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I Elemente der Mathematik

Logarithm and dilogarithm

Jürg Kramer and Anna-Maria von Pippich

Jürg Kramer ist Professor für Mathematik an der Humboldt-Universität zu Berlin. Sein

Hauptforschungsgebiet ist die arithmetische Geometrie und die Theorie der
Modulformen. Darüberhinaus ist er an Fragen zur Mathematikausbildung von Studierenden,
Doktoranden und Lehrkräften interessiert.

Anna-Maria von Pippich ist Juniorprofessorin für Algebra und Zahlentheorie an der
Technischen Universität Darmstadt. Ihr Hauptforschungsgebiet ist die Theorie der

automorphen Formen, insbesondere in Verbindung mit zahlentheoretischen Fragestellungen.

1 The logarithm

1.1. A naive sequence. Following D. Zagier, we begin with the sequence of non-zero complex

numbers determined by the requirement that each element of the sequence is given
as one divided by the product of the left-hand and right-hand neighbors of the element in

question. Denoting our sequence by 01,02,03,04, as,..., the defining properties of the

sequence give

1

a2

«If/3

Im nachfolgenden Beitrag erinnern die Autoren zunächst an die geometrische Deutung
der Funktionalgleichung der klassischen Logarithmusfunktion in Termen der hyperbolischen

Distanz zwischen zwei Punkten der hyperbolischen Ebene. Darauf aufbauend
wird in Folge der Dilogarithmus eingeführt und dessen Werte als hyperbolische
Volumina idealer hyperbolischer Tetraeder im hyperbolischen 3-Raum erkannt. Es zeigt
sich dabei, dass die Funktionalgleichung des Dilogarithmus der Zerlegung gewisser
hyperbolischer Körper in solche ideale hyperbolische Tetraeder entspricht. Im letzten
Teil werden die bis dahin gewonnenen geometrischen Erkenntnisse zur Berechnung
spezieller Werte der Dedekindschen Zetafunktion von Zahlkörpern mit Hilfe von
Logarithmus und Dilogarithmus genutzt. Dies führt zu einer bis heule ungelösten Vermutung

von D. Zagier zur Beschreibung der Werte Dedekindscher Zetafunktionen an den

ganzzahligen Stellen.
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hence the first three members of the sequence are ai, a2, (a\a2) '• The next member of
the sequence is now determined as

1 1 1

a3 <=> «4 —7 rrr "1
Ö2fl4 Ö2Ö3 02(0102)

For the fifth member we thus compute

I 1 1

«4 <=> as —j— «2-
<23/25 <23(14 (<31 «2 a\

From this we conclude that the above requirement leads to the periodic sequence

1 1

a\,a2, ,01,02, (1)
<2102 4/102

with period 3; here «1, «2 are non-zero complex numbers.

1.2. The logarithm. Based on the sequence 1 we now ask for smooth, complex-valued
functions / on Cx := C\ (0). which are characterized by the property that the sum of the
values of / at any three consecutive elements of the sequence 1 is equal to zero, i.e., the

function / satisfies the functional equation

f(al) + f(a2) + f(—) =0. (2)
\a 1 <22 /

From complex analysis we know that the principal logarithm Log(z) (z e C \ R. 0) with
the power series expansion

Log(z) -V^^ (z e C : |z — 1| < 1) (3)
1

11

n I

solves the functional equation (2) up to integral multiples of 2ni (see, e.g., |4|). By replacing

the principal logarithm by its real part, i.e., by

Re(Log(z)) log(lzl),

we obtain a solution of the functional equation (2), which is unique up to scaling. By the
normalization condition /'(e) 1. the solution becomes unique.

1.3. Geometric interpretation. We now give a geometric interpretation of the results
derived in the preceding two sections. The underlying geometry is given by the hyperbolic
geometry of the hyperbolic plane (for which we refer to [2]) in the model of the upper
half-plane

H2 := {z e C | z x + iy, y > 0)

equipped with the metric
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The isometry group of H2 equipped with the metric d.Vhyp is given by the special projective

linear group PSL2(R) acting by fractional linear transformations on H2 as follows:
For y " j e PSL2(R) and z H2, the image y (z) e H2 is given by

az+b
y (z) ——

cz + a

The hyperbolic distance between two points zu Z2 e H2 is defined as

disthyp(zi,z2) := inf J d.vhyp, (4)

'/

where the infimum is taken over all continuously differentiable paths r]\ [0, 1] -a- H2

satisfying >)(()) — z\ and t](Y) z2. In order to give an explicit formula for the hyperbolic
distance (4), one shows in a lirst step that the hyperbolic distance from the point iA \ to i/l2
with k\, À2 M and A2 > Ai is given by log(/l2/Ai In fact, this is easily seen: Given a

path i/(i) — x(t) + iy(t) (/ e [0, I J, //(0) ik\, //(!) /A2). we have

dra- -or -ef Vx'(t)2 + y'(t)2 f |.v'
disthvptMi, 1A2) int / — dt= / —

'/ ./ y(t) J y I

0 0

log (}'(0) =log^^,

since the infimum. in fact the minimum, is achieved for the path satisfying x'(t) 0 for
all/ e [0, 1], i.e., for the path rj(t) — iy(t). In a second step one then proves the existence
of an element y e PSL2(R) with the property ]'(ci) iA\ and 7 (~2) /A2, where

A], A2 e M with ko > Ai satisfy

—
1

A, ~ 1-

-1 I

ZI-Z2
I

(5)
I Z1-Z2 I

Using the invariance of the hyperbolic distance by the action of PSL2(R), we find that the

hyperbolic distance between zi and z2 equals the logarithm of the ratio / 2//1 given by
formula (5), i.e., we have the relation

disthyp(zi,z2) log(A2//l|).

After having "rediscovered" the logarithm as the hyperbolic distance between two points
in the upper half-plane H2, we next provide a hyperbolic geometric interpretation
characterizing the naive sequence (1), which underlies the functional equation of the logarithm
(see Figure 1).

To this end, we recall that the boundary of the upper half-plane H2 is given by the real line
R, the .v-axis, together with the point too at infinity, i.e., the real projective line P'(R).
Furthermore, the geodesies in the upper half-plane are given by Euclidean semicircles in
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i oo

Figure 1

H2. which are orthogonal to the .v-axis, or straight lines in H2. which are parallel to the

y-axis. Therefore, the unique geodesic passing through zi and 22 is given by the semicircle
£ from z\ to z'0 as depicted in the preceding figure. Using an appropriate y e PSL2(R),
the geodesic £ can be mapped onto the geodesic from 0 to / oo such that y (zi) iX\ and

}' fe) iX2.

Let us now connect our geometric insight to the naive sequence 1 For this we give
ourselves three complex numbers zi, Z2, 23 e H2 lying on a hyperbolic line £ as depicted
in Figure 2.

Figure 2

Denoting by {zj, Zk\ {j, X 1,2,3 with j ^ k) the closed segment of £ consisting of all
the points of £ lying between zj and sr. we may assume without loss of generality that

22 e [zi, Z3 ] as shown in the above figure. By means of formula (5) we are now able to
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determine real numbers

Ai, A2, A3 6 M satisfying X\ < A2 £ A3

such that y(zj) — iXj (j 1,2,3) for a suitable y e PSL2(R). Now, we introduce
the positive real numbers aj := Xj+\/Xj (j 1, 2, 3), where the indices are to be read

modulo 3, that is,

A2 A3 A]
«1 -7-, 02 rp, «3 7- •

A I A2 A3

Since we obviously have «3 (a\a2)~ 1, the sequence ai, a2, aj,... gives rise to the naive

sequence 1 The functional equation (2), i.e.,

log(ai) + log(a2) + logfe) 0 log + log log

now becomes equivalent to the obvious additive relation among the hyperbolic distances
between the points z\, z2, and Z3 lying on the geodesic £, namely

disthyp(zi, 23,) ~f disthyp(z2,23)= disthyp(zi, Z3).

2 The dilogarithm

2.1. A more sophisticated sequence. Next, we slightly vary the construction of the

sequence studied in Subsection 1.1 by switching from the multiplicative to the additive viewpoint.

More specifically, again following D. Zagier, we now ask fora sequence of non-zero
complex numbers characterized by the property that each element of the sequence is given
as one minus the product of the left-hand and right-hand neighbors of the element in question.

Denoting our sequence by «1, «2, <23, a4, as, ap, «7 the defining properties of the

sequence give

1 - a2
as 1 - <2103 T=> 03

a 1

hence the first three members of the sequence are a\, a2, (1 — a2)/a\. The next member of
the sequence is now determined as

1 - a3 a\ + a2 - 1

<23 1 — a2<24 <=>• 04
a2 a\a2

For the fifth member we thus compute

1 I _ "1+":-' 11 «4 a\a2
1 ^1

«4=1- «3«5 <=* «5 7—; •

«3
1 a2 a2
"1
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Turning to the sixth member of the sequence, we compute

I I —
1

1
T"> in

<25 i — ciAdf, <=> —; t~ — ci i.
a4 " i+»2-i

a I ti2

It is now not a surprise that the seventh member in sequence is given by a2, namely we
have

1 - «(, 1 - "1
a6 — 1 - as07 <=> a7 ——-— «2.

a5 Tztti

From this we conclude that the above requirement leads to the periodic sequence

1 — a2 a\ + a2 — 1 1 — a\ 1 — a2 a\ + a2 — 1 1 — a\
a\,ci2, ,at,ö2, ,••• (6)

a i a\ci2 <22 a I a\a2 <22

with period 5; here a\, a2 are non-zero complex numbers.

2.2. The dilogarithm. In analogy to the situation of the first section relating the

sequence (1) to the logarithm, we now ask for smooth, complex-valued functions / on Cx,
which are characterized by the property that the sum of the values of f at any five
consecutive elements of the sequence (6) is equal to zero, i.e., the function / satisfies the

functional equation

f{ax) + f(a2) + + f(ai+a2~l) + 0- (7)
V <2| / v «102 \ a2

Inspired by the solution in the case of the previous section, namely the power series

expansion (3) with ; replaced by 1 — 2, i.e.,

~ n

—Log(l - z) V — (z e C : |z| < 1),
' 11

n=1

we now consider the dilogarithm LFf;) defined by the power series expansion

00 _H

Li2(z):=T^ (zeC:|z|<l); (8)
' /)-n=l

the definition of Li2(c.) on the whole complex plane then follows by analytic continuation.
As in the case of the logarithm, this function is multi-valued and it turns out not to satisfy
the functional equation (7). However, a suitable combination of the dilogarithm Li^f-) and

the solution of the functional equation (2), i.e., log(|z|), leads to a positive answer of our
question. Consider the so-called Bloch-Wigner dilogarithm D(c), defined as

D(z) := Im(Li2(z)) + arg(l -z)log(|z|)
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for z e C \ R; for z e R, we put D(z) — 0. It can then be shown that the Bloch-Wigner
dilogarithm D(z) provides a solution of the functional equation

D(a\) + D(az) + Dfc) + D(a4) + D(a$) 0 (9)

for the generating members a], Û2, <23, a4,05 of the 5-periodic sequence (6), which is

unique up to scaling. For later purposes, we note that the Bloch-Wigner dilogarithm D(z
satisfies several other functional equations, such as

dQ) -D(c), D^l — 7^ D(z), (10)

which are formal consequences of (9). For more details, we refer the reader to [9],
pp. 8-11.

2.3. Geometric interpretation. In analogy to Subsection 1.3, we now give a geometric
interpretation of the results derived in the preceding two sections. The underlying geometry
is now given by the hyperbolic geometry of the hyperbolic 3-space (for which we refer to

[3]) in the model of the upper half-space

HI3 := {(z, m) e C x M | z x + iy, w > 0)

equipped with the metric

Jd.v2 + dy2 + d//>2
dS'hyp •— • (11)

W

The line element (11) gives rise to the volume element

dx a dy a dm
hyp • ö 1

ur
which allows to compute volumes with respect to the hyperbolic metric.

The isometry group of H3 equipped with the metric d,Vhyp is given by the special projective
linear group PSL2OC) acting by fractional linear transformations on H3 as follows: For

y
b e PSLt(C) and (z, us) e H3, the image y (z, us) e H3 is given by

y (z, u>)

' (az + b)(cz + d) + acur
Icz. + d\2 + |c|2îo2 ' |cz + dI2 + |c|2»2

In analogy to the 1-dimensional case, we will now see that the Bloch-Wigner dilogarithm
D(z computes the hyperbolic volumes of certain bodies in IHI3.

To this end, we recall that the boundary of the upper half-space HI3 consists of the complex
plane C given by {(z, w) e H3 | w 0} and the point 00 at infinity, i.e., it is given by the

complex projective line P1 (C); to simplify our notation, we will write ; instead of (z, 0)
for points on the boundary C c P1 (C). Furthermore, the geodesies in the upper half-space
are given by Euclidean (possibly degenerate) semicircles in EI3, which are orthogonal to
the boundary, as depicted in Figure 3.



00

H3

An ideal hyperbolic tetrahedron is a geodesic 3-simplex all whose vertices zi,Z2, z3, Z4

lie on the boundary IP1 (C) of H3. We denote it by 7"(c i, Z2, Z3, Z4), which keeps track of
the ordering of the vertices and thus of the underlying orientation of the ideal hyperbolic-
tetrahedron. We note that for a given y e PSL2(C), the 3-simplex

T(y (z\), y (z2), r (Z3), y (14))

is again an ideal hyperbolic tetrahedron of the same hyperbolic volume as T(z\, zi, z3, za).

Introducing the cross-ratio

r -, (Z1-Z3)(Z2-Z4)
Iz 1 : Z2 : Z3 : Z4] 7 77 r e P (C),

(Z I - Z.4MZ2 - Z3

and choosing y e PSL2(C) such that

y(zi) 00, y(z2) =0, y (z3) 1,

a short calculation yields

T(y(z 1), y(z2), )'(z3), (za 7'(oo,0, 1, [zi : z2 : z3 : z4J).

This shows that in order to compute the hyperbolic volume of an ideal hyperbolic tetrahedron

T(zi, Z2, z3, Z4), one is reduced to calculate the hyperbolic volume of

T(00, 0, 1, [zi : Z2 : Z3 : Z4]),

which looks as shown in Figure 4.

As predicted by the preceding consideration, the hyperbolic volume of T(z\, Z2, Z3, za)
depends only on the cross-ratio [zi : z.2 : Z3 : za]. A theorem going back to Lobachevsky
now stales that this volume equals the Bloch-Wigner dilogarithm of the corresponding
cross-ratio, i.e., we have the relation

volhyp('/'(zi,Z2,Z3,za)) £>([zi : Z2 : Z3 : zal).
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taking into account the orientation, namely, the volume is positive if the orientation is

and negative otherwise. From this and the definition of the dilogarithm we see that the
ideal hyperbolic tetrahedron T(z 1, 22, 23, 24) is flat if and only if the cross-ratio is real.

Furthermore, we see that the orientation of T(21,22, 23, 24) given by the ordering of its
vertices agrees with the orientation induced from H3 if and only if the cross-ratio has

positive imaginary part.

After having "rediscovered" the Bloch -Wigner dilogarithm as the hyperbolic volume of an
ideal hyperbolic tetrahedron in the upper half-space H3, we next provide a hyperbolic
geometric interpretation characterizing the naive sequence (6), which underlies the functional
equation of the Bloch-Wigner dilogarithm.

For this we give ourselves five complex numbers z\, 22,23,24, 25 lying on the boundary
P'(C) of H3. We then introduce the complex numbers bj := [z y ' : zj : : 25]

j 1 5). where the entry marked with the hat has to be omitted, i.e., we consider
the cross-ratios

by 122 : 23 : 24 : 251- h I21 : 2.3 : 24 : 25], h I21 : 22 : 24 : 25 ],

b4 [;, : 22 : 23 : 25], b5 [zy : 22 : 23 : 24].

Now, letting

1 11 11ay := —, a2 := 1 — —, a3 := —, a4 := 1 - —-, a5 := —, (12)
by b2 b2 b4 b5

and reading indices modulo 5, it can easily be shown that the recursion formula

a, J -aj-yaj+y (j 1,...,5)

holds. For example, if j 2, one has to show that a2 1 — ay a:-,, which, using (12),
amounts to show that b2 by b2. The latter equality can be immediately verified, since we



have

bl • b-i [z2 : Z3 : Z4 : zs] • [zi : Z2 : Z4 : zs]

_
(Z2 - Z4)(Z3 - Zs) (z 1 -Z4)(Z2 ~ Z5

(Z2 - Z5)(Z3 - Z4) (ZI - Z5)(Z2 ~ Z4)

(z 1 - Z4)(Z3 - Zs)

(z I - Z5 (Z3 - Z4
[z 1 : Z3 : Z4 : Z5] b2.

Consequently, the sequence a\, a2,03,04,05 above gives rise to the 5-periodic
sequence (6).

After these preliminary computations, we now find using the functional equations 10) that

D{b\) - D(b2) + D(b3) - D(lu) + D(bs)

K/zM1-£>-°(£)
—D{a\ - D(a2) - D(aj) - D(«4) - D(as) 0,

taking into account the functional equation (9). In other words, we have proven that the
functional equation (9) is equivalent to the following additive relation among the hyperbolic

volumes of the ideal hyperbolic tetrahedra T(ziz,zs) (./ 1,...,5),
namely

5

X(-l)y volhyp(r(zi Zj zs)) =0. (13)

j=1

The relation 13) can also be checked directly geometrically by taking five complex numbers

z 1, Z2, zs, Z4, zs lying on the boundary P1 (C) of H3 and then verifying that the

alternating sum of the hyperbolic volumes of the live ideal hyperbolic tetrahedra

T(z\,... ,Zj,, zs)

vanishes. This fact can be seen quite easily, if we choose

ZI 0, Z2 z', Z3 1, Z4 OO, ZS Z,

where we can pick z! without loss of generality in such a way that it lies inside of the
Euclidean triangle determined by z\, Z3, Zs- We then find that the union of the two ideal

hyperbolic tetrahedra

T{z\,Z2, Z3• Z4. zs), T(z 1, Z2, Z3, Z4. Z5)

equals the union of the three ideal hyperbolic tetrahedra

T(z\,Z2,Z3,Z4, Z5), T(z\,Z2,h,Z4,Z5), T(z, 1, Z2, Z3, Z4, £5),

from which the claimed relation immediately follows.
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3 Special values of zeta functions

In this section we illustrate how the logarithm and dilogarithm together with their
geometric interpretations presented in the previous sections as well as their generalizations,
called polylogarithms, can be used to compute special values of zeta functions attached to
number fields. However, in general, one is still far from having complete results and thus
these special values are to be viewed as mysterious quantities.

For this section, we assume that the reader has some basic knowledge of algebraic number
theory as one can find it for example in the book [6J of S. Lang.

3.1. Zeta functions of number fields. The Riemann zeta function f(s) is defined by the

series

00
I

TT
a—l

where s eC with Re(.v) > 1. This function is known to have a meromorphic continuation
to the whole complex v-plane with a simple pole at .v 1 with residue 1, which can be
restated as

resv=ur(.v) limfy - l)c(.v) 1.
S-+ 1

The Riemann zeta function encodes basic arithmetic properties of the integers such as

the fundamental theorem of arithmetic by means of its Euler product expansion and the
infinitude of the number of primes through its pole at s 1.

The special values of Ç(s) at positive even integers have been computed already by L. Euler

as

(-1
1

(2zr )2"'

2(2/»)!

where the Bi,,, 's are the so-called Bernoulli numbers, which are rational numbers. In other
words, the special values f(2m) are rational multiples of even powers of ji, i.e.. Ç(2m) e
Q[7T2]. In contrast to the special values of Ç(s) at positive even integers, their values at
positive odd integers are still quite mysterious. For example, it was only in the 80s of the
last century that R. Apéry was able to prove that the special value Ç(3) is irrational (see

[1]). Although alternative proofs of this result have meanwhile been found, none of them
seems to generalize to other odd zeta values.

More generally, let now F/Q be a number field. The Dedekind zeta function Çf(s)
attached to F is defined as

Cf(S) — X /v (a)s '
aÇOf

where again se C with Re(,s) > 1 and the sum is taken over all non-trivial integral ideals

a contained in the ring of integers Of of F; here, N(a) denotes the norm of a, which
is given by the quantity |0/ /a|. One easily checks that Ç(s) £q(s). As in the case of
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the Riemann zeta function it can be shown that the Dedekind zeta function (p(s) has a

meromorphic continuation to the whole complex .v-plane with a simple pole at .v 1.

Also in this more general case, the Dedekind zeta function encodes important arithmetic
information about the ring of integers Op, such as the unique factorization of integral
ideals into powers of prime ideals and the infinitude of the number of prime ideals. As
will be explained below, it is expected that the logarithm, dilogarithm and, more generally,
the polylogarithms will allow to "compute" special values of Dedekind zeta functions of
number fields at positive integers.

3.2. The logarithm and the residue of £f(s) at s 1. In this paragraph we will show
how the logarithm and its geometric characterization by means of hyperbolic lengths of
geodesies in the upper half-plane II2 presented in the first section is encoded in the residue
of the Dedekind zeta function Cf(s) at s 1. To illustrate this phenomenon, it is best to
start with the case of a real quadratic extension F — Q(\/D), where D e N is a positive
discriminant, i.e., D 0 or 1 mod 4. The group of units Op of the ring of integers 0/ of F
is generated, modulo sign, by the so-called fundamental unit s:d > 1. By the basic theory
of integral binary quadratic forms it can then be shown that there exists y e PSLg (K) such

that

1 /so)? ePSh2(Z)>

and we see that the hyperbolic distance between the point z := y (<) e H2 and r5(z) e H2
is given as

disthyp(z, (Hz)) disthyp(/\ e2Di) 2 log(eD).

Projecting the geodesic line from z to <5(z) to the quotient space PSL2(Z)\H2, it thus turns
out that we obtain a primitive closed geodesic of hyperbolic length 2 logO-o). The detailed
analysis in |7] in fact shows that all the primitive closed geodesies on PSL2(Z)\H2 are
obtained in this way, where a fixed real quadratic extension F Q{\fD) together with its

fundamental unit so gives rise to exactly hp different primitive closed geodesies, with hp
denoting the class number of F. The residue of [F (,v) at ,v I now counts the lengths of
all the hp primitive closed geodesies weighted by the square root of the discriminant, i.e.,

we have the formula

res, I Cp (v lim (.v - 1 )(F(s)
~/;/

(,4)
«->•1 v D

Turning now to the general case, we let F/Q be any number field with ring of integers Op
and discriminant Dp. It is known that F comes with r\ real embeddings and r? pairs of
complex embeddings, where [F : Q] r\ + 2/g. Dirichlet's unit theorem now states that
the group Op of units modulo the roots of unity in Op is a free abelian group generated by

r := r\ I n I units e\,... ,sr. Denoting the real and half of the complex embeddings by

o\, 0-,-,+r,, the residue of £p(s) at s 1 is finally given by the so-called class number
formula, which reads

2n (2jiY2hp det ((log \oj{sk)\e')j,k=\,...,r)
res, I Cp (s lim (s - 1 )(F(s) (15)

•v-»l cop *J\Dp\
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where cop is the number of roots of unity in Op and c; 1, if oj is a real embedding,
and ej — 2 otherwise. One easily checks that formula (14) is a special case of the general
class number formula (15). and we also recognize that the special value of Çf (s), or rather
its residue, at 5 1 can be expressed in terms of logarithms evaluated at distinguished
elements of F.

3.3. The dilogarithm and the value of £/r(s) at s 2. In this paragraph we will show how
the dilogarithm and its geometric characterization by means of hyperbolic volumes of ideal

hyperbolic tetrahedra in the upper half-space H3 presented in the second section is encoded
in the value of the Dedekind zeta function Çf (s) at s — 2. To illustrate this fact, it is best

to start with the case of an imaginary quadratic extension F Q(*J—D), where —D e Z
is a negative discriminant, i.e., D 0 or 3 mod4. It is then known that the Bianchi group
PSL?(0/ with Of denoting again the ring of integers of F, acts strongly discontinuously
on H3 and the resulting quotient space PSL;((9f )\IfI!3 is an oriented hyperbolic 3-orbifold
(i.e., a hyperbolic 3-manifold with the exception of finitely many singular points due to
the torsion elements of PSL2(0/•)) of finite volume. This hyperbolic volume has been

computed by M.G. Humbert, who found the formula

volhyP (PSL2 (Of) \H3

Since, on the other hand, every hyperbolic 3-manifold or 3-orbifold can be triangulated
into ideal hyperbolic tetrahedra, the volume volhyp(PSL2(O/.-)\H3) can also be expressed
in terms of special values of dilogarithms. For example, for D 3, one is thus led to the

formula

where the latter notation means that equality holds up to a non-zero rational number. Turning

now to the general case, where F/Q is any number field with ring of integers Of and

discriminant Dy, and letting o\,..., an denote the n complex embeddings, the value of
Çf(s) at 5 2 is given as

2/ (2) ~ 7r2'' l+'-'x/[/2/7| det (D(oj (ç'r ))/,r=1,., (16)

where çi,... are suitable elements of F. We thus recognize that the special value of
Çf (v) at.s =2 can indeed be expressed in terms of dilogarithms evaluated at distinguished
elements of F.

3.4. Zagier's conjecture. In order to state this conjecture about the values of the Dedekind
zeta function Çf(s) of number fields F at positive integers s — m, we introduce the mth
polylogarithm by generalizing the series expansion (8) of the dilogarithm to

Lim(z) := (zeC:|z|<l),
n=1
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and - in analogy to the Bloch-Wigner dilogarithm - the corrected function

j 2j ß \
X ~~T 'ogdziy Li«i -jOO),
.,=<)

7- 7

where Re„, equals the real or the imaginary part, when m is odd or even, respectively, and

Bj refer again to the Bernoulli numbers. One immediately verifies that

C\{z) — log(| 1 — z|) and C2(z) D(z).

Letting n+ := r\ + r2 and := r2, as well as ± (—(and thus (—1)'"),
Zagier's conjecture (see |8|) then states that

u, {m) ~ tt"'" 1 v^fTvTdet (Cm{pj{£k))j,k=\ «±)l (17)

here Dp is the discriminant of F. a j denote the r\ real and the r2 complex embeddings of
F, and Ç\, ç„.( are suitable elements of F. It is straightforward to check that Zagier's
conjectured formula (17) coincides with formulas (15) and (16), if m — 1 and m 2,

respectively. This conjecture has been proven for w 3 by A.B. Goncharov (see |5J). The

general case remains open to this date and is the subject of current research.
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