartigen Packungen sind.

Für A > 8, zeigt der konstruktive Beweis des Lemmas 1.1, dass die Konfiguration, die man
durch das Verschieben der Kreisscheiben aus den Ecken in die Mitte der äusseren Seiten
des Sechseckes abrundet, eine kleinere Energie als das Sechseck hat. Die optimale(n) Kon-
figuration(en) der Kardinalität n(h) kann/können also nicht die sechseckigen sein.

Bilanz. Wenn Xhex(A) aber nicht optimal ist für A grösser als 7, was ist dann die optimale
Gestalt für grosse Konfigurationen, die aus n > n(l) 127 Kreisscheiben bestehen?

Diese Frage ist bis jetzt nicht vollständig beantwortet und war Ursprung vieler Vermutungen.

Unter anderen stellen Graham und Sloane in [11] drei unterschiedliche Methoden

vor, wie man den Energiezuwachs, der durch das Hinzufügen einer Scheibe entsteht,
minimieren kann. Chow [3] entwickelte dann einen teilweise zufälligen Algorithmus, der nach
einer stetigen Gleichverteilung unter mehreren Möglichkeiten zufällig die Stelle auswählt,
an der eine neue Kreisscheibe der vorherigen Schicht hinzugefügt wird.

All diese raffinierten Versuche sind jedoch beschränkt durch die Konstruktion von gitterartigen

Konfigurationen. Da es heute unmöglich erscheint, einen Algorithmus zu finden, der
optimale, nicht gitterartige Konfigurationen generiert, stellen wir im zweiten Teil dieses

Artikels eine grundsätzlich andere Herangehensweise vor, nämlich einen
wahrscheinlichkeitstheoretischen Zugang.
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2 Zufällige Dynamik der Kreisscheiben und
ihr Gleichgewichtszustand

In diesem Teil werden wir die optimalen Konfigurationen von Kreisscheiben beliebiger
Grösse - die typischerweise nicht sechseckig sind - durch eine zufällige Dynamik der
Kreisscheiben approximieren. Nach langer Zeit findet diese komplexe Bewegung einen

Gleichgewichtszustand in einer Konfiguration, die nahe einer Konfiguration der minimalen

Energie ist. Diese in [2] eingeführte Methode befreit uns somit vom Zwang der den

vorherigen quasi-deterministischen Methoden inhärenten gitterartigen Geometrie.

2.1 Zufällige Bewegung von sieh gegenseitig anziehenden Kreisscheiben

Wir betrachten n Kreisscheiben (für n gross genug). Jede Kreisscheibe oszilliert zufällig
und chaotisch in der Ebene, unabhängig von den anderen (n — 1) Kreisscheiben. Diese
üben allerdings eine Anziehungskraft auf sie aus. Wenn ausserdem zwei Kreisscheiben

zusammenstossen, stossen sie sich nach den gebräuchlichen Gesetzten der Physik einer
elastischen Kollision wieder ab, da sie sich nicht überschneiden können. Jede der n
Kreisscheiben xy,... ,xn 6 R2 wird sich demnach in Abhängigkeit der Zeit t entlang einer

gewissen, zufälligen Bahn in der Ebene bewegen. Genauer gesagt, werden die Funktionen

t h* Xi(t), 1 < i < n, das folgende System von stochastischen Integralgleichungen
erfüllen:

Anziehungskraft der anderen Kreisscheiben

Anfangsposition Oszillation

(*)

H "
Xi(t) x,(0) + Wi(t) + a y (X j(s) - Xj(s))ds

J°
7=1

durch Zusammenstösse bedingte Abstossung

n t

+ XI / (xi(s)-Xj(s))dLij(s)
j r/o

Lij (0) 0, Lij Lji, La 0, und / 1- is i—/2 dLjj(s) 0,
J o

für jedes i e {1,...,«} und t > 0.

Wir betrachten nun die Bedeutung der vier obenstehenden Terme.

2.1.1 Anfangsposition

Die Position der n Kreisscheiben zum Zeitpunkt 0 ist durch die ihrer Zentren gegeben,
die für alle Paare i j die Bedingung |x,(0) — Xj(0)| > 2 erfüllen. Sie bilden die

Ausgangskonfiguration x(0).

2.1.2 Zufällige Brownsche Oszillation

Die Oszillation, die jede Kreisscheibe im Verlauf der Zeit macht, ist eine zufällige Bewegung,

genannt Brownsche Bewegung. Sie wurde nach dem Botaniker R. Brown benannt,
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der 1828 in seinem Mikroskop eine unregelmässige, allgegenwärtige Bewegung von
Pollenkörnern in einer Flüssigkeit entdeckte, die aber keine Lebenserscheinung war. Erst sehr
viel später wurde diese Bewegung durch Einstein, Smoluchowsky und schliesslich Wiener

mathematisch beschrieben. (Die Bezeichnung der Bewegung durch den Buchstaben W
geht auf ihn zurück.) Zu jedem Zeitpunkt verändert jede Kreisscheibe spontan die Richtung

ihrer Bewegung, ohne eine bestimmte zu bevorzugen und unabhängig von den anderen

Kreisscheiben. Daraus folgt, dass ihre Geschwindigkeit de facto unendlich ist und ihre
Bahn eine fraktale Funktion ist, die nirgendwo differenzierbar ist (siehe Abbildung 14).

5. Über die von der molek tt luvkinet inehen Theorie
der Wärme geforderte Bewegung von in ruhenden

Flüssigkeiten suspendierten Teilchen;
von A. Einstein.

In dieser Arbeit soll gezeigt werden, daß nach der
molekularkinetischen Theorie der Wärme in Flüssigkeiten suspendierte
Körper von mikroskopisch sichtbarer Größe infolge der Mole-
knlarbewegung der Wärme Bewegungen von solcher Größe
ausführen müssen, daß diese Bewegungen leicht mit dem

Mikroskop nachgewiesen werden können. Es ist möglich, daß
die hier zu behandelnden Bewegungen mit der sogenannten
„Brownsehen Molekularbewegung" identisch sind; die mir
erreichbaren Angaben Uber letztere sind jedoch so ungenau,
daß ich mir hierüber kein Urteil bilden konnte.

Wenn sich die hier zu behandelnde Bewegung Bamt den

für sie zu erwartenden Gesetzmäßigkeiten wirklich beobachten

läßt, so ist die klassische Thermodynamik schon für
mikroskopisch unterscheidbare Häume nicht mehr als genau gültig
anzusehen und es ist dann eine exakte Bestimmung der wahren
Atomgröße möglich. Erwiese sich umgekehrt die Voraussage
dieser Bewegung als unzutreffend, so wäre damit ein
schwerwiegendes Argument gegen die molekularkinetiscbe Auffassung
der Wärme gegeben.

§ 1. Ober den suspendierten Teilchen zuzuschreibenden
osmotischen Druck.

Im Teilvolumen V* einer Flüssigkeit vom Gesamtvolumen V
seien z- Gramm -Moleküle eines Nichtetektrolyten gelöst. Ist
das Volumen V durch eine für das Lösungsmittel, nicht aber
für die gelöste Substanz durchlässige Wand vom reinen Lösungs-

Abbildung 14 Links: Ausschnitt aus dem Artikel von A. Einstein über die Brownsche Bewegung (1905).
Rechts: Eine Simulation einer möglichen Bahn eines Brownschen Teilchens in der Ebene

2.1.3 Anziehungskraft zwischen den Kreisscheihen

Zu jedem Zeitpunkt 5 wird die Scheibe i durch die anderen Kreisscheiben j angezogen,
mit einer zu dem Vektor Xj(s) — Xj(s), der die relative Position der beiden Kreisscheiben
darstellt, proportionalen Kraft (siehe Figur 15). Der Proportionalitätskoeffizient a wird
Anziehungskoeffizient genannt. Im Folgenden wird er eine wichtige Rolle spielen.

2.1.4 Auswirkung der Zusammenstösse der Kreisscheiben

Falls eine Kreisscheibe i sich einer Kreisscheibe j nähert und diese zu einem Zeitpunkt
,y berührt, |x; (s) — xj (s) \ 2, wird sie sofort zurückgestossen, da sich die Kreisscheiben

nicht überschneiden dürfen. Diese Rückstosskraft, die den Gesetzen der elastischen
Kollision folgt, ist kollinear zu dem Vektor Xj(s) — Xj(s) (in blau in der Abbildung 15).
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px3(s)
m(s)0 i 0*20)

-v/(v)
Xj(s)

*iO)

Abbildung 15 Links: Die durch die Kreisscheiben -t2(s)> x3(s) und *4(5) auf 4i(s) ausgeübten Anziehungskräfte;

in Rot ihre Summe. Rechts: Die Bewegung von x,• (s) und xj (s) kurz vor und kurz nach den Zusammen-
stoss. In Blau, die Kraft der elastischen Kollision, die r; (s) von xj (s) entfernt.

Sie wird global dargestellt durch den additiven Term (je/ 0) — xj 0)) dLjj (.v) Ihre

Intensität hängt von der Anzahl und den (zufälligen) Zeitpunkten der Zusammenstösse
zwischen i und /' ab. Dies rechtfertigt, dass der Integrand ein wachsender, zufälliger Prozess

ist, den wir mit Lij (t) bezeichnen und der lokale Zeit des Zusammenstosses genannt wird.
Letztere wächst nur, falls sich die zwei Kreisscheiben i und j berühren:

Die Anfangsbedingung Ljj (0) 0 ist beliebig.

Die Symmetrie Ly Lji liegt in der Natur des Problems. Ein Zusammenstoss zwischen

xi und xj hat einen symmetrischen Einfluss auf das Verhalten von xt und Xj. (In Abbildung
15 sind der blaue und der rosa Pfeil entgegengesetzt.) Da ein Partikel nicht mit sich selbst

zusammenstossen kann, gilt La 0.

Die Existenz einer mathematischen Lösung des Systèmes (*) ist kein einfaches Problem
auf Grund der lokalen Zeiten des Zusammenstosses, die selbst Unbekannte sind. Der erste
Beweis der Existenz einer solchen Dynamik mit n Kugeln ohne gegenseitige Anziehungskraft

(a 0) wurde von Saisho und Tanaka in [13] 1986 gegeben. Die Autorinnen M.F.
und S.R. haben diese Methode verbessert und erweitert, um so auch den Fall eines unendlichen

Systems mit allgemeiner Interaktion behandeln zu können, siehe [9].

2.2 Stabilisierung gegen quasi-optimalen Packungen

Die Dynamik (*) ist in vielerlei Hinsicht bemerkenswert. Wir bemerken zuerst, dass die

augenblickliche Anziehungskraft zwischen Kreisscheiben (bis auf einen Koeffizienten) als

Ableitung der quadratischen Energie gesehen werden kann, da

Die Dynamik (*) ist somit eine sogenannte Gradienten-Dynamik, von der man bestimmte

zeitabhängige Eigenschaften kennt. Insbesondere hat die zweite Autorin in Theorem 3.3

von [7] bewiesen, dass, durch das Festlegen von zufälligen Ausgangspositionen x\ (0),...,
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xn (0) durch eine geeignete Verteilung f ia, die Bewegung der Kreisscheiben ein stationäres
Verhalten zeigt; das heisst, dass ihre Verteilung zu jedem Zeitpunkt die gleiche bleibt.
Tatsächlich entspricht /xa dem gleichmässigen Mass der Menge der Konfigurationen von
n Kreisscheiben, durch den Dichtefaktor exp — na £n (x)) verzerrt. In anderen Worten:
Die zufällige Position der Kreisscheiben der Verteilung ist ein Gleichgewichtszustand
der Dynamik (*).
Nun stellen sich uns zwei Fragen, die mit dem Zeitparameter t und mit der Anziehungskraft

a verbunden sind.

• Können wir davon ausgehen, dass, wenn wir die Anfangspositionen der Kreisscheiben

deterministisch festlegen x(0) [x\(0),..., x„(0)), das System nach einer langen

Zeit t den oben beschriebenen Gleichgewichtszustand annimmt? Anders gesagt,
gibt es eine Stabilisierung der zufälligen Dynamik der Kreisscheiben zu der

Wahrscheinlichkeitsverteilung [ia7

• Die für die Verteilung na wahrscheinlichsten Konfigurationen x sind diejenigen, für
die die Dichte e na£»(x) maximal ist, das heisst sie sind Elemente von Cmjn mit einer
minimalen Energie £n(x). Können wir davon ausgehen, dass wir die Konfigurationen
von Cmin erreichen, in dem wir den Anziehungskoeffizienten erhöhen, so dass die
Wahrscheinlichkeit jeder suboptimalen Konfiguration vernachlässigbar wird?

Wir beantworten beide Fragen positiv:

Wir legen eine beliebige anfängliche Konfiguration eines Systems mit n Kreisscheiben
fest. Wir können dann einen ausreichend grossen Anziehungskoeffizienten a wählen, so
dass nach der Evolution während ausreichend langer Zeit gemäss der Dynamik (*) sich
das System mit einer beliebig grossen Wahrscheinlichkeit in einer Konfiguration befindet,
die beliebig nahe an den optimalen Konfigurationen ist. Dies wird wie folgt formalisiert.
Der Abstand d, der dort vorkommt, wird durch den Unterschied zwischen der Energie der

Konfiguration x(t) und der minimalen Energie gegeben.

Satz 2.1. Sei x(0) eine beliebige Anfangskonfiguration. Für alle e, t] > 0 existiert ein
A > 0 und ein T > 0, so dass für alle a > A und t > T,

^(^Xmin ë Cmin. d(x(t), Xirim) ^ h) —
^

Beweis. Wir erweitern die Menge Cm;n ein wenig, in dem wir auch ^-optimale Konfigurationen

zulassen: C^n := {x ; £„(x) <£_,, + n) wobei := £„(xmin).

f e- f t£n(x)>£ji+n dx f e" T (&(»)-£.-*) l£n(x)>^+n dx
J~ < J-

/e-^dx I ,-¥<*«-£.-*>!£,t{x)^+ndx

< -J f e~ t£n{x)>£ji+>l dx

J 1£„«<£,+, dx

Dies geht nach 0 wenn a nach unendlich geht. Daraus folgt, dass für ein ausreichend

grosses a die Wahrscheihnlichkeit von C^in unter ua sich 1 mehr und mehr nähert.



Packungen aus Kreisscheiben 61

Andererseits konvergiert für eine Anfangsposition x(0) und für jede festgelegte
Anziehungskraft a die Verteilung des Systems von n Kreisscheiben zur Zeit t gegen jLia, wenn t

gegen unendlich geht. Diese intuitive (aber sehr schwierig zu beweisende) Stabilisierung
wurde in [2] für n 3 Kreisscheiben gezeigt. Die Verallgemeinerung für eine beliebige
Anzahl n von Kreisscheiben ist das Thema des Artikels [10], der gerade von den Autorinnen

M.F. und S.R. geschrieben wird. Es gilt also

jHm0P(x(r)eCJ ^(O.
Man erhält das endgültige Resultat in dem man die Stetigkeit der Energie verwendet. Diese

impliziert, dass die Menge C'^m der //-optimalen Konfigurationen sich Cm;n nähert, wenn
t] nach 0 geht.

Abbildung 16 Form einer fast-optimalen Konfiguration aus n 250 Kreisscheiben

Der*Die Leser*in, der*die an der dynamischen Visualisierung der Konvergenz interessiert
ist, ist eingeladen, die Webseite

http ://mfradon.plil.fr/penny_packing_simulation.html
zu besuchen, auf der Simulationen unsere Ergebnisse illustrieren.

Danksagung. Die erste Autorin absolvierte im Mai und Juni 2016 ein Praktikum im
mathematischen Institut Paul Painlevé der Université de Lille im Rahmen des Studienvorbe-
reitungs- und Orientierungsjahres ProTechnicale. Einige der vorgestellten Resultate dieses

Artikels sind die Ergebnisse dieses Praktikums. Der Forschungsgruppe für
Wahrscheinlichkeitstheorie und Statistik wird an dieser Stelle für den herzlichen Empfang gedankt.
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