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Uber eine Interpolation von Mittelwertfunktionen

Werner Hertzog

Der Autor hat an der Universitit Freiburg i. U. Mathematik studiert und ist seit mehr
als 30 Jahren in der Versicherungs- und Pensionskassenbranche titig.

Der Begriff der Mittelwertfunktion fiir zwei Variablen ist in der Literatur nicht einheit-
lich definiert. Je nach Bedarf und Zweck werden von den Autoren mehr oder weniger
Eigenschaften von einer Mittelwertfunktion gefordert. Fiir die im Folgenden untersuchten
Aussagen wurde eine moglichst allgemeine Definition gewihlt, und Eigenschaften wie
Kommutativitit (manchmal auch Symmetrie genannt), Homogenitiit oder Stetigkeit wer-
den nicht vorausgesetzt. Diese Zusatzeigenschaften werden schrittweise eingefiihrt (falls
notig definiert) und untersucht. Wir beginnen mit der

Definition 1. Eine Funktion M : Ri — R, heisst Mittelwertfunktion, wenn fiir alle
(x,y) € R? gilt

(M1) ausx < yfolgtx < M(x,y) < yundx < M(y,x) <y
(M2) aus x = y folgtx = M(x,y) = y.

~ Das arithmetisch-geometrische Mittel entsteht durch eine rekursive Konstruktion aus
dem geometrischen und dem arithmetischen Mittel und liegt fiir alle Paare von po-
sitiven reellen Zahlen zwischen den beiden Mitteln. Diese Konstruktion wurde be-
reits von Carl Friedrich Gaul und zuvor schon von Adrien-Marie Legendre verwen-
det, um die Bogenlingen der Lemniskate und von Ellipsen, also elliptische Integrale,
niherungsweise zu berechnen. Auch der bekannte Algorithmus zur schnellen Berech-
nung der Zahl z von Richard P. Brent und Eugene Salamin aus dem Jahr 1976 beruht

~ auf dem arithmetisch-geometrische Mittel. Dieses Mittel ldsst sich nun auf zwei ge-
ordnete Mittel (m, M) verallgemeinern. Dabei stellt sich heraus, dass wichtige Eigen-
schaften auf das implizit definierte Mittel iibertragen werden. Es stellt sich die Frage,

~ unter welchen Bedingungen die Stetigkeit der Eltern (m, M) auf den Nachkommen —
die neue Mittelwertfunktion — iibertragen wird. Der Autor gibt eine erste Antwort.
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M (x, y) nennen wir den Mittelwert von x und y. Falls M (x, y) = M(y, x) gilt, nennen
wir M kommutativ.

Folgerung 2. Aus der obigen Definition 1 konnen wir umgekehrt schliessen, dass aus
x = M(x,y) bzw. y = M(x, y) auch x = y folgt. Denn aus x < y wiirde gemiss (M1)
auch x < M(x, y) oder M (x, y) < y folgen und dies steht im Widerspruch zur Annahme.

Folgerung 3. Aus einer nicht kommutativen Mittelwertfunktion M koénnen wir zwei kom-
mutative Mittelwertfunktionen M| und M» konstruieren:

M(x,y) fallsx <y
Mi(x,y) =

M(y,x) fallsx >y
und
M(y,x) fallsx <y

My(x,y) =
2(r,5) lM(x,y) falls x > y.

Es ist per Definition klar, dass M| und M> kommutativ sind und die Mittelwerteigenschaf-
ten vererben sich von M auf M| und M>.

Definition 4. Sei M eine Mittelwertfunktion. Wir nennen M homogen, falls fiir alle
(x,y) € ]R:_Z|r und fiir alle 4 € R die Gleichung M (Ax, Ay) = AM(x, y) gilt.

Folgerung 5. Aus einer nicht homogenen Mittelwertfunktion M konnen wir zwei homo-
gene Mittelwertfunktionen M und M> konstruieren: Wir definieren

Mi(x,y) = yM(%, 1) sowie Mp(x,y):=xM(1,2).

Es ist per Definition klar, dass M1 und M> homogen sind und die Mittelwerteigenschaften
vererben sich von M aut M| und M».

Satz 6. Seien nun m und M zwei Mittelwertfunktionen mit der Eigenschaft m(x,y) <
M(x,y) fiir alle (x,y) € R%r mit x < y; wir schreiben in diesem Fall auch verkiirzt
m < M. Wir definieren rekursiv zwei Folgen:

0 L= Xy Bl == X V0 )
Yo=Y, Yntl = M(xn, yn)-

Dann sind die Folgen (x, )nen und (yp)nen konvergent und sofern m oder M stetig ist, gilt

lim x, = lim y,.
n—o0 n— 00

Beweis. Aus der Mittelwerteigenschaft von m und M folgt unmittelbar, dass die beiden
Folgen streng monoton und beschriinkt sind; daraus folgt aus einem bekannten Satz der
Analysis, dass sie konvergent sind.

Aus der Stetigkeit von m oder M folgt entweder lim x,; = m( lim x,, lim y,) oder
H—>00 n— 00 n— oo
lim y,y1 = M(lim x,, lim y,), und aus der Folgerung 2 folgt dann die Gleichheit der
n—oo n— o0 n—0oQ

Grenzwerte; dabei spielt es keine Rolle, welche Mittelwertfunktion stetig ist. Es geniigt,
wenn eine der beiden Funktionen stetig ist. (]
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Satz 7. Durch die in Satz 6 definierten Folgen (x,)en und (yy)nen werden implizit zwei
Mittelwertfunktionen (1 (x, y) := lim x, und pa(x,y) := lim y, definiert und es gilt
n—0o0 n— 00

m(x,y) < pu1(x,y) < pa(x, y) < M(x,y) fiir alle (x, y) € RY.

Beweis. Dass p1 und po Funktionen sind, folgt aus der Existenz und Eindeutigkeit des
Limes. Dass es auch Mittelwertfunktionen sind, folgt aus folgenden Uberlegungen:

Falls x < y gilt, folgt (M1) aus

x<mx,y)=x1 < p1(x,y) < px,y) < y1=Mx,y) <y
sowie aus

x<m(y,x)=x1 < u1(y,x) < p2(y,x) <yr=M(x,y) <y,

und falls x = y und somit m(x, y) = x und M(x, y) = y gilt, werden die beiden definie-
renden Folgen zu konstanten und identischen Folgen und daraus folgt (M2). [l

Wenn eine der beiden Mittelwertfunktionen m, M stetig ist, dann ist ¢ = u; = pu2
gemiiss Satz 1. In diesem Fall schreiben wir im Folgenden [m, M] =: u, um die Abhéngig-
keit von den beiden Mittelwertfunktionen hervorzuheben — sofern dies als notig erscheint.
Aus p=pu, folgt tibrigens nicht, dass m oder M stetig ist, wie wir spiiter sehen werden.

Bemerkung 8. Sind m und M kommutativ oder homogen, dann sind es auch g1 und p».
Wir fiihren den Beweis nur im Fall der Homogenitiit aus.

Beweis. Sei X9 = Axg sowie yg = Ayp und die Induktionsannahme ist X, = Ax, sowie
Yn = Ayn.
Den Induktionsschritt sehen wir wie folgt:

x~n+l = m(Xn, )~7n) = m(ix,, i)’n) = Am(xy, Yn) = /{xn-}—l
sowie

Ynt1 = M(Xp, Yn) = M(Axp, Ayn) = AM (Xn, Yn) = AYni1.
Daraus folgen

u1(dx, Ay) := lim X, = nl_l?rgo Axp = Aui(x,y)

n—00
und
p2(Ax, dy) ;= lim y, = lim Ay, = Au2(x, y). U
n—00 n— o0

Beispiel 9. Das arithmetische Mittel A, das geometrische Mittel G und das harmonische
Mittel H sind kommutativ, homogen und stetig und es gilt G = [H, A].

Allgemeiner gilt sogar Folgendes: falls M eine stetige Mittelwertfunktion ist mit G < M,
dann gilt G = [GVZ, M].
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Beweis. Gz/ M ist wieder eine Mittelwertfunktion und diese ist kleiner als G. Ferner gilt
in diesem Fall fiir die definierenden Folgen x, y, = xoyg = xy fiir alle n € N (Induktions-
beweis) und mit der Stetigkeit von M folgt daraus — die definierenden Folgen haben den
gleichen Grenzwert — das Behauptete. u

Beispiel 10. Sucht man ein Beispiel fiir zwei (unstetige) Mittelwertfunktionen m < M,
so dass die beiden Mittelwertfunktionen z(x, y) := lim x, und p2(x,y) := lim y,
n—>oo n—o0

verschieden sind, muss man in einem gewissen Sinne das Pferd von hinten aufzidumen.
Wir definieren zunichst zwei Folgen reeller Zahlen:

Seia einereelle Zahl mit0 < a < lund x,, := a% sowie vy == xL,, Es ist dann klar, dass

lim x, = aund lim y, = c]_: gilt. Wir definieren sodann die zwei Mittelwertfunktionen
n— 00 n—o0

m und M wie folgt:

m(x,y) =32 falls (x, y) # (tu, yu) und m(xu, yn) = xpq1 fiirn € N
sowie

M(x,y) = % falls (x, ¥) # (xn, ya) und M (x,, yn) := yny1 fiirn € N,

Ohne grossen Aufwand zeigt man, dass es sich bei m und M um unstetige Mittelwertfunk-
tionen mit der Eigenschaft m < M handelt. Aufgrund der Konstruktion ist z1 (5, %) =
und p2(%. %) = L und somit 1 # po.

Es stellt sich nun die generelle Frage, ob mit der Stetigkeit von m und M auch jene von u

induziert wird. Gibt es einfache notwendige und hinreichende Bedingungen an m und M,
so dass yu stetig ist?

Satz 11. Seien m und M stetige Mittelwertfunktionen und m < M. Dann ist u eine stetige
Mittelwertfunktion.

Beweis. Dass p eine Mittelwertfunktion ist, haben wir bereits in Satz 7 gezeigt.

Auf einer kompakten Menge K aus R%_ seien Funktionen f,, g, : K — Ry wie folgt
definiert:

fO(an’) =X, ﬁ1+i(x9y) = m(fn(xa)’),gn(xay))
und

gox,y) =y, gnt1(x,y) = M(fu(x,y),gnlx,y)).

Jedes Folgeglied ist eine stetige Funktion auf dem Definitionsbereich K, weil dieses aus
den stetigen Mittelwertfunktionen m und M, den stetigen Startfunktionen sowie der rekur-
siven Komposition stetiger Funktionen entsteht.

Ferner konvergieren die Funktionenfolgen f;, (von unten), g, (von oben) fiir jedes Element
aus dem Definitionsbereich punktweise gegen eine Grenzfunktion # und schliesslich ha-
ben die Funktionenfolgen aufgrund der rekursiven Konstruktion die wichtige Eigenschaft
der Monotonie auf dem ganzen Definitionsbereich.

Damit ist # auf K monotoner Limes stetiger Funktionen und zwar sowohl von unten als
auch von oben. Solche Funktionen sind bekanntlich stetig (vgl. dazu [1, Seite 36 bis 41]).
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Aus dem bekannten Satz von Dini folgt iibrigens, dass die Konvergenz gleichmiissig (kom-
pakt) ist. Ll

Bemerkung 12. Die Stetigkeit von m und M ist also ein hinreichendes Kriterium fiir die
Stetigkeit der Mittelwertfunktion p.

Es stellt sich nun die Frage, ob es auch ein notwendiges Kriterium ist. Das folgende Bei-
spiel 13 zeigt zuerst, dass nicht ohne weiteres auf die Stetigkeit der Mittelwertfunktionen
m oder M verzichtet werden kann.

Beispiel 13. Sei A das arithmetische Mittel und G das geometrische Mittel. Wir definieren

Alx,y) fallsx,y e Q4

m(x,y) =
G(x,y) sonst.

A ist stetig und m ist unstetig; ferner gilt m < A. Die beiden Mittelwertfunktionen defi-

nieren eine Mittelwertfunktion g auf eindeutige Weise.

noo1
v=0 p!*

Es gilt lim a, = eund m(a,, 1) = A(a,, 1) fiirn € N und aus der Stetigkeit von A folgt,
n— o0

Wir definieren nun eine Folge rationaler Zahlen (ay,),en durch a, 1=

dass
e+ 1

lim u(ay,1) = lim A(a,, 1) =
n—o00

n—00

> ple, 1) = p(lim ay, 1),
weil e bekanntlich eine irrationale Zahl ist. Somit ist # nicht stetig.

Satz 14. Die Stetigkeit der Mittelwertfunktionen m und M ist keine notwendige Voraus-
setzung fiir die Stetigkeit der implizit definierten Mittelwertfunktion p.

Beweis. Es geniigt, dass wir ein Gegenbeispiel geben. Sei A das arithmetische Mittel, G
das geometrische und H das harmonische Mittel. Seien x, xg, y, yo € R4+ und xo # yp.
Wir definieren:

m(x,y) := G(x,y) falls (x,y) # (xo0,y0) und (x,y) # (yo,xo) sowie m(xo, yo) =
H (xo, yo) =: m(yo, Xo),

M(x,y) := G(x,y) falls (x,y) # (x0,y0) und (x,y) # (yo,x0) sowie M(xo, yo) =
A(xo, yo) =: M (vo, X0)-

M und m sind Mittelwertfunktionen und sie sind unstetig in den Punkten (xg, yp) und
(yo, X0)-

Ferner gilt m < M. Die durch m und M implizit definierte Mittelwertfunktion g ist aber

stetig auf ganz R2 | weil x(xo, yo) = G (xo, yo) = #(yo, xo). Dabei beachte man, dass fiir
die definierenden Folgen x, = y, firn € Nundn > 1 gilt.

Genau genommen sind es wegen der Unstetigkeit von m und M a priori zwei implizite
Mittelwertfunktionen g1 und o, aber diese sind auch in den Unstetigkeitspunkten iden-
tisch und daraus folgt auch die Stetigkeit. U

Im Folgenden geben wir ein allgemeineres Beispiel einer ganzen Familie von Mittelwert-
funktionen.
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1/p
PyyP
% fiir

x,y € Ry falls p # Ound Ag := G (geometrisches Mittel). Mit wenig Aufwand kann
man zeigen:

Beispiel 15. Wir definieren fiir p € R die Funktionen A, (x,y) :=

1) A ist eine Mittelwertfunktion fiir alle p € RR.
2) A, ist kommutativ

3) A ist homogen

4) A ist stetig

5) Ap < Ay falls p < g wobei p,g € R

6) Ao =[A_p, Aplfir0O < p

Ty A2 = A 54,

Beweis. Wir beweisen nur den Punkt 6).

A(z) / A, ist die Mittelwertfunktion A_, und diese ist kleiner als Ag. Ferner gilt fiir die
definierenden Folgen x,y, = xoyo = xy fiir alle n € N (Induktionsbeweis) und mit der
Stetigkeit von A, (identischer Grenzwert der beiden definierenden Folgen) folgt daraus
das Behauptete. ]

Aus 6) folgt, dass wir fiir p = 1 einen quadratisch konvergierenden Algorithmus haben,
um aus einer positiven reellen Zahl x die Wurzel zu ziehen; nimlich

2= A, AL, x).

Das war wahrscheinlich schon Newton bekannt.
Das Beispiel 15 verdanke ich dem Gutachter.

Beispiel 16. Im Allgemeinen kénnen wir fiir die aus m und M interpolierte Mittelwert-
funktion u keine explizite Form angeben, sondern wir miissen mit den Startwerten (x, y)
den Limes der rekursiven Folge berechnen. Im Falle verallgemeinerter arithmetischer Mit-
tel konnen wir aber eine explizite Form fiir  angeben.

Sei By (x,y) :=ax + (1 —a)y wobei x < y und @ € |0, 1[. Wir nennen B, ein verallge-
meinertes arithmetisches Mittel. Aus der Definition folgt unmittelbar, dass aus a > g > 0
die Ungleichung B, < By folgt. Wir konnen also B, :=[B,,Bg] bilden und erhalten nach
ﬁﬁ—ﬁ'

Die Eigenschaft der Eltern, arithmetisch zu sein, vererbt sich also auf die Nachkommen
und der Parameter y berechnet sich aus den Parametern a und f der Eltern.

lingerer aber einfacher Rechnung fiir y =

Ausserdem gilt B 12 = [Ba, By 4] firl < a < 1/2. Daraus folgt iibrigens, dass die
Kommutativitit der Eltern keine notwendige Voraussetzung fiir die Kommutativitit des
Nachkommens ist, weil B |y, kommutativ ist, nicht aber B, und By —.

Bemerkung 17. Viele der gingigen Mittelwertfunktionen sind partiell monoton steigend;
das heisst, dass eine der beiden Variabeln fixiert ist und die daraus entstehende Funktion
einer Variablen monoton steigend ist. Auch die Eigenschaft, partiell monoton zu sein,
vererbt sich tibrigens von den Eltern auf die Nachkommen (einfacher Beweis).
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Hier stellt sich eine andere interessante Frage: Konnte die partielle Monotonie der Eltern
ausreichen, um den Nachkommen eindeutig zu machen? Falls die Eltern beide homogen
sind, dann reicht die partielle Monotonie eines Elternteils tatsidchlich aus. Dies sieht man
wie folgt.

Beweis. Nehmen wir an M (z, 1) mit z € R sei monoton steigend.

Fiir die definierenden Folgen (x,),en und (v, )nen gilt

Xnt1 :=m(xp, yn) = )’nm(%a 1) = ynm(zn, 1)

mit z; 1= % und

Ynt1 = M(xp, yn) = YMM(;C—Z, l) = YaM(zp, 1)

und (z,)nen ist monoton steigend.

Mit Induktion folgt, dass y, =y ]_[l'f;(l) M (zy, 1). Da die definierenden Folgen konvergie-
ren, muss auch das (unendliche) Produkt konvergieren und daraus folgt notwendigerweise,
dass nlirgo Mizns 1) = 1.

Wire nun lim z, = u < 1, dann giibe es ein v € Ju, 1| und ein Ny € N, so dass
n— 00

M(z,,1) > M(v,1) und z, < o fiir alle v > Np und dies ist ein Widerspruch zur
Annahme, dass M (z, 1) monoton steigend ist. Also ist nlirgo zp = 1 und daraus folgt die

Gleichheit der Grenzwerte der definierenden Folgen. O

Im inhomogenen Fall ist die Frage offen.

Zum Schluss danke ich besonders dem sehr geduldigen Gutachter fiir seine wertvollen
Hinweise.
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