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I Elemente der Mathematik

Über eine Interpolation von Mittelwertfunktionen

Werner Hertzog

Der Autor hat an der Universität Freiburg i. Ü. Mathematik studiert und ist seit mehr
als 30 Jahren in der Versicherungs- und Pensionskassenbranche tätig.

Der Begriff der Mittelwertfunktion für zwei Variablen ist in der Literatur nicht einheitlich

definiert. Je nach Bedarf und Zweck werden von den Autoren mehr oder weniger
Eigenschaften von einer Mittelwertfunktion gefordert. Für die im Folgenden untersuchten

Aussagen wurde eine möglichst allgemeine Definition gewählt, und Eigenschaften wie
Kommutativität (manchmal auch Symmetrie genannt), Flomogenität oder Stetigkeit werden

nicht vorausgesetzt. Diese Zusatzeigenschaften werden schrittweise eingeführt (falls
nötig definiert) und untersucht. Wir beginnen mit der

Definition 1. Eine Funktion M : —> R+ heisst Mittelwertfunktion, wenn für alle

(v, y) e R2+ gilt

(Ml) aus X < y folgtx < M(x, v) < y und x < M(y,x) < y

(M2) aus x y folgt x M(x, y) y.

Das arithmetisch-geometrische Mittel entsteht durch eine rekursive Konstruktion aus
dem geometrischen und dem arithmetischen Mittel und liegt für alle Paare von
positiven reellen Zahlen zwischen den beiden Mitteln. Diese Konstruktion wurde
bereits von Carl Friedrich Gauß und zuvor schon von Adrien-Marie Legendre verwendet,

um die Bogenlängen der Lemniskate und von Ellipsen, also elliptische Integrale,
näherungsweise zu berechnen. Auch der bekannte Algorithmus zur schnellen Berechnung

der Zahl n von Richard P. Brent und Eugene Salamin aus dem Jahr 1976 beruht
auf dem arithmetisch-geometrische Mittel. Dieses Mittel lässt sich nun auf zwei
geordnete Mittel (m, M) verallgemeinern. Dabei stellt sich heraus, dass wichtige
Eigenschaften auf das implizit definierte Mittel übertragen werden. Es stellt sich die Frage,
unter welchen Bedingungen die Stetigkeit der Eltern (m, M) auf den Nachkommen-
die neue Mittelwertfunktion - übertragen wird. Der Autor gibt eine erste Antwort.
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M(x, y) nennen wir den Mittelwert von x und y. Falls M(x, y) — M(y, x) gilt, nennen
wir M kommutativ.

Folgerung 2. Aus der obigen Definition 1 können wir umgekehrt schliessen, dass aus

x M(x, v) bzw. v M(x, v) auch x y folgt. Denn aus x < y würde gemäss (Ml)
auch x < M(x, y oder M (x, y) < y folgen und dies steht im Widerspruch zur Annahme.

Folgerung 3. Aus einer nicht kommutativen Mittelwertfunktion M können wir zwei kom-
mutative Mittelwertfunktionen M\ und iWi konstruieren:

M\ (x, y) :=

und

M2(x, y):=

M(x,y) falls x < y

M(y,x) falls x > y

M(y,x) falls x < y
M (x, y) falls x > y.

Es ist per Definition klar, dass M\ und Mi kommutativ sind und die Mittelwerteigenschaften
vererben sich von M auf M\ und Mi.

Definition 4. Sei M eine Mittelwertfunktion. Wir nennen M homogen, falls für alle

(x, y) e und für alle X e R+ die Gleichung M(Xx, Xy) XM(x, y) gilt.

Folgerung 5. Aus einer nicht homogenen Mittelwertfunktion M können wir zwei homogene

Mittelwertfunktionen M\ und Mi konstruieren: Wir definieren

M\(x,y) := yM(j, l) sowie M2(x, y) xM (l, |).

Es ist per Definition klar, dass M\ und Mi homogen sind und die Mittelwerteigenschaften
vererben sich von M auf M\ und Mi.

Satz 6. Seien nun m und M zwei Mittelwertfunktionen mit der Eigenschaft m(x. y) <
M(x, v) für alle (x, y) e 1R+ mit x < y; wir schreiben in diesem Fall auch verkürzt

m < M. Wir definieren rekursiv zwei Folgen:

X() :—x, xn+\ :=m(xn,yn)
go := y, yn+1 := M(x„,yn).

Dann sind die Folgen und konvergent und sofern m oder M stetig ist, gilt
lim xn lim v„.

n—>oo n—>oo

Beweis. Aus der Mittelwerteigenschaft von m und M folgt unmittelbar, dass die beiden

Folgen streng monoton und beschränkt sind; daraus folgt aus einem bekannten Satz der

Analysis, dass sie konvergent sind.

Aus der Stetigkeit von m oder M folgt entweder lim xn \ \ m( lim xn, lim v„) oder
n—>oo n—>-oQ n—>00

lim yn+i M( lim xn, lim v„ und aus der Folgerung 2 folgt dann die Gleichheit der
n-> oo «-» oo n-> oo
Grenzwerte; dabei spielt es keine Rolle, welche Mittelwertfunktion stetig ist. Es genügt,
wenn eine der beiden Funktionen stetig ist.
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Satz 7. Durch die in Satz 6 definierten Folgen (x„)neN und (yn)neN werden implizit zwei

Mittelwertfunktionen p\(x, y) := lim xn und p2(x, y) := lim yn definiert und es gilt
n—> oo n—>oo

m(x,y) < p\(x,y) < p2(x,y) < M (x, y) für alle (x,y) e Rj_.

Beweis. Dass p\ und p2 Funktionen sind, folgt aus der Existenz und Eindeutigkeit des

Limes. Dass es auch Mittelwertfunktionen sind, folgt aus folgenden Überlegungen:

Falls x < y gilt, folgt (Ml) aus

a: < m(x, y) x\ < p i (x, y) < p2(x, y) < y\ M (x, v) < y

sowie aus

x < m (y, x — x i < pi(y,x) < p2 (y,x) < y i M(x,y) < v,

und falls x y und somit m (x, y) x und M (x, v) y gilt, werden die beiden definierenden

Folgen zu konstanten und identischen Folgen und daraus folgt (M2).

Wenn eine der beiden Mittelwertfunktionen m,M stetig ist, dann ist /r := p\ p2
gemäss Satz 1. In diesem Fall schreiben wir im Folgenden [m, M] =: p, um die Abhängigkeit

von den beiden Mittelwertfunktionen hervorzuheben - sofern dies als nötig erscheint.
Aus p\-p2 folgt übrigens nicht, dass m oder M stetig ist, wie wir später sehen werden.

Bemerkung 8. Sind m und M kommutativ oder homogen, dann sind es auch p \ und p2.
Wir führen den Beweis nur im Fall der Homogenität aus.

Beweis. Sei xo Ixo sowie yo I vo und die Induktionsannahme ist x„ lxn sowie

yn bn
Den Induktionsschrittsehen wir wie folgt:

x„+i =m(x„,y„) m(Ax„, Ày„) =bn{xn,y„) Lv,l+1

sowie

yn+1 M(xn,yn) M(Àxn,Àyn) XM(xn, yn) Xyn+\.

Daraus folgen

p\{Xx,Xy) := lim xn — lim Ax„ Xpi(x,y)
n—>oo n—>• oo

und

p2(Xx, Xy) := lim y„ lim Xyn Xp2(x, y).
il->oo" n-> oo

Beispiel 9. Das arithmetische Mittel A, das geometrische Mittel G und das harmonische
Mittel H sind kommutativ, homogen und stetig und es gilt G [H, A |.

Allgemeiner gilt sogar Folgendes: falls M eine stetige Mittelwertfunktion ist mit G < M,
dann gilt G
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Beweis. G2/M ist wieder eine Mittelwertfunktion und diese ist kleiner als G. Ferner gilt
in diesem Fall für die delinierenden Folgen xnyn — xqVq — xy für alle ne N (Induktionsbeweis)

und mit der Stetigkeit von M folgt daraus - die definierenden Folgen haben den

gleichen Grenzwert - das Behauptete.

Beispiel 10. Sucht man ein Beispiel für zwei (unstetige) Mittelwertfunktionen m < M,
so dass die beiden Mittelwertfunktionen fi\(x, y) lim xn und fioix, y) lim yn

n—>00 n—>00
verschieden sind, muss man in einem gewissen Sinne das Pferd von hinten aufzäumen.

Wir definieren zunächst zwei Folgen reeller Zahlen:

Sei a eine reelle Zahl mit 0 < a < 1 und x„ := a sowie y„ := Es ist dann klar, dass

lim xn — a und lim v„ - gilt. Wir definieren sodann die zwei Mittelwertfunktionen
n—>00 n^-oo a

m und M wie folgt:

m (.v, v := falls (x, y) f (xn. yn und m (x„, yn := xn+ \ für n e N

sowie

M(x, y) - ^ falls (x, y) ^ (xn, yn) und M(xn, y„) := v„+, für/; e N.

Ohne grossen Aufwand zeigt man, dass es sich bei m und M um unstetige Mittelwertfünk-
tionen mit der Eigenschaft m < M handelt. Aufgrund der Konstruktion ist [i \ (f, a

und /i2(f, l) - \ und somit //1 / /i2-
Es stellt sich nun die generelle Frage, ob mit der Stetigkeit von m und M auch jene von /i
induziert wird. Gibt es einfache notwendige und hinreichende Bedingungen an m und M.
so dass stetig ist?

Satz 11. Seien m und M stetige Mittelwertfunktionen und in < M. Dann ist fi eine stetige
Mittelwertfunktion.

Beweis. Dass // eine Miltelwertfunklion ist, haben wir bereits in Satz 7 gezeigt.

Auf einer kompakten Menge K aus seien Funktionen f,,gn : K —> wie folgt
definiert:

fo(x, v) := .v, ./„+! (.v, v) := m(fn(x, v). gn(x, v))

und

go(x, y) := v, gn+1 (.v, v) := M(/„ (x, v), g„(x. >'))

Jedes Folgeglied ist eine stetige Funktion auf dem Definitionsbereich K, weil dieses aus
den stetigen Mittelwertfunktionen m und M, den stetigen Startfunktionen sowie der rekursiven

Komposition stetiger Funktionen entsteht.

Ferner konvergieren die Funktionenfolgen fn (von unten), gn (von oben) für jedes Element
aus dem Definitionsbereich punktweise gegen eine Grenzfunktion /r und schliesslich
haben die Funktionenfolgen aufgrund der rekursiven Konstruktion die wichtige Eigenschaft
der Monotonie auf dem ganzen Definitionsbereich.

Damit ist fi auf K monotoner Limes stetiger Funktionen und zwar sowohl von unten als
auch von oben. Solche Funktionen sind bekanntlich stetig (vgl. dazu [1, Seite 36 bis 41]).
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Aus dem bekannten Satz von Dini folgt übrigens, dass die Konvergenz gleichmässig (kompakt)

ist.

Bemerkung 12. Die Stetigkeit von m und M ist also ein hinreichendes Kriterium für die

Stetigkeit der Mittelwertfunktion p.
Es stellt sich nun die Frage, ob es auch ein notwendiges Kriterium ist. Das folgende
Beispiel 13 zeigt zuerst, dass nicht ohne weiteres auf die Stetigkeit der Mittelwertfunktionen
m oder M verzichtet werden kann.

Beispiel 13. Sei A das arithmetische Mittel und G das geometrische Mittel. Wir definieren

m(x, y) :=
A(x, v) falls x, y e

G(.v, v) sonst.

A ist stetig und tu ist unstetig; ferner gilt in < A. Die beiden Mittelwertfunktionen
definieren eine Mittelwertfunktion // auf eindeutige Weise.

Wir definieren nun eine Folge rationaler Zahlen (an)neN durch a„ := X"=o fr
Es gilt lim an e und m(a„, 1) A(«„, l)fürn N und aus der Stetigkeit von A folgt,

n—>oo
dass

e + 1

lim fi(an, 1) lim A(an, 1) > p(e, 1) p( lim an, 1),
n—> oo n—>oo 2 n—>00

weil e bekanntlich eine irrationale Zahl ist. Somit ist /; nicht stetig.

Satz 14. Die Stetigkeit der Mittelwertfunktionen m und M ist keine notwendige
Voraussetzung für die Stetigkeit der implizit definierten Mittelwertfunktion //.

Beweis. Es genügt, dass wir ein Gegenbeispiel geben. Sei A das arithmetische Mittel, G

das geometrische und H das harmonische Mittel. Seien x,xo, y, >'o e R+ und xq fi vq.

Wir definieren:

m(x,y) := G(x,y) falls (x,y) fi Do, vo) und (.v, .v) fi (v0,.v0) sowie wDo, vo) :=
H Do, vo) =: m(yo,xo),

M(x,y) := G(x, y) falls D, v) fi Do, vo) und (x,y) fi Do,x0) sowie M(x0,yo) :=
A Do, vo) =: M v0, .t'o).

M und m sind Mittelwertfunktionen und sie sind unstetig in den Punkten Do, vo) ur|d

(vo, -v0).

Ferner gilt m < M. Die durch m und M implizit definierte Mittelwertfünktion // ist aber

stetig auf ganz lfj_,wcil p Do, >'o) GDo,.vo) ßDo, xo). Dabei beachte man, dass für
die definierenden Folgen xn — yn für ne N und n > 1 gilt.

Genau genommen sind es wegen der Unstetigkeit von m und M a priori zwei implizite
Mittelwertfunktionen p \ und pz. aber diese sind auch in den Unstetigkeitspunkten identisch

und daraus folgt auch die Stetigkeit.

Im Folgenden geben wir ein allgemeineres Beispiel einer ganzen Familie von Mittelwert-
funktionen.
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Beispiel 15. Wir definieren für p e K die Funktionen Ap(x,y) jö
' j für

x,y e M+ falls p -£ 0 und Ao := G (geometrisches Mittel). Mit wenig Aufwand kann

man zeigen:

1) Ap ist eine Mittelwertfunktion für alle p e M.

2) Ar ist kommutativ

3) Ap ist homogen

4) Ap ist stetig

5) Ap < Aq falls p < q wobei p, q e M.

6) Ao [A-p, Ap] fürO < p

7) A20 A-pAp.

Beweis. Wir beweisen nur den Punkt 6).

A2jAp ist die Mittelwertfunktion A-p und diese ist kleiner als A<). Ferner gilt für die
definierenden Folgen xnyn .voyo xy für alle n e N (Induktionsbeweis) und mit der

Stetigkeit von Ap (identischer Grenzwert der beiden delinierenden Folgen) folgt daraus
das Behauptete.

Aus 6) folgt, dass wir für p — 1 einen quadratisch konvergierenden Algorithmus haben,

um aus einer positiven reellen Zahl x die Wurzel zu ziehen; nämlich

x'/2 := [A_i, A;](l,x).

Das war wahrscheinlich schon Newton bekannt.

Das Beispiel 15 verdanke ich dem Gutachter.

Beispiel 16. Im Allgemeinen können wir für die aus m und M interpolierte Mittelwertfunktion

p keine explizite Form angeben, sondern wir müssen mit den Startwerten (x, y)
den Limes derrekursiven Folge berechnen. Im Falle verallgemeinerter arithmetischer Mittel

können wir aber eine explizite Form für p angeben.

Sei Ba(x, y) := ax + (1 — a)y wobei x £ v und a e ]0, 1[. Wir nennen Ba ein
verallgemeinertes arithmetisches Mittel. Aus der Definition folgt unmittelbar, dass aus a > ß > 0

die Ungleichung Bn < Bp folgt. Wir können also By :=\Ba.Bß] bilden und erhalten nach

längerer aber einfacher Rechnung für y ^
•

Die Eigenschaft der Eltern, arithmetisch zu sein, vererbt sich also auf die Nachkommen
und der Parameter y berechnet sich aus den Parametern « und ß der Eltern.

Ausserdem gilt B\p — [Ba, ß|-«| für 1 < a < 1 / 2. Daraus folgt übrigens, dass die

Kommutativität der Eltern keine notwendige Voraussetzung für die Kommutativität des

Nachkommens ist, weil B \ß kommutativ ist, nicht aber ß„ und ßi_„.

Bemerkung 17. Viele der gängigen Mittelwertfünktionen sind partiell monoton steigend;
das heisst, dass eine der beiden Variabein fixiert ist und die daraus entstehende Funktion
einer Variablen monoton steigend ist. Auch die Eigenschaft, partiell monoton zu sein,

vererbt sich übrigens von den Eltern auf die Nachkommen (einfacher Beweis).
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Hier stellt sich eine andere interessante Frage: Könnte die partielle Monotonie der Eltern
ausreichen, um den Nachkommen eindeutig zu machen? Falls die Eltern beide homogen
sind, dann reicht die partielle Monotonie eines Elternteils tatsächlich aus. Dies sieht man
wie folgt.

Beweis. Nehmen wir an M(z, 1) mit z e K+ sei monoton steigend.

Für die definierenden Folgen (.v„)„eN und (>Vi)«eN g''1

xn+\ := m(xn, yn) ynm(^, l) y„m(zn, 1)

mit Zu := — und
yn

yH+1 := M(xn,y„) ynM(~, l) ynM(zn, 1)

und (Zn)ngN ist monoton steigend.

Mit Induktion folgt, dass yn — v 11"ZÔ M(zv, 1 Da die definierenden Folgen konvergieren,

muss auch das (unendliche) Produkt konvergieren und daraus folgt notwendigerweise,
dass lim M(zn, 1) 1-

<\j

Wäre nun lim z„ u < 1, dann gäbe es ein o Ju, 1[ und ein Nq 6 N, so dass
n^> 00

M(zr, 1) > M(v, 1) und zv < v für alle u > Nq und dies ist ein Widerspruch zur
Annahme, dass M(z, 1) monoton steigend ist. Also ist lim z,„ — 1 und daraus folgt die

n —^ oo
Gleichheit der Grenzwerte der delinierenden Folgen.

Im inhomogenen Fall ist die Frage offen.

Zum Schluss danke ich besonders dem sehr geduldigen Gutachter für seine wertvollen
Hinweise.
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