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I Elemente der Mathematik

Packungen aus Kreisscheiben

Wie eine wahrscheinlichkeitstheoretische Sichtweise eine
geometrische Analyse vervollstindigen kann

Einfiihrung

Charlotte Dombrowsky, Myriam Fradon und Sylvie Reelly

Charlotte Dombrowsky schloss ihre Schulausbildung 2015 ab, und absolvierte an-
schliessend ein Orientierungsjahr (ProTechnicale). Seit zwei Jahren studiert sie Ma-
thematik an der ETH Ziirich.

Myriam Fradon promovierte in Paris bei Patrick Cattiaux. Zu ihren Forschungsthemen
gehoren reflektierende Diffusionen und zufillige Dynamiken harter Kugeln. Seit 1996
ist sie Maitre de Conférences an der Université de Lille.

Sylvie Reelly promovierte in Paris, wo sie auch habilitierte. Seit 2003 ist sie Profes-
sorin fiir Wahrscheinlichkeitstheorie an der Universitit Potsdam. Thre Forschungsin-
teressen sind zufillige interagierende Systeme und Diffusionsprozesse. Sie engagiert
sich auch im Bereich der Schiilerférderung, insbesondere im Rahmen des Projektes
MATh.en.JEANS.

Schon immer fragten sich Ingenieur*innen, Techniker*innen, Hindler*innen, wie man am
besten gleichgrosse Kugeln im Raum stapelt, zum Beispiel Kanonenkugeln, Orangen oder

Der englische Seefahrer Sir Walter Raleigh fragte sich einst, wie er in seinem Schiffs-
laderaum moglichst viele Kanonenkugeln stapeln kénnte. Johannes Kepler entwickel-
te daraufhin 1611 eine Vermutung iiber die optimale Anordnung der Kugeln. Diese
Vermutung sollte sich als eine der hirtesten mathematischen Niisse der Geschichte
erweisen. Selbst in der Ebene sind dichteste Packungen kongruenter Kreise eine Her-
ausforderung. 1892 und 1910 verétfentlichte Axel Thue (kritisierte) Beweise, dass die
hexagonale Kreispackung optimal sei. Erst 1940 lieferte Laszl6 Fejes T6th schliesslich
einen wasserdichten Beweis fiir diese Tatsache. Eine Variante des Problems verlangt,
Packungen mit endlich vielen kongruenten Kugeln zu finden, die eine gewisse quadra-
tische Energie minimieren: Diese spannende geometrische Aufgabe wurde 1967 von
Toéth gestellt. Sie ist auch heute noch nicht vollstindig gelost. In diesem Beitrag schla-
gen die Autorinnen eine originelle wahrscheinlichkeitstheoretische Methode vor, um
in der Ebene Niherungen der Losung zu konstruieren.
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Heidelbeeren (sieche Abbildung 1). Einige versuchen, aus naheliegenden Griinden, das von
den Kugeln beanspruchte Volumen zu minimieren, andere wollen die Dichte der erhaltenen
Figur maximieren.

Abbildung 1 Feine Heidelbeerpackungen

Diese Art geometrischer Fragen kann man unter unterschiedlichen Aspekten betrachten:

e Geht es um Segmente (eindimensionale Sphiren), Kreisscheiben (zweidimensionale
Sphiren), Kugeln (Dimension 3) oder Hypersphiren (in einer grosseren Dimension
als 3)?

e Ist die Anzahl der Sphiren endlich oder unendlich?

e Falls sie endlich ist, versucht man, den Anteil des von den Sphéren eingenommen
Volumens in der konvexen Hiille der Konfiguration zu maximieren? Oder minimiert
man die Oberfliche dieser konvexen Hiille? Oder versucht man, die Kusszahl — die
Anzahl der Sphiren, die eine einzige andere Sphire beriihren, ohne sie zu iiberlappen
— zu maximieren? Oder versucht man, eine méglichst kompakte Konfiguration zu
finden, deren Energie minimal ist?

Der*Die Leser*in, der*die an diesen unterschiedlichen Problemstellungen und ihrer ma-
thematischen Erlduterung interessiert ist, kann dazu die aktuelle und sehr klare Monografie
[1] betrachten.

Wir werden uns im Folgenden auf Konfigurationen von gleichgrossen sich nicht iiber-
schneidenden Kreisscheiben in einer Ebene konzentrieren, die eine gewisse Energie mini-
mieren.

Diese Konfigurationen finden Anwendungen in sehr vielen Bereichen, zum Beispiel in
der Clusterchemie, wo diese als Aggregate von Atomen (siehe [15]) vorkommen; bei Ver-
schliisselungen, die fiir das Senden von Signalen benotigt werden (siehe [5]); in der Optik,
um optimale optische Fasern zu entwerfen (siehe [12]); oder in der Logistik, zum Bei-
spiel um folgende (wichtige!) Frage zu beantworten: Wie verpackt man moglichst viele
Frankfurter Wiirstchen in einer zylinderformigen Dose?

Wir verfolgen zwei Ziele, ein theoretisches und ein angewandtes.
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Zuerst analysieren wir die Kreispackungen vom Standpunkt der diskreten Geometrie. Wir
werden uns insbesondere mit sechseckigen Konfigurationen beschiftigen, welche bemer-
kenswerte Eigenschaften besitzen. Unter anderem berechnen wir explizit eine charakte-
ristische Grosse, ihre quadratische Energie. Wir werden zeigen, dass kleine sechseckige
Konfigurationen (deren Seitenlinge kleiner oder gleich 7 ist) optimale gitterartige Packun-
gen sind. Das heisst, dass das Minimum der quadratischen Energie iiber alle Kreisschei-
benkonfigurationen erreicht wird, in dem die Kreisscheiben auf dem dreieckigen Gitter
angeordnet sind.

Diese Eigenschaft gilt jedoch nicht fiir grossere sechseckige Packungen. Auf der Suche
nach Hinweisen zur Losung der Frage, die Téth 1967 stellte,

What is the shape of a cluster of n spheres with equal radii minimizing their
quadratic energy, i.e., their 2nd moment about their center of mass?

verwenden wir eine ganz andere Methode, eine wahrscheinlichkeitstheoretische Methode.
Wir konstruieren eine zufillige Dynamik von Kreisscheiben, die sich nach langer Evoluti-
on in einer fast optimalen Konfiguration stabilisiert. Mit der Simulation dieser Bewegung
(nach einer sinnvollen Wahl der Parameter), kann man folgende verniinftige These aufstel-
len:

Die Packungen aus Kreisscheiben, die die quadratische Energie minimieren,
sind kreisformig und auf einem dreieckigen Gitter zentriert.

1 Optimale Kreispackungen und quadratische Energie

In diesem Abschnitt werden wir uns mit Packungen aus Kreisscheiben (hiufig auch pen-
nies im englischsprachigen Raum) beschiftigen, mit dem Ziel ihre quadratische Energie
(auch second moment genannt) zu minimieren. Obwohl dieses Problem einfach und sehr
angewandt scheint, ist es grosstenteils noch ungelost, sobald die Anzahl der Kreisscheiben
grosser als sieben ist.

In diesem Abschnitt werden wir die fiir unsere Analyse notwendigen mathematischen
Grossen einfiihren, einige explizite Berechnungen der Energie ausfiihren und die Viel-
filtigkeit der noch verbleibenden unbeantworteten Fragen hervorheben.

1.1 Die quadratische Energie einer Konfiguration von Kreisscheiben

Wir nennen Konfiguration von n Kreisscheiben eine Menge x aus n offenen Kreisscheiben
mit Radius eins in der Euklidischen Ebene. Die Scheiben diirfen sich nicht iiberschneiden.
Jede Konfiguration ist demnach durch die Position der Mittelpunkte der Kreisscheiben
gegeben:

Xx={x1,...,xp} C R?

die selbstverstindlich, fiiralle 1 <i < j < n, die Bedingung |x; — x;| > 2 erfiillt, wobei
| - | die fiir die euklidische Norm verwendete Notation ist.
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Definition 1.1. Wir nennen quadratische Energie einer Konfiguration x von n Kreisschei-
ben die Summe der Quadrate der Distanzen zwischen jedem Paar von Mittelpunkten:
D ereian 1 =By |°. Die mittlere quadratische Energie ist dann gegeben durch

1
En(x) = > wmi—xj (Mittlere Energie)

I<i<j<n

Bemerkung. Man kann auch &, (x) als Zweites Moment, mit Hilfe des Abstandes zwi-
schen jeder Kreisscheibe und dem Gravitationszentrum der Konfiguration, ausdriicken:

Xt X

Ep(x) = Z Ix; — %[> wobei X: =

1<i<n

Wir kénnen nun das weiter oben erwiihnte Konzept der Optimierung definieren.

Definition 1.2. Eine Konfiguration xp,;, von n Kreisscheiben wird optimal genannt, falls
ihre quadratische Energie minimal unter allen Konfigurationen mit n Kreisscheiben ist:

En (Xmin) = min{&, (x); x Konfigurationen mit n Kreisscheiben}.

Wir nennen Cp,i, die Menge der optimalen Konfigurationen, modulo Drehungen, Spiege-
lungen und Verschiebungen in der Ebene.

Schrinkt man sich auf die Ebene ein, so kann man die Frage von Téth fiir n > 2 beant-
worten, indem man

(1) die minimale quadratische Energie von Konfigurationen von n Kreisscheiben be-
rechnet und

(2) die Menge Cpin von Konfigurationen, bei denen diese minimale Energie erreicht
wird, bestimmt.

CD E2(Xmin) =2 E3(Xmin) =4

Abbildung 2 Optimale Konfigurationen von zwei, bzw. drei Kreis-
scheiben und ihre respektive mittlere Energie

Firn = 2 und n = 3 ist die Situation trivial und die Fragen (1) und (2) sind in der
Abbildung 2 beantwortet. Die Menge Cnin der optimalen Konfigurationen besteht jeweils
aus einer einzigen Konfiguration.

Der Fall n = 4 ist etwas subtiler. Die durchschnittliche Energie ist minimal fiir unendlich
viele unterschiedliche Konfigurationen: card Cyin, = +00. Alle diese optimalen Konfigura-
tionen zeigen eine trapezartige Form. Man erhiilt sie, indem man zwei obere Kreisscheiben
auf zwei unteren Kreisscheiben rollen lisst, so dass die Zahl der Kontaktpunkte wenigstens
gleich 4 ist, siehe Abbildung 3.
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B BB o &

Abbildung 3 Beispiele der optimalen Konfigurationen fiir vier Kreisscheiben: &4 (Xpin) = 8

Bis auf Rotationen und Translationen sind diese Konfigurationen durch den Winkel 6 zwi-
schen den beiden roten Segmenten bestimmt. Indem man den Ursprung der Euklidischen
Ebene auf das Zentrum der unteren, linken Scheibe legt, erhilt man:

Crnin = [{(O 0), (2,0), 2(cos,sinf), 2(1 +cosb,sind)}, 8 € [7; 2;]]

Durch Nachrechnen iiberpriifen wir, dass in dieser Menge die mittlere Energie konstant
T 2w

ist: fiir beliebige 8 € [3

1
E4(Xmin) = Z(4 x 22 +12(1 + cos 8, sin0)|*> + |2(cos, sind) — (1, 0)1’-)
=224 (2+2cosf) + (2 —2cosb) = 8.

Fiirn = 5 oder n = 6 ist die Antwort auf die Frage von Téth nicht offensichtlich. Die in
Abbildung 5 ersten beiden dargestellten optimalen Konfigurationen kann man als Teilmen-
gen der Margerite, der optimalen Konfiguration fiir n = 7, interpretieren. Diese letztere
wurde 1974 durch die Mathematikerin A. Temesvdri in einer bemerkenswerten und fast
unbekannten geometrischen Arbeit [16] in ungarischer Sprache beschrieben, siche Abbil-
dung 4.

L kq » k, kérbe (tkozik, a tabbi tivolsig &1 (12. dbra). Ugyamlyen tipusy
alakzat keletkezik, ha k, kyba itk dzik. wintik ky-et, tehdt n ky, ..., ky
I k, kyba Gik3zik. Ekkor Agdydyd, is rombusz, fgy A,Azded, para- Kk6r6n vannak é mindegyik oldalhoz tartozé umppamu szog l(luhbﬁymld 1200

ldnp'lmnu (13. dbra). Ha k, kebe Ulkodk ' konvex burok ugyancsak paralelog. és nagyobb-cgyeni® 60° (15, dbra).
Tamma lesz. Egy sokszig misodszomszéd csucsait Saszck0-
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13, dbm h-(lﬁr..ml]d![ﬂihk-{x&k,—o‘kq‘vd‘m
La[é-k:ﬂ: tg{uu kyig forgatjuk. A 4.
1l etkerik, bogy egycgy forgatds v
Az L. esetben A, 4y -A,A. nwu Ay A=Ay Ay, Lebit a 10. segédiéeelt agy alkal-
mazzuk, hogy Ay A, NOJOD & A, 4, i 1t eqységnyi legyen (k, csak akkor Gtkdzher 446, ikl ﬂ::f'b't’a' itk g
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Ay

.
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0
Matesms sl Laget 1

Abbildung 4 Ausschnitt aus dem Artikel [16] von A. Temesviri
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Wir heben hervor, dass die Mittelpunkte dieser optimalen Konfigurationen als benachbarte
Punkte auf einem dreieckigen Gitter liegen, das wir von nun an 7 nennen.

N

Abbildung 5 Die einzigen optimalen Konfigurationen von 5 (bzw. 6 oder 7) Kreisscheiben in der Margeriten-
Form, in der ein bzw. zwei Bliitenblitter fehlen. Die Mittelpunkte der Kreisscheiben sind auf dem Gitter 7.

Fiirn > 7 ist die Beschreibung von Cpin bis heute unvollstindig. Das erfolgreichste Ergeb-
nis erreichte Chow [3], der die quadratische Energie nur fiir gitterartige Konfigurationen —
deren Mittelpunkte auf 7 liegen — minimieren konnte.

Wir bemerken auch, dass die Margerite eine sechseckige Konfiguration ist, was kein Zufall
ist, da die Zahl 7 die erste nicht triviale zentrierte Sechseckszahl ist. Darum werden wir
uns nun auf Konfigurationen konzentrieren, deren Kardinalitiit eine dieser interessanten
Zahlen ist.

1.2 Schonheit und Nutzen der zentrierten Sechseckszahlen

Wir wiederholen zuerst die algebraische Definition.

Definition 1.3. Eine zentrierte Sechseckszahl n ist eine ganze Zahl n(h), die sich auf
folgende Art zerlegen lisst:

(h —1)
4

h
nthy=1+6 =3h*—3h+1=r—(h—1)° (1)

fiir eine feste ganze Zahl h.

Abbildung 6 Zerlegung der Sechseckszahl n(h) in sechs Bliitenblitter (erster Term in (1)), oder in die Differenz
von zwei konsekutiven Wiirfeln (letzter Term in (1)

Sie entspricht der Anzahl dhnlicher Kreisscheiben, die man in einem regelmaéssigen Sechs-
eck auf dem dreieckigen Gitter 7 um eine zentrierte Kreisscheibe mit Gravitationszentrum
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x der Konfiguration anordnen kann. Die Zahl i stellt also die Anzahl der angeordne-
ten Kreisscheiben auf jeder Seite des Sechseckes dar oder auch die Anzahl der Schich-
ten im Sechseck (der graphische Beweis ist in der Abbildung 6 gegeben.) Man {iberpriift
leicht, dass jedes der sechs farbigen Bliitenblitter aus @ Kreisscheiben besteht. Abbil-
dung 7 zeigt die graphische Darstellung der sechseckigen Konfigurationen der Seitenlidnge
h=1,2,3,4und5.

X

Abbildung 7 Abbildung der sechseckigen Konfigurationen Xpey (1), resp. Xpex (2), Xpex (3), Xpex (4) und Xpex (5),
von Kardinalitit n(1) = 1 resp. n(2) = 7, n(3) = 19, n(4) = 37 und n(5) = 61.

1.3 Berechnung der mittleren quadratischen Energie
einer sechseckigen Konfiguration

Zur Vereinfachung nennen wir E(h) die mittlere quadratische Energie der sechseckigen
Konfiguration Xpex () der Seitenlinge h, und der Kardinalitit n(h):

E(h) := Epny(Xnex (h))

1.3.1 Konfigurationen von kleiner Grosse

In diesem Abschnitt werden wir die zwei kleinsten, nicht trivialen sechseckigen Konfigu-
rationen behandeln.

Wir beginnen mit der Margerite der Seitenlinge # = 2. Wir nummerieren zuerst die
Kreisscheiben, dabei fangen wir im Mittelpunkt an und folgen den zwei Schichten. Wir

Abbildung 8 Nummerierung der sechseckigen Konfiguration
der Seitenlidnge # = 2 und Kardinalitit n(2) =7

benutzen nun den Ausdruck des zweiten Momentes, um die quadratische Energie dieser
Konfiguration zu berechnen. Da x|, der Mittelpunkt der zentralen Kreisscheibe, dem Gra-
vitationszentrum entspricht, erhalten wir : E(2) = 3.7, |x; — x> = 6-22 = 24.
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Abbildung 9 Links: Nummerierung der sechseckigen Konfiguration Xpey(3) und ihrer 3 Schichten;
Rechts: Abstand der Mittelpunkte der Kreisscheiben zum Gravitationszentrum x = x|

Wir berechnen nun die Energie einer Konfiguration der Seitenlinge 7 = 3. Auch hier be-
nutzen wir den Ausdruck des zweiten Momentes und fiihren das Gravitationszentrum x|
und die bereits berechnete Energie ein, um die mittlere quadratische Energie dieser Konfi-
guration zu beschreiben.

E(3) = E(2) +6 ((2v3)* +4%) = 192.

Wir stellen nun zwei sehr unterschiedliche Kontexte vor, in denen die Packung aus n(3)
Kreisscheiben auftaucht. Eine Skulptur in der Kathedrale von Magdeburg aus dem
13. Jahrhundert stellt den germanischen Kaiser Otto I. und seine Frau Editha dar. Er hilt
stolz eine sechseckige Konfiguration mit 19 Kreisscheiben in seiner rechten Hand, de-
ren Interpretation bis heute ein Mysterium bleibt (und somit eine Quelle der Uneinigkeit
zwischen Historiker*innen).

Ingenieur*innen haben empirisch herausgefunden, dass die sechseckige Geometrie einen
optimalen Widerstand bildet. Darum wurde sie beispielsweise beim Bau von Kabeln be-
nutzt: Die Kabel der 1883 eingeweihten Brooklyn Bridge bestehen aus 19 = n(3) Leitun-
gen, die wiederum aus 331 = n(11) metallischen Fiiden des Durchmessers 1/8 bestehen,
siche Abbildung 11.

1.3.2 Energie einer sechseckigen Konfiguration beliebiger Grosse

In diesem Abschnitt prisentieren wir eine explizite Formel. Die Grundlage fiir den Beweis
bildet das zweite Moment, sowie die Invarianz jeder sechseckigen Konfiguration unter
einer Rotation von 7 /3, illustriert in Abbildung 6.

Proposition 1.1. Die mittlere quadratische Energie einer sechseckigen Konfiguration
Xnex (1) ist gegeben durch

(n(h) —1)Gn(h) +1)
9

E(h) = h(h —1)(Sh(h — 1) +2) = )

Bemerkung. Die Energie E(h) ist in der Tat eine Funktion von h(hz_ D - (g) wobei (g)
nichts anderes ist als die Kardinalitit jedes Bliitenblattes der sechseckigen Konfiguration

der Seitenlidnge i. Dariiber hinaus verallgemeinert sich diese Formel ohne Weiteres fiir
Kreisscheiben vom beliebigen Radius r: E(h) = (2r)> ('2’) (5(’21) + l).
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Abbildung 11 Brooklyn Bridge (New York City Brooklyn Bridge — Currier & Ives 1877) und ihre Kabel

Beweis. Indem wir wie oben die Kreisscheiben schichtweise nummerieren, erhalten wir
die rekursive Formel
n(h+1)
Eh+1)=Em+ > |u-xl 3)
i=n(h)+1
Dank der Zerlegung der Sechsecke in sechs identische Bliitenblitter (siche Abbildung

6), ist der Zuwachs der mittleren Energie E(h + 1) — E(h) sechs mal der Anteil der
rosafarbigen Kreisscheiben der Abbildung 12. Wenn wir den Ursprung in x = x; fixieren,

so haben alle diese Kreisscheiben die gleiche Ordinate, gegeben durch @2}: = /3h.

IDieses Wikipedia und Wikimedia Commons Bild des Users Chris 73 ist frei verfligbar unter
//commons.wikimedia.org/wiki/File:HerscherpaarMagdeburgCathedral.jpg
unter der creative commons cc-by-sa 3.0 Lizenz.
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h = 6 Kreisscheiben

—_———

h=3

2

eisscheiben
——

h+1=
h+1=

7 Schichten

Abbildung 12 Die dusseren Kreisscheiben eines Bliitenblattes, hier in rosa, sind verantwortlich fiir 1/6 der Stei-
gerung der mittleren Energie E(h + 1) — E(h).

Der Unterschied der Abszissen zweier nebeneinanderliegenderrosafarbigen Kreisscheiben
betridgt zwei, dabei ist die niedrigste Abszisse —h und die hochste i — 2. Die Abszisse der
orangefarbigen Scheibe, die nicht zu dem Bliitenblatt gehort, ist £. Somit folgt:

n(h+1) h—1 h—1 h—1
> Iki—xl? =6(Z(—h+2k)2+3h3) :24(Zk2—h2k+h3+3h3).

i=n(h)+1 k=0 k=0 k=0
Da Z;c":l kz — m(m+l%(2m+l) und er:l ko= m(n;—i—l) fOlgt
n(h+1)
h—1h2h—-1 h— 1)h
> |x,-—x1|2=24(( )6( LI 5 ) +h3)=4h(5h2+1).
i=n(h)+1

Die Formel (3) zusammen mit dem obigen Ergebnis ergibt:

h—1 h—1 h—1
E(hy=Y 4G +1)=20> P +4> L

Zusammen mit 3", 1° = ﬂ%—(”fl—“ﬁ und (h — Dh = @=L folgt die Aussage. O

1.4 Sind die grossen sechseckigen Konfigurationen noch immer optimal?

Kehren wir zu der Suche nach der Menge Cmin zuriick, die bei der Betrachtung der qua-
dratischen Energie optimal ist (siche Definition 1.2).

Aus der Arbeit von Temesvari [16] folgt, dass die Margerite Xpex (2) die einzige Konfigu-
ration unter allen Konfigurationen mit n(2) = 7 Kreisscheiben ist, die die quadratische
Energie minimiert: fiir n = 7 gilt Cmin = {Xnex(2)}. Aber was ist mit der sechseckigen
Konfiguration der Seitenlidnge 7 = 3? Ist sie optimal unter den Konfigurationen mit 19
Kreisscheiben? Und sind die anderen grisseren sechseckigen Konfigurationen auch opti-
mal?

Wir beantworten diese Fragen in der unterstehenden Proposition. Die Antwort ist bejahend
fiir hinreichend kleine Konfigurationen (A < 7) und falls man fiir die Optimierung nur die
gitterartigen Konfigurationen betrachtet. Fiir grossere sechseckige Konfigurationen (2 >
8) werden wir diese Aussage durch Gegenbeispiele widerlegen.
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h o n(h) E(h) h nh) E(h)

1 1 0 21 1261 882840

) 7 24 22 1387 1068144 ol
3 19 192 23 1519 1281192 i
4 37 744 24 1657 1524624 -
5 61 2040 25 1801 1801200 | =
6 91 4560 26 1951 2113800 | =
7T 127 8904 27 2107 2465424 o
8 169 15792 28 2269 2859192 -
9 217 26064 29 2437 3298344

10 271 40680 30 2611 3786240
11 331 60720 31 2791 4326360
12 397 87384 32 2977 4922304
13 469 121992 33 381689 3577192
14 547 165984 34 3367 6296664
15 631 220920 35 3571 7082880
16 721 288480 36 3781 7940520
17 817 370464 37 3997 8873784
18 919 468792 38 4219 9886992
19 1027 585504 39 4447 10984584
20 1141 722760 40 4681 12171120

Tabelle 1 Die mittlere Energie der vierzig ersten sechseckigen Konfigurationen in Abhiingigkeit der Seitenlinge
des Sechseckes.

Proposition 1.2. Unter den gitterartigen Konfigurationen ist die sechseckige Packung der
Seitenldnge h optimal genau dann, wenn h < 7. In diesem Fall gilt

E(h) = min{&, ) (X); X Konfiguration aus n(h) Kreisscheiben mit x C T}.

Um diese Proposition zu beweisen, beweisen wir zuerst, dass eine sechseckige Packung
Xphex () (in einem noch zu erlduternden Sinn) genau dann kreisférmig ist, wenn sie klein
genug ist, das heisst falls 2 < h < 7. Anschliessend verwenden wir das michtige Er-
gebnis von Chow, der bewiesen hat, dass die optimalen gitterférmigen Konfigurationen
kreisformig sind.

Definition 1.4. Eine gitterartige Konfiguration x C 7 wird kreisformig genannt, falls ein
Radius R > 0 existiert, so dass alle Punkte auf dem dreieckigen Gitter 7, deren Abstand
zum Gravitationszentrum x kleiner oder gleich R ist, zu dieser gehoren. Andersgesagt, X
ist kreisformig falls x = {x; € 7, |x; — X| < R}.

Lemma 1.1. Die sechseckige Konfiguration der Seitenlinge h ist kreisformig genau dann,
wenn h <7.

Beweis. Jede sechseckige Konfiguration ist gitterartig: Xpex(2) C 7. Sei x; = x = 0. Der
Radius der kleinsten Kugel mit Zentrum x = 0, der alle Punkte x2, .. ., x,(;) umschliesst,
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ist 2(h — 1). Daraus folgt, dass Xpex (1) eine kreisformige Konfiguration ist genau dann,
wenn Xpex (h) = B(0,2(h — 1)) N 7. Wir unterscheiden zwei Fiille.

(i) h ist gerade: Falls B(0,2(h — 1)) N7 \ Xhex () # @ befindet sich der Punkt (0, h\/§)
in der Kugel B(0, 2(h — 1)), sieche Abbildung 13. Aber

2
0,hV3)| <2(h —1 h
OB 26— & hz ——

~ 7, 46.

Daraus folgt, dass 7 mindestens 8 sein muss.

(ii) h ist ungerade: Falls B(0,2(h — 1)) N'T \ Xpex(h) # @ befindet sich der Punkt
(1, h+/3) in der Kugel B(0, 2(h — 1)). Aber

I(L,hvV3) <2(h—1) < h>4+/13~17,6.

Dies bedeutet, dass 7 mindestens 9 sein muss. [El

Abbildung 13 Kreisférmige bzw. nicht kreisférmige Konfigurationen.

Um den Beweis der Proposition 1.2 abzuschliessen, verwenden wir die Charakterisierung
der optimalen gitterartigen Packung, die von Chow in der Proposition 3 des Artikels [3]
bewiesen wurde. Diese sind kreisformig (auf englisch: Circular cluster). Daraus folgt,
dass fiir 2 < h < 7 die sechseckigen Packungen kreisformig und somit optimal unter der
gitterartigen Packungen sind.

Fiir h > 8, zeigt der konstruktive Beweis des Lemmas 1.1, dass die Konfiguration, die man
durch das Verschieben der Kreisscheiben aus den Ecken in die Mitte der dusseren Seiten
des Sechseckes abrundet, eine kleinere Energie als das Sechseck hat. Die optimale(n) Kon-
figuration(en) der Kardinalitdt n(h) kann/konnen also nicht die sechseckigen sein.

Bilanz. Wenn xy¢x (/) aber nicht optimal ist fiir & grosser als 7, was ist dann die optimale
Gestalt fiir grosse Konfigurationen, die aus n > n(7) = 127 Kreisscheiben bestehen?

Diese Frage ist bis jetzt nicht vollstindig beantwortet und war Ursprung vieler Vermu-
tungen. Unter anderen stellen Graham und Sloane in [11] drei unterschiedliche Methoden
vor, wie man den Energiezuwachs, der durch das Hinzufiigen einer Scheibe entsteht, mini-
mieren kann. Chow [3] entwickelte dann einen teilweise zufilligen Algorithmus, der nach
einer stetigen Gleichverteilung unter mehreren Moglichkeiten zufillig die Stelle auswiihlt,
an der eine neue Kreisscheibe der vorherigen Schicht hinzugefiigt wird.

All diese raffinierten Versuche sind jedoch beschrinkt durch die Konstruktion von gitterar-
tigen Konfigurationen. Da es heute unmoglich erscheint, einen Algorithmus zu finden, der
optimale, nicht gitterartige Konfigurationen generiert, stellen wir im zweiten Teil dieses
Artikels eine grundsitzlich andere Herangehensweise vor, nidmlich einen wahrscheinlich-
keitstheoretischen Zugang.
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2 Zufillige Dynamik der Kreisscheiben und
ihr Gleichgewichtszustand

In diesem Teil werden wir die optimalen Konfigurationen von Kreisscheiben beliebiger
Grosse — die typischerweise nicht sechseckig sind — durch eine zufillige Dynamik der
Kreisscheiben approximieren. Nach langer Zeit findet diese komplexe Bewegung einen
Gleichgewichtszustand in einer Konfiguration, die nahe einer Konfiguration der minima-
len Energie ist. Diese in [2] eingefiihrte Methode befreit uns somit vom Zwang der den
vorherigen quasi-deterministischen Methoden inhirenten gitterartigen Geometrie.

2.1 Zufillige Bewegung von sich gegenseitig anziehenden Kreisscheiben

Wir betrachten n Kreisscheiben (fiir n gross genug). Jede Kreisscheibe oszilliert zufillig
und chaotisch in der Ebene, unabhingig von den anderen (n — 1) Kreisscheiben. Diese
tiben allerdings eine Anziehungskraft auf sie aus. Wenn ausserdem zwei Kreisscheiben
zusammenstossen, stossen sie sich nach den gebriduchlichen Gesetzten der Physik einer
elastischen Kollision wieder ab, da sie sich nicht tiberschneiden konnen. Jede der n Kreis-
scheiben xi,...,x, € R? wird sich demnach in Abhiingigkeit der Zeit ¢ entlang einer
gewissen, zufilligen Bahn in der Ebene bewegen. Genauer gesagt, werden die Funktio-
nent +— x;(¢),1 <i < n, das folgende System von stochastischen Integralgleichungen
erfiillen:

Anziehungskraft der anderen Kreisscheiben

Anfangsposition  Oszillation
——, — r.z
xi{t) = x; (0) + Wi(t) + a/ E (xj(s) — xi(s))ds
0
J=1

durch Zusammenstdsse bedingte Abstossung

(*) n s
D RUCENOIEON
=io
14
Lij0) =0, Lj=Lj;, Li;=0, und / Lx;(s)—x;j(s)12 dLij(s) = 0,
0
| fiir jedesi € {1,...,n} und 1 > 0.

Wir betrachten nun die Bedeutung der vier obenstehenden Terme.

2.1.1 Anfangsposition

Die Position der n Kreisscheiben zum Zeitpunkt O ist durch die ihrer Zentren gegeben,
die fiir alle Paare i # j die Bedingung |x;(0) — x;(0)| = 2 erfiillen. Sie bilden die
Ausgangskonfiguration x(0).

2.1.2 Zufillige Brownsche Oszillation

Die Oszillation, die jede Kreisscheibe im Verlauf der Zeit macht, ist eine zufillige Bewe-
gung, genannt Brownsche Bewegung. Sie wurde nach dem Botaniker R. Brown benannt,
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der 1828 in seinem Mikroskop eine unregelmissige, allgegenwiirtige Bewegung von Pol-
lenkdrnern in einer Fliissigkeit entdeckte, die aber keine Lebenserscheinung war. Erst sehr
viel spiter wurde diese Bewegung durch Einstein, Smoluchowsky und schliesslich Wie-
ner mathematisch beschrieben. (Die Bezeichnung der Bewegung durch den Buchstaben W
geht auf ihn zuriick.) Zu jedem Zeitpunkt verindert jede Kreisscheibe spontan die Rich-
tung ihrer Bewegung, ohne eine bestimmte zu bevorzugen und unabhingig von den ande-
ren Kreisscheiben. Daraus folgt, dass ihre Geschwindigkeit de facto unendlich ist und ihre
Bahn eine fraktale Funktion ist, die nirgendwo differenzierbar ist (sieche Abbildung 14).

5. Uber die von der molekularkinetischen Theorie
der Witrme geforderte Bewegung von in ruhenden
Ftissigkeiten suspendierten Teilchen;
von A. Einstein.

In dieser Arbeit soll gezeigt werden, daB nach der molekular-
kinetischen Theorie der Wirme in Fliissigkeiten suspendierte
Karper von mikroskopisch sichtbarer GroBe infoige der Mole-
kularbewegung der Wiirme Bewegungen von solcher GriBe
ausfihren missen, daB dicse Bewegungen leicht mit dem
Mikroskop nachgewiesen werden kdnnen. Es ist moglich, daB
die hier zu behandelnden Bewegungen mit der sogenannten
nBrownschen . Molekularbewegung identisch sind; die mir
erreichbaren Angaben ilber letztere sind jedoch so ungenau,
daB ich mir hiertber kein Urteil bilden konnte.

Wenn sich die hier zu behandelnde Bewegung samt den
fiir sie zu erwartenden GesetzmiiBigkeiten wirklich beobachten
1aBt, so ist die klassische Thermodynamik schon fiir mikro-
skopisch unterscheidbare Riume nicht mehr als genau giltig
anzusehen und es ist dann eine exakte Bestimmung der wahren
AtomgroBe mbglich. Krwiese sich umgekehrt die Voraussage
dieser Bewegung als unzutreffend, so wire damit ein schwer-
wiegendes Argument gegen die molekularkinetische Auffassung
der Wirme gegeben.

§ 1. Uber den dierten Teilch p—
osmotischen Druck.

Im Teilvolumen F* einer Flissigkeit vom Gesamtvolumen 7
seien z-Gramm-Molekille eines Nichtelektrolyten geldst. Ist
das Volumen /* durch eine fir das Losungsmittel, nicht aber
fir die geloste Substanz durchlissige Wand vom reinen Lisungs-

Abbildung 14 Links: Ausschnitt aus dem Artikel von A. Einstein iiber die Brownsche Bewegung (1905).
Rechts: Eine Simulation einer méglichen Bahn eines Brownschen Teilchens in der Ebene

2.1.3 Anziehungskraft zwischen den Kreisscheiben

Zu jedem Zeitpunkt s wird die Scheibe i durch die anderen Kreisscheiben j angezogen,
mit einer zu dem Vektor x;(s) — x;(s), der die relative Position der beiden Kreisscheiben
darstellt, proportionalen Kraft (siehe Figur 15). Der Proportionalitiitskoeffizient @ wird
Anziehungskoeffizient genannt. Im Folgenden wird er eine wichtige Rolle spielen.

2.1.4 Auswirkung der Zusammenstosse der Kreisscheiben

Falls eine Kreisscheibe i sich einer Kreisscheibe j nihert und diese zu einem Zeitpunkt
s beriihrt, [x;(s) — x;(s)| = 2, wird sie sofort zuriickgestossen, da sich die Kreisschei-
ben nicht iiberschneiden diirfen. Diese Riickstosskraft, die den Gesetzen der elastischen
Kollision folgt, ist kollinear zu dem Vektor x;(s) — x;(s) (in blau in der Abbildung 15).
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x3(s)

x4()O Oxa(s)

x; (s) ‘1 (5)
X1 S) “h

Abbildung 15 Links: Die durch die Kreisscheiben x7(s), x3(s) und x4(s) auf x;(s) ausgeiibten Anziehungs-
kriifte; in Rot ihre Summe. Rechts: Die Bewegung von x; (s) und x (s) kurz vor und kurz nach den Zusammen-
stoss. In Blau, die Kraft der elastischen Kollision, die x; (s) von x; (s) entfernt.

!
Sie wird global dargestellt durch den additiven Termf (x;i(s) —xj(s))dL;j(s) . Ihre In-

tensitit hingt von der Anzahl und den (zufilligen) Zei?punkten der Zusammenstdsse zwi-
schen i und j ab. Dies rechtfertigt, dass der Integrand ein wachsender, zufilliger Prozess
ist, den wir mit L;; (¢) bezeichnen und der lokale Zeit des Zusammenstosses genannt wird.
Letztere wichst nur, falls sich die zwei Kreisscheiben i und j beriihren:

!
/ Ljxi(s)—xj ()12 dLij(s) = O
0

Die Anfangsbedingung L;; (0) = 0 ist beliebig.
Die Symmetrie L;; = Lj; liegt in der Natur des Problems. Ein Zusammenstoss zwischen
x; und x; hat einen symmetrischen Einfluss auf das Verhalten von x; und x ;. (In Abbildung

15 sind der blaue und der rosa Pfeil entgegengesetzt.) Da ein Partikel nicht mit sich selbst
zusammenstossen kann, gilt L;; = 0.

Die Existenz einer mathematischen Losung des Systemes () ist kein einfaches Problem
auf Grund der lokalen Zeiten des Zusammenstosses, die selbst Unbekannte sind. Der erste
Beweis der Existenz einer solchen Dynamik mit n Kugeln ohne gegenseitige Anziehungs-
kraft (a = 0) wurde von Saisho und Tanaka in [13] 1986 gegeben. Die Autorinnen M.F.
und S.R. haben diese Methode verbessert und erweitert, um so auch den Fall eines unend-
lichen Systems mit allgemeiner Interaktion behandeln zu kénnen, siehe [9].

2.2 Stabilisierung gegen quasi-optimalen Packungen

Die Dynamik (x) ist in vielerlei Hinsicht bemerkenswert. Wir bemerken zuerst, dass die
augenblickliche Anziehungskraft zwischen Kreisscheiben (bis auf einen Koeffizienten) als
Ableitung der quadratischen Energie gesehen werden kann, da

aZ(xJ—JC,)—— 8,l(x)

Die Dynamik (x) ist somit eine sogenannte Gradienten-Dynamik, von der man bestimmte
zeitabhingige Eigenschaften kennt. Insbesondere hat die zweite Autorin in Theorem 3.3
von [7] bewiesen, dass, durch das Festlegen von zufilligen Ausgangspositionen x(0), . . .,
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X, (0) durch eine geeignete Verteilung g, die Bewegung der Kreisscheiben ein stationéres
Verhalten zeigt; das heisst, dass ihre Verteilung zu jedem Zeitpunkt die gleiche bleibt.
Tatsichlich entspricht x, dem gleichmissigen Mass der Menge der Konfigurationen von
n Kreisscheiben, durch den Dichtefaktor exp ( —naé&, (x)) verzerrt. In anderen Worten:
Die zufiillige Position der Kreisscheiben der Verteilung y, ist ein Gleichgewichtszustand
der Dynamik ().

Nun stellen sich uns zwei Fragen, die mit dem Zeitparameter ¢ und mit der Anziehungs-
kraft a verbunden sind.

e Konnen wir davon ausgehen, dass, wenn wir die Anfangspositionen der Kreisschei-
ben deterministisch festlegen x(0) = {x1(0), ..., x,(0)}, das System nach einer lan-
gen Zeit ¢t den oben beschriebenen Gleichgewichtszustand annimmt? Anders gesagt,
gibt es eine Stabilisierung der zufilligen Dynamik der Kreisscheiben zu der Wahr-
scheinlichkeitsverteilung s, ?

e Die fiir die Verteilung x, wahrscheinlichsten Konfigurationen x sind diejenigen, fiir
die die Dichte e ") maximal ist, das heisst sie sind Elemente von Cyj, mit einer
minimalen Energie &, (x). Kénnen wir davon ausgehen, dass wir die Konfigurationen
von Cpip erreichen, in dem wir den Anziehungskoeffizienten erhdhen, so dass die
Wabhrscheinlichkeit jeder suboptimalen Konfiguration vernachlissigbar wird?

Wir beantworten beide Fragen positiv:

Wir legen eine beliebige anfingliche Konfiguration eines Systems mit n Kreisscheiben
fest. Wir konnen dann einen ausreichend grossen Anziehungskoeffizienten a wihlen, so
dass nach der Evolution wihrend ausreichend langer Zeit gemiss der Dynamik (x) sich
das System mit einer beliebig grossen Wahrscheinlichkeit in einer Konfiguration befindet,
die beliebig nahe an den optimalen Konfigurationen ist. Dies wird wie folgt formalisiert.
Der Abstand d, der dort vorkommt, wird durch den Unterschied zwischen der Energie der
Konfiguration x(¢) und der minimalen Energie gegeben.

Satz 2.1. Sei x(0) eine beliebige Anfangskonfiguration. Fiir alle €, n > 0 existiert ein
A > QundeinT > 0, sodass fiirallea > Aundt > T,

]p(axmin € Crmin, d(X(?), Xmin) < '7) - Tl -
Beweis. Wir erweitern die Menge Cpin €in wenig, in dem wir auch z-optimale Konfigura-

tionen zulassen: Cr:’ﬁn = {x; Ea(x) < &, + 1} wobei £, 1= & (Xmin).

; /e_ 2 £ ) Le,(x)>£,+n dX /e_ 2 Enl)=Eq=n) Le,x)>€,+n dX
.uﬂ((cmin)c) =
- T . _an g" _81_
/e 31 (X) gy /e 2 (Enl0)=En—n) Le,(x)<€,+1 dX

P l e_ (_IQE (gn (x)_§n

/ ]15" ()=Ep+n dx

Dies geht nach O wenn a nach unendlich geht. Daraus folgt, dass fiir ein ausreichend

grosses a die Wahrscheihnlichkeit von Cl;’ﬂn unter ¢, sich 1 mehr und mehr nihert.

a. ng/l(x)>§n+’7 dx .
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Andererseits konvergiert fiir eine Anfangsposition x(0) und fiir jede festgelegte Anzie-
hungskraft a die Verteilung des Systems von n Kreisscheiben zur Zeit ¢ gegen p,, wenn ¢
gegen unendlich geht. Diese intuitive (aber sehr schwierig zu beweisende) Stabilisierung
wurde in [2] fiir n = 3 Kreisscheiben gezeigt. Die Verallgemeinerung fiir eine beliebige
Anzahl n von Kreisscheiben ist das Thema des Artikels [10], der gerade von den Autorin-
nen M.F. und S.R. geschrieben wird. Es gilt also

Jim P(x(1) € Cpip) = #aCry

Man erhiilt das endgiiltige Resultat in dem man die Stetigkeit der Energie verwendet. Diese

impliziert, dass die Menge Cr';m der y-optimalen Konfigurationen sich Cpi, nidhert, wenn

n nach O geht. O

QQO‘OOOQQ"
sR eI RRESIwe®

mootigcbuao.ou.
seessrssss e

Abbildung 16 Form einer fast-optimalen Konfiguration aus n = 250 Kreisscheiben

Der*Die Leser*in, der*die an der dynamischen Visualisierung der Konvergenz interessiert
ist, ist eingeladen, die Webseite

http://mfradon.plil. fr/penny packing_simulation.html

zu besuchen, auf der Simulationen unsere Ergebnisse illustrieren.

Danksagung. Die erste Autorin absolvierte im Mai und Juni 2016 ein Praktikum im ma-
thematischen Institut Paul Painlevé der Université de Lille im Rahmen des Studienvorbe-
reitungs- und Orientierungsjahres ProTechnicale. Einige der vorgestellten Resultate dieses
Artikels sind die Ergebnisse dieses Praktikums. Der Forschungsgruppe fiir Wahrschein-
lichkeitstheorie und Statistik wird an dieser Stelle fiir den herzlichen Empfang gedankt.
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