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Logarithm and dilogarithm

Jiirg Kramer and Anna-Maria von Pippich

Jiirg Kramer ist Professor fiir Mathematik an der Humboldt-Universitiit zu Berlin. Sein
Hauptforschungsgebiet ist die arithmetische Geometrie und die Theorie der Modul-
formen. Dariiberhinaus ist er an Fragen zur Mathematikausbildung von Studierenden,
Doktoranden und Lehrkriften interessiert.

Anna-Maria von Pippich ist Juniorprofessorin fiir Algebra und Zahlentheorie an der
Technischen Universitdt Darmstadt. Thr Hauptforschungsgebiet ist die Theorie der au-
tomorphen Formen, insbesondere in Verbindung mit zahlentheoretischen Fragestel-
lungen.

1 The logarithm

1.1. A naive sequence. Following D. Zagier, we begin with the sequence of non-zero com-
plex numbers determined by the requirement that each element of the sequence is given
as one divided by the product of the left-hand and right-hand neighbors of the element in
question. Denoting our sequence by a1, az, as, a4, as, . . ., the defining properties of the
sequence give

1

ay = ——
ayas

2

Im nachfolgenden Beitrag erinnern die Autoren zunichst an die geometrische Deutung
der Funktionalgleichung der klassischen Logarithmusfunktion in Termen der hyperbo-
lischen Distanz zwischen zwei Punkten der hyperbolischen Ebene. Darauf aufbauend
wird in Folge der Dilogarithmus eingefiihrt und dessen Werte als hypcrbohsche Vo-
lumina idealer hyperbolischer Tetraeder im hyperbolischen 3-Raum erkannt. Es zeigt
sich dabei, dass die Funktionalgleichung des Dilogarithmus der Zerlegung gewisser
hyperbolischer Korper in solche ideale hyperbolische Tetraeder entspricht. Im letzten
Teil werden die bis dahin gewonnenen geometrischen Erkenntnisse zur Berechnung
spezieller Werte der Dedekindschen Zetafunktion von Zahlkérpern mit Hilfe von Lo-
earithmus und Dilogarithmus genutzt. Dies fiihrt zu einer bis heute ungeldsten Vermu-
tung von D. Zagier zur Beschreibung der Werte Dedekindscher Zetafunktionen an den
ganzzahligen Stellen.
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hence the first three members of the sequence are ay, a2, (aja2)~". The next member of
the sequence is now determined as

| 1 1
a3 = —— <& qag4= = — =aj.
azay aaz  ax(aiaz)
For the fifth member we thus compute
1 1 1
ag = — — 4as= = e =
asas azay  (a1a2)'ay

From this we conclude that the above requirement leads to the periodic sequence

1 I
ay,az, —,dady, az, 9 e
aja ayaz

(D
with period 3; here ay, az are non-zero complex numbers.

1.2. The logarithm. Based on the sequence (1), we now ask for smooth, complex-valued
functions f on C* := C\ {0}, which are characterized by the property that the sum of the
values of f at any three consecutive elements of the sequence (1) is equal to zero, i.e., the
function f satisfies the functional equation
fan+ 1@+ s(5) =0 @
ayaz

From complex analysis we know that the principal logarithm Log(z) (z € C \ R<p) with
the power series expansion

Log(z)z—z(l_nz)n eC:lz—1<1) 3)

n=1

solves the functional equation (2) up to integral multiples of 2z i (see, e.g., [4]). By replac-
ing the principal logarithm by its real part, i.e., by

Re(Log(z)) = log(|zl),

we obtain a solution of the functional equation (2), which is unique up to scaling. By the
normalization condition f(e) = 1, the solution becomes unique.

1.3. Geometric interpretation. We now give a geometric interpretation of the results de-
rived in the preceding two sections. The underlying geometry is given by the hyperbolic
geometry of the hyperbolic plane (for which we refer to [2]) in the model of the upper
half-plane

H? = {z eClz=x+1iy,y> 0}
equipped with the metric

dz
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The isometry group of H? equipped with the metric dsnyp is given by the special projec-
tive linear group PSL,(R) acting by fractional linear transformations on H? as follows:
Fory = (45) € PSLy(R) and z € H?, the image y (z) € H? is given by

az+b

r@) = cz+d’

The hyperbolic distance between two points z1, z> € H? is defined as

disthyp(z1, 22) 1= ir'}f/ dshyp (4)
n

where the infimum is taken over all continuously differentiable paths #: [0, 1] — [?
satisfying 7(0) = z; and n(1) = z2. In order to give an explicit formula for the hyperbolic
distance (4), one shows in a first step that the hyperbolic distance from the pointii; to i,
with A1, 42 € R and 42 > 4 is given by log(42/41). In fact, this is easily seen: Given a
path #(t) = x() +iy(t) (t € [0, 1], 5(0) = iA1, n(1) = i A7), we have

1

1
! 2 ’
distnyp(i 41, i12) = in / VYW +y 02 /ly(rn
0

n y() y(t)
0

[ -m(2).

since the infimum, in fact the minimum, is achieved for the path satisfying x’(z) = 0 for
allz € [0, 1], i.e., for the path 5(¢) = iy(¢). In a second step one then proves the existence
of an element y € PSL,(R) with the property y (z1) = i4; and y (z2) = iA2, where
A1, A2 € R with 42 > 4y satisfy

Ay 1+|§::Z‘ 5)
PR =Y
Z1=22

Using the invariance of the hyperbolic distance by the action of PSL,(R), we find that the
hyperbolic distance between z; and zo equals the logarithm of the ratio A2/4; given by
formula (5), i.e., we have the relation

disthyp(z1, 22) = log(42/41).

After having “rediscovered” the logarithm as the hyperbolic distance between two points
in the upper half-plane H?, we next provide a hyperbolic geometric interpretation charac-
terizing the naive sequence (1), which underlies the functional equation of the logarithm
(see Figure 1).

To this end, we recall that the boundary of the upper half-plane H? is given by the real line
IR, the x-axis, together with the point ioco at infinity, i.e., the real projective line P! (R).
Furthermore, the geodesics in the upper half-plane are given by Euclidean semicircles in
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ioco
e
H?2 y
pa) =ik g )
|
(1) =il e Ny
L
. ® X
0 z; z
Figure 1

HZ2, which are orthogonal to the x-axis, or straight lines in 2, which are parallel to the
y-axis. Therefore, the unique geodesic passing through z; and z> is given by the semicircle
L from z| to z as depicted in the preceding figure. Using an appropriate y € PSL»(R),
the geodesic £ can be mapped onto the geodesic from O to i oo such that y (z;) = iA; and
y(22) = ida.

Let us now connect our geometric insight to the naive sequence (1). For this we give
ourselves three complex numbers z1, 22, z3 € H? lying on a hyperbolic line £ as depicted
in Figure 2.

H?> y

y(z3) =iiz ¢

y(2) =il2 e 22

<1
<3

Y1) =il e L

Figure 2

Denoting by [z, zk] (j, kK = 1,2, 3 with j # k) the closed segment of £ consisting of all
the points of L lying between z; and z4, we may assume without loss of generality that
72 € [z1, 23] as shown in the above figure. By means of formula (5) we are now able to
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determine real numbers
A1, A2, A3 € R satisfying Ay < A2 < A3

such that y(z;) = id; (j = 1,2,3) for a suitable y € PSL2(R). Now, we introduce
the positive real numbers a; := 4j11/4; (j = 1,2, 3), where the indices are to be read
modulo 3, that is,

Ao A3 Al
aa=—, =-—, a3=—.

A PPN
Since we obviously have az = (a; az)_', the sequence ay, az, az, . . . gives rise to the naive
sequence (1). The functional equation (2), i.e.,

A A A
log(ay) + log(az) + log(a3) =0 <<= log = + log . log |
Al A2 A
now becomes equivalent to the obvious additive relation among the hyperbolic distances
between the points z1, z2, and z3 lying on the geodesic £, namely

distnyp(z1, 22) + disthyp (22, 23) = distnyp(z1, 23)-

2 The dilogarithm

2.1. A more sophisticated sequence. Next, we slightly vary the construction of the se-
quence studied in Subsection 1.1 by switching from the multiplicative to the additive view-
point. More specifically, again following D. Zagier, we now ask for a sequence of non-zero
complex numbers characterized by the property that each element of the sequence is given
as one minus the product of the left-hand and right-hand neighbors of the element in ques-
tion. Denoting our sequence by ay, a2, a3, as, as, ag, az, . . ., the defining properties of the
sequence give
1 - an

a=1—aa3 <+— a3= .
a

hence the first three members of the sequence are a1, a2, (1 — az)/a;. The next member of
the sequence is now determined as

I —as ar+a —1
a3 =1 —aay <+— ag4= = :

az ayaz
For the fifth member we thus compute

_ajtay—1
1l —ay 1 ayay 1 —aq
as = 1 — asdas R e 4 as = = - =
as Tz a
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Turning to the sixth member of the sequence, we compute

l I—a|
1 —as "
as=1—aqa¢ <— ac= —

as T oaitar—1 = &=

ayan

It is now not a surprise that the seventh member in sequence is given by a>, namely we
have

1—a6 1—a|
ag=1—asa; <+— aj= =

=an.
as l—al 2
az

From this we conclude that the above requirement leads to the periodic sequence

l—a aiy+a—1 1—a l—ary ay+ar—1 1—a;
a17a23 G ) bl Salﬁaz, b 2 2" (6)
aq ayjaz an ai ayaz an

with period 5; here a;, a> are non-zero complex numbers.

2.2. The dilogarithm. In analogy to the situation of the first section relating the se-
quence (1) to the logarithm, we now ask for smooth, complex-valued functions f on C*,
which are characterized by the property that the sum of the values of f at any five con-
secutive elements of the sequence (0) is equal to zero, i.e., the function f satisfies the
functional equation

f(a|)+f(a2)+f(1 "“2) +f(“‘+—“211) +f(l "“‘) —0. (7

aj apaz

Inspired by the solution in the case of the previous section, namely the power series ex-
pansion (3) with z replaced by 1 — z, i.e.,

o0 n

—Log(l—z):Z% zeC: |z <D,

n=l1
we now consider the dilogarithm Li (z) defined by the power series expansion

X _n

Liz(z) := Zz—z zeC: |zl < 1) (8)

n=1

the definition of Li> (z) on the whole complex plane then follows by analytic continuation.
As in the case of the logarithm, this function is multi-valued and it turns out not to satisfy
the functional equation (7). However, a suitable combination of the dilogarithm Li>(z) and
the solution of the functional equation (2), i.e., log(|z|), leads to a positive answer of our
question. Consider the so-called Bloch—-Wigner dilogarithm D(z), defined as

D(z) := Im(Li2(z)) + arg(l — z) log(|z])
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forz € C\ R; for z € R, we put D(z) = 0. It can then be shown that the Bloch—Wigner
dilogarithm D(z) provides a solution of the functional equation

D(ay) + D(a2) + D(a3) + D(as) + D(as) =0 9)

for the generating members aj, az, a3, aq, as of the 5-periodic sequence (6), which is
unique up to scaling. For later purposes, we note that the Bloch—Wigner dilogarithm D(z)
satisfies several other functional equations, such as

D(l) = —D(z), D(l = 1) = D(z), (10)
Z Z

which are formal consequences of (9). For more details, we refer the reader to [9],
pp- 8-11.

2.3. Geometric interpretation. In analogy to Subsection 1.3, we now give a geometric in-
terpretation of the results derived in the preceding two sections. The underlying geometry
is now given by the hyperbolic geometry of the hyperbolic 3-space (for which we refer to
[3]) in the model of the upper half-space

H? :={(z,w) eCxR|z=x+iy, w > 0}

equipped with the metric

Vdx2 +dy? + dw?
w ’

dshyp :=

(11)
The line element (11) gives rise to the volume element

dx Ady Adw

d‘u hyp - 11)3

which allows to compute volumes with respect to the hyperbolic metric.

The isometry group of H? equipped with the metric dsnyp is given by the special projective
linear group PSL,(C) acting by fractional linear transformations on > as follows: For
§ = (fﬁ Z) € PSLy(C) and (z, w) € H, the image 7 (z, w) € HA is given by

(az + b)(@zZ + d) + acw? w )

Z, W) = ,
A ( lcz + d|? + |c|2w? lcz +d|? + |c|?w?

In analogy to the 1-dimensional case, we will now see that the Bloch—-Wigner dilogarithm
D(z) computes the hyperbolic volumes of certain bodies in H?.

To this end, we recall that the boundary of the upper half-space H? consists of the complex
plane C given by {(z, w) € H? | w = 0} and the point oo at infinity, i.e., it is given by the
complex projective line P! (C); to simplify our notation, we will write z instead of (z, 0)
for points on the boundary C C P'(C). Furthermore, the geodesics in the upper half-space
are given by Euclidean (possibly degenerate) semicircles in H>, which are orthogonal to
the boundary, as depicted in Figure 3.



H3

w=20

Figure 3

An ideal hyperbolic tetrahedron is a geodesic 3-simplex all whose vertices z1, 22, 23, 24
lie on the boundary PI(C) of H3. We denote it by T (z1, 22, 23, 24), which keeps track of
the ordering of the vertices and thus of the underlying orientation of the ideal hyperbolic
tetrahedron. We note that for a given y € PSL,(C), the 3-simplex

T(y (z1),y (2), 7 (23), 7 (z4))

is again an ideal hyperbolic tetrahedron of the same hyperbolic volume as 7' (z1, z2, 23, 24)-
Introducing the cross-ratio

(e o0 aa] im (z1 — 23)(z2 — z4) e PL(),
(z1 — za)(z2 — 23)

and choosing y € PSL,(C) such that
Y1) =00, y(z2) =0, y(z3) =1,
a short calculation yields
T(y (z1), 7 (22), 7 (23), 7 (z4)) = T (00,0, 1, [21 : 22 : 23 : 24]).

This shows that in order to compute the hyperbolic volume of an ideal hyperbolic tetrahe-
dron T'(z1, 22, 23, 24), one is reduced to calculate the hyperbolic volume of

T(00,0,1,[z1: 22 : 23 : 24]),

which looks as shown in Figure 4.

As predicted by the preceding consideration, the hyperbolic volume of T'(z;, z2, 23, 24)
depends only on the cross-ratio [z1 : z2 : 23 : z4]. A theorem going back to Lobachevsky
now states that this volume equals the Bloch—Wigner dilogarithm of the corresponding
cross-ratio, i.e., we have the relation

volyp(7 (21, 22,23, 24)) = D([21 22 1 23 © 24]),
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Figure 4

taking into account the orientation, namely, the volume is positive if the orientation is
and negative otherwise. From this and the definition of the dilogarithm we see that the
ideal hyperbolic tetrahedron T'(z1, z2, 23, z4) is flat if and only if the cross-ratio is real.
Furthermore, we see that the orientation of 7'(zy, z2, 23, z4) given by the ordering of its
vertices agrees with the orientation induced from H? if and only if the cross-ratio has
positive imaginary part.

After having “rediscovered” the Bloch—-Wigner dilogarithm as the hyperbolic volume of an
ideal hyperbolic tetrahedron in the upper half-space H?, we next provide a hyperbolic geo-
metric interpretation characterizing the naive sequence (6), which underlies the functional
equation of the Bloch—Wigner dilogarithm.

For this we give ourselves five complex numbers z1, 22, 23, 24, 25 lying on the boundary
PI(C) of H3. We then introduce the complex numbers b; = [z : ... 1 Zj ... z5]
(j = 1,...,5), where the entry marked with the hat has to be omitted, i.e., we consider
the cross-ratios

hh=lpimiaizxs), b= itiaisl bh=lz21:252s %],
bs=1[z1:220:235:25], bs=1z1:22:23:z4].

Now, letting

1 1 | 1
= = = 1 — e _— = l == === = — 12
a b a b as = as W by (12)

and reading indices modulo 5, it can easily be shown that the recursion formula
aj=1—aj1aj1 (j=1,...,5)

holds. For example, if j = 2, one has to show that a2 = 1 — aja3, which, using (12),
amounts to show that by = b1 b3. The latter equality can be immediately verified, since we



have

by -b3=1z2:23:24:25]-[21:22 : 24 : 25]
_ (22 —z4)(z3 —25) (21 —24)(22 — 25)
" (z2—25)(z3 —z4) (21 —25)(z2 — 24)
_(m1—za)zz—z5)
C @1—zs)es—z4)

[2 & %9 8 g § 23] =D

Consequently, the sequence ap,as, a3, as,as above gives rise to the 5-periodic se-
quence (0).

After these preliminary computations, we now find using the functional equations (10) that
D(b1) — D(b2) + D(b3) — D(bs) + D(bs)
1 1 ) 1 1 ) |
=i — =P 1l——} =D =}-B{1=—]—B] —
(bl ) ( b2 b3 b4 bs
= —D(a1) — D(az) — D(a3z) — D(as) — D(as) =0,

taking into account the functional equation (9). In other words, we have proven that the
functional equation (9) is equivalent to the following additive relation among the hyper-
bolic volumes of the ideal hyperbolic tetrahedra T'(z1,...,2j,...,25) (j = 1,...,5),
namely

5
D (=1 voluyp(T (1., 2y .2 25)) = 0. (13)

=

The relation (13) can also be checked directly geometrically by taking five complex num-
bers z1, 22, 23, 24, 25 lying on the boundary P! (C) of H3 and then verifying that the alter-
nating sum of the hyperbolic volumes of the five ideal hyperbolic tetrahedra

T(Zl,"'ﬂzj""izs)
vanishes. This fact can be seen quite easily, if we choose
21 =02 =g 23 = Ligy =00,25 =1,

where we can pick z' without loss of generality in such a way that it lies inside of the
Euclidean triangle determined by z1, 23, z5. We then find that the union of the two ideal
hyperbolic tetrahedra

T 20,28 205 25 )5 THE1. %25 B34 245 85)
equals the union of the three ideal hyperbolic tetrahedra
T{21..22, 235 %45 25) s T(21522,23:24525)5 T (21,225 T35 T4 £5);

from which the claimed relation immediately follows.
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3 Special values of zeta functions

In this section we illustrate how the logarithm and dilogarithm together with their geo-
metric interpretations presented in the previous sections as well as their generalizations,
called polylogarithms, can be used to compute special values of zeta functions attached to
number fields. However, in general, one is still far from having complete results and thus
these special values are to be viewed as mysterious quantities.

For this section, we assume that the reader has some basic knowledge of algebraic number
theory as one can find it for example in the book [6] of S. Lang.

3.1. Zeta functions of number fields. The Riemann zeta function ¢ (s) is defined by the
series

)= ni

n=I1

where s € C with Re(s) > 1. This function is known to have a meromorphic continuation
to the whole complex s-plane with a simple pole at s = 1 with residue 1, which can be
restated as

res;—10(s) = liml(s — 1}e(s)=1.

The Riemann zeta function encodes basic arithmetic properties of the integers such as
the fundamental theorem of arithmetic by means of its Euler product expansion and the
infinitude of the number of primes through its pole at s = 1.

The special values of ¢(s) at positive even integers have been computed already by L. Eu-
ler as
(_ l)m—l (27[)2m Bom

C(Zm) - 2(2m)' (m € N>0)a

where the B»,,’s are the so-called Bernoulli numbers, which are rational numbers. In other
words, the special values ¢(2m) are rational multiples of even powers of #, i.e., ((2m) €
Q[z%]. In contrast to the special values of ¢(s) at positive even integers, their values at
positive odd integers are still quite mysterious. For example, it was only in the 80s of the
last century that R. Apéry was able to prove that the special value ¢(3) is irrational (see
[1]). Although alternative proofs of this result have meanwhile been found, none of them
seems to generalize to other odd zeta values.

More generally, let now F/Q be a number field. The Dedekind zeta function ¢ (s) at-
tached to F is defined as

1
Cr(s) = Z N

aCOr

where again s € C with Re(s) > 1 and the sum is taken over all non-trivial integral ideals
a contained in the ring of integers Op of F'; here, N(a) denotes the norm of a, which
is given by the quantity |Or /al. One easily checks that ((s) = ¢g(s). As in the case of
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the Riemann zeta function it can be shown that the Dedekind zeta function ¢z (s) has a
meromorphic continuation to the whole complex s-plane with a simple pole at s = 1.
Also in this more general case, the Dedekind zeta function encodes important arithmetic
information about the ring of integers OF, such as the unique factorization of integral
ideals into powers of prime ideals and the infinitude of the number of prime ideals. As
will be explained below, it is expected that the logarithm, dilogarithm and, more generally,
the polylogarithms will allow to “compute” special values of Dedekind zeta functions of
number fields at positive integers.

3.2. The logarithm and the residue of ¢y (s) at s = 1. In this paragraph we will show
how the logarithm and its geometric characterization by means of hyperbolic lengths of
geodesics in the upper half-plane I presented in the first section is encoded in the residue
of the Dedekind zeta function ¢z (s) at s = 1. To illustrate this phenomenon, it is best to
start with the case of a real quadratic extension F = Q(+/D), where D € N is a positive
discriminant, i.e., D = 0 or 1 mod 4. The group of units O of the ring of integers O of F
is generated, modulo sign, by the so-called fundamental unit ¢p > 1. By the basic theory
of integral binary quadratic forms it can then be shown that there exists y € PSL»(IR) such
that

L ED 0 —1
gy (0 l/f.‘D) y " € PSL»(Z),
and we see that the hyperbolic distance between the point z := y (i) € H? and d(z) € H?
is given as

distnyp(z, 3(z)) = distnyp (i, £Hi) = 2log(ep).

Projecting the geodesic line from z to J(z) to the quotient space PSL, (Z)\H?, it thus turns
out that we obtain a primitive closed geodesic of hyperbolic length 2 log(ep). The detailed
analysis in [7] in fact shows that all the primitive closed geodesics on PSLy(Z)\IH? are
obtained in this way, where a fixed real quadratic extension F = Q(+/D) together with its
fundamental unit ¢ p gives rise to exactly A different primitive closed geodesics, with h g
denoting the class number of F. The residue of ¢ (s) at s = 1 now counts the lengths of
all the A g primitive closed geodesics weighted by the square root of the discriminant, i.e.,
we have the formula

2hp lOg(SD)
vD

Turning now to the general case, we let F'/(QQ be any number field with ring of integers Oy
and discriminant Dg. It is known that F comes with | real embeddings and ry pairs of
complex embeddings, where [ F : Q] = r; + 2r». Dirichlet’s unit theorem now states that
the group O; of units modulo the roots of unity in O is a free abelian group generated by
r:=ri+ry—1units &, ..., &-. Denoting the real and half of the complex embeddings by
O1, ..., 0 +r,» the residue of {7 (s) at s = 1 is finally given by the so-called class number
formula, which reads

res;=1F(s) = ‘!i_rfll(s — D)¢r(s) = (14)

2" 2n)2hp det ((log o j (€x)|%) j k=1
wp /|Dr| '

ress=1{F(s) = \ILmI (s — 1)¢r(s) =
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where wp is the number of roots of unity in 0,’,5 and e; = 1, if ¢ is a real embedding,
and ¢; = 2 otherwise. One easily checks that formula (14) is a special case of the general
class number formula (15), and we also recognize that the special value of (r (s), or rather
its residue, at s = 1 can be expressed in terms of logarithms evaluated at distinguished
elements of F.

3.3. The dilogarithm and the value of £ (s) at s = 2. In this paragraph we will show how
the dilogarithm and its geometric characterization by means of hyperbolic volumes of ideal
hyperbolic tetrahedra in the upper half-space H? presented in the second section is encoded
in the value of the Dedekind zeta function ¢z (s) at s = 2. To illustrate this fact, it is best
to start with the case of an imaginary quadratic extension F' = Q(s/—D), where —D € Z
is a negative discriminant, i.e., D = 0 or 3 mod 4. It is then known that the Bianchi group
PSL,(OF), with O denoting again the ring of integers of F, acts strongly discontinuously
on H? and the resulting quotient space PSL, (O )\H? is an oriented hyperbolic 3-orbifold
(i.e., a hyperbolic 3-manifold with the exception of finitely many singular points due to
the torsion elements of PSL2(OF)) of finite volume. This hyperbolic volume has been
computed by M.G. Humbert, who found the formula

DND

472

volhyp (PSL2(Op)\HP) = r(2).

Since, on the other hand, every hyperbolic 3-manifold or 3-orbifold can be triangulated
into ideal hyperbolic tetrahedra, the volume volyyp (PSLZ(O F)\H? ) can also be expressed
in terms of special values of dilogarithms. For example, for D = 3, one is thus led to the
formula

2 1++/-3 1+ /-3
C@(J—})(Z):EEOJ?D(#) «5; 752\/50(“'2—),

where the latter notation means that equality holds up to a non-zero rational number. Turn-
ing now to the general case, where F/(Q is any number field with ring of integers Of and

discriminant D, and letting o1, .. ., 0,, denote the r» complex embeddings, the value of
Cr(s)ats =2 is given as

@ ~ x4 /1D | det (D (o (&) k=1,...r2) (16)
where ¢, ..., &, are suitable elements of /7. We thus recognize that the special value of

¢r(s) ats = 2 can indeed be expressed in terms of dilogarithms evaluated at distinguished
elements of F.

3.4. Zagier’s conjecture. In order to state this conjecture about the values of the Dedekind
zeta function ¢ (s) of number fields F at positive integers s = m, we introduce the mth
polylogarithm by generalizing the series expansion (8) of the dilogarithm to

o @] z”
Limiz) = an (zeC: |zl <D,
n=I
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and — in analogy to the Bloch—Wigner dilogarithm — the corrected function

m—1 2] Bj .
Lm(z) .= Rey ( Z i log(lzl)f Lijp—j (Z))’
Jj=0 ’

where Re,, equals the real or the imaginary part, when m is odd or even, respectively, and
B refer again to the Bernoulli numbers. One immediately verifies that

Li(z) = —log(]l1 —z|) and Lz(z) = D(z).

Letting ny :(=r1 +rand n_ := rp,as wellas £ = (—1)’"_' (and thus F = (—1)™),
Zagier’s conjecture (see [8]) then states that
Cr(m) o a7/ |DE | det (L (0 (k) jk=1,...n4); (17)

here Dy is the discriminant of F', o; denote the | real and the r; complex embeddings of
F,and ¢, ..., &, are suitable elements of F. It is straightforward to check that Zagier’s
conjectured formula (17) coincides with formulas (15) and (16), if m = 1 and m = 2,
respectively. This conjecture has been proven for m = 3 by A.B. Goncharov (see [5]). The
general case remains open to this date and is the subject of current research.
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