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I Elemente der Mathematik

Walking on rational numbers and
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Eine in Basis vier notierte reelle Zahl kann als zweidimensionaler Gitterweg interpretiert

werden: Man startet im Ursprung und betrachtet die Ziffern 0, 1, 2 und 3 je als

Schritt nach rechts, oben, links und unten. Umgekehrt kann man jeden Gitterweg, der
nicht mit einer Bewegung nach rechts beginnt, in entsprechender Weise als reelle Zahl
auffassen. Insbesondere lassen sich beliebige Schriftzeichen, die man sich als Gitterpfade

gezeichnet denkt, in reelle Zahlen verwandeln. Die Autoren der vorliegenden
Arbeit geben eine Formel an, die als Input einen Satz aus gegebenen Schriftzeichen
hat, und als Output eine rationale Zahl liefert, die genau diesen Satz ins Gitter schreibt.
Zudem wird eine Variante von Tuppers Formel diskutiert, die mit Pixeln statt mit Pfaden

arbeitet: Tuppers Formel kann in Abhängigkeit einer natürlichen Zahl jede Graphik
in einem 106 x 17-Display darstellen, inklusive die Formel selber.
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1 Walking on numbers

In [1], Aragon Artacho, et al. describe the process of a walk on the plane using the digits of
a number base 4.1 Consider a number x written in base 4, x dndn~\ d$.d-\d-2
We start at the origin in the Cartesian plane. If dn — 0 we move a unit to the right, if
it is 1, we move a unit upwards, if it is 2, we move a unit to the left, and if it is 3, we
move downwards. We continue this process with dn-\, dn-2,.. d\, do, d-\,..., and

this process creates a "walk." For example, the number 419636198 is rewritten in base 4

as 1210003020332124. The walk would look like Figure 1.

Figure 1 Walk for the number 419636198, which is 1210003020332124.

In [1], they show several other walks, including walks on it and e using 100 billion digits.
The one that inspired this paper is the following: Consider the rational number

Q 10490122716774994374866192805654486016175673584915608761668483808431443

58447252875551629247027759555570453715679313058783247729772021770818187

96590637365767487981422801328592027861019258140957135748704712290267465

1513128059541953997504202061380373822338959713391954

/
16122269626942909129404900662735492142298807557254685123533957184651913

53017348814314017504539969445479353012064383327267097007933052629203035

09209736004509554561365966493250783914647728401623856513742952945308961

2268152748875615658076162410788075184599421938774835.

The walk on this number is Figure 2.2

Q
Figure 2 Walk on Q.

In Section 2 we describe an algorithm that, given any sentence er, it can find a rational
number whose walk creates an image that spells out a. We do something similar in Section
4, but instead of using walks as our starting point we use Tupper's self-referential formula,
which is described in Section 3.

'They describe the process in any base, but for the purposes of this paper, we'll focus on base 4.

2This figure comes from [1], As the authors explain, the color in this walk indicates the path followed by the

walk. It is shifted up the spectrum (red-orange-yellow-green-cyan-blue-purple-red).
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2 Writing using walks

For each letter of the alphabet a, we wish to find a rational r whose walk produces an

image of a, just as the previous rational has produced the Q in Figure 2. How do you find
the rational for a particular letter? First, find a string of digits that "spell out" your letter
in such a way that you finish where you started. You can do this by hand. For example, for
the letter "D", you can draw a stylish D as in Figure 3, then translate every movement as

digits. In this case we obtain 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1,

2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 0, 0, 0, 0,

3, 2, 3, 0, 0, 3, 2, 3, 0, 0, 3, 2, 3, 0, 0, 3, 2, 3, 0, 0, 3, 2, 3, 0, 3, 2, 3, 0, 3, 2, 3, 0, 3, 2, 3,

0, 3, 2, 3, 0, 3, 2, 2, 3, 0, 3, 2, 2, 3, 0, 3, 2, 2, 3, 0, 3, 2, 2, 3, 0, 3, 2, 2, 2, 2. Now, grab the
first digit and multiply it by then add to it the second digit multiplied by and so on.
In our example we'd have

/1 \ / 1 \ /1\ 6.38477... x 1074
<5 2 - +1 -, +1 - _—3 (l)2.32588... x 1074'

[\
Figure 3 Walk on the ratio- ^ §

nal S creating the letter "D". $ Jj

1/
If we do a walk of rS with 124 steps, then we'll get Figure 3. However, this rational has only
124 significant digits base 4, i.e., every digit afterwards is 0. Therefore, if you consider the
"infinite walk", then it will not spell "D" anymore, it will start heading eastwards, creating
an underlined "D". To fix this, we create copies of the digits that form one loop of "D" and

glue them every 124 steps, which is equivalent to multiplying ô by powers of 4^124 and

adding them up. We get the geometric series:

V — S + 4 <5 +
/ \2 I 4.124U~\ ô+...= L_a=_l S. (2)
V / i _ 4-124 4124 _ y

v '
V2 „

1

1 _ 4-124— 4124 _ y

The walk for V for any number of steps > 124 will create Figure 3.

Now, suppose that for every letter a (a variable representing an uppercase letter from the

English alphabet), you find a rational ra and an integer na, such that the walk of r„ with
na steps spells the letter a in such a way that the last step ends at the origin. We will also
define rbiank «blank 0, i.e., representing a blank space. Finally, suppose the base of
each letter is at most w, i.e., the length of a blank space is w.

Theorem 1. Suppose we are given a sentence a which we'll write as a ai«2«3 • «A-.

where a, is a letter or a space. Let

k

n — «a,- + 2(k — l)w, (3)

3Because of the lentgh of many numbers in this paper, we will restrict most of them to their first six digits. In
the case of fractions we also keep the power of 10 to show how many digits a number has. The complete numbers

can be found in the Appendix.
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and

2-4h (1 4^^)
r V — ^^ + -A f. (4)

4(zr='.s+»)) 3.4(zî=.(».y+«D))

Then a walk on r of length n spells out ct. Furthermore, a walk on 4„4_
j r of any length

m > n spells out a.

Proof The idea is to focus on the digits first. We have /?„, digits to represent ai, then we
include w zeroes to give space for the next letter. We follow this with n„2 digits of the
second letter, followed by w zeroes, and so on. When we "write" the last letter, we have
used nai + nai + • - • + nak + (k — i)t« digits. But the walk is (k — l)w steps to the right.
To get back to the origin, we need to take (k — 1 )v> steps to the left, i.e., we need (k — 1 in

2's in the digit expansion. Therefore we've used n digits where n is the same as in (3).

Now we want to find the rational that has this digit expansion. To account for the letter a,
in the desired position, we need to multiply it by 4~x where x is the number of digits used

so far. For ai, we've used 0, for ao we've used + w, for 03 we've used (na, + w) +
(iia2 + w), and in general for we've used (n«y + '") Finally, we have to take into
account the final (k — l)w 2's. To do this, we can think ofrait+1 0.22 • •• 24 and place it
after all the digits so far, which have been Xf=i' (nm + ">) + nak Therefore

k

r _ y fn I
r"k+1

i=\ 4fc/='l ("«;+<">) 4(z? I ("«,• +»)-!«)

_ ^ rai 4"> /2 2 2 2 \
~ h 4(^=1

+
4(y ,K +"')) \4

+
42 + 43

+ " ' + 4(*"l)«' '

By completing the geometric series we can verify this matches (4). By construction, the
walk for r with n steps spells out 0. Furthermore, by the same process as that in (2), we
find the rational whose infinite walk spells out 0.

Theorem 1 suggests how to build a program to find a rational number for any sentence. As
an example, a certain rational

3.47783... x 103195

r" ~ 5.42542... x 103195'
(5)

creates Figure 4.

H H V THF FORCE B F U T T H V Oil
Figure 4 The walk for r„ as in (5) after 10000 steps.
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3 Tapper's self-referential formula

In [4], Tupper introduced the formula4

l-
< [mod 2"17W-mod(b'J,i7)) 2)J (6)

This formula has the amazing property that if you graph the equation5 for 0 < x < 106

and k < y < k + 17 for k as in (7)6 you get Figure 5.

Figure 5 Graph of (6) in the range 0 < x < 106 and k < y <k, + \l.

k =4858450636189713423582095962494202044581400587983244549483093085061934704708809

9284506447698655243648499972470249151191104116057391774078569197543265718554420

5721044573588368182982375413963433822519945219165128434833290513119319995350241

3758765239264874613394906870130562295813219481113685339535565290850023875092856

8926945559742815463865107300491067230589335860525440966643512653493636439571255

6569593681518433485760526694016125126695142155053955451915378545752575659074054

0157929001765967965480064427829131488548259914721248506352686630476300. (7)

It turns out that the formula doesn't only graph itself, by considering different values of k,

we can graph anything that can be represented by pixels in a 106 x 17 table. For example,
a certain value

k0 1.4452... x 10536 (8)

gives the interval in which the graph looks like Figure 6.

a...jLjLtÊÉÛiÛTPPI rxH r*M FTM
Figure 6 Graph of (6) in the range 0 < x < 106 and Icq < y < ko + 17.

The main reason why we can build anything in a 106 x 17 grid is the following lemma:

Lemma 1. Let k Ilk' for a nonnegative integer k' < 2106x17. Suppose we write k' in
binary asfollows:

105 16

axlm+n2xlm+n. (9)
m=0n=0

4The formula was given as an example of a formula that graphing software had difficulties with, but Tupper's
graphing software can handle.

5 By this we mean that the point (x, y) is painted black if it satisfies the inequality and not painted if it doesn't.
6In [2] and many other places, the value of k is given differently because of the convention in computer science

that positive y go downwards.
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^mod (|2LJ 2-17 W- mod (W,17)j 2^j flft> (10)

for b 17 UJ + mod(L.yJ, 17).

Therefore, the point (x, y) is painted whenever a/, 1 and not painted when at, 0, i.e.,

it depends only on the binary expansion ofk'.

Proof. Let \x\ i and LyJ j — Ilk' + j' for some 0 < j' < 16. Then J k',

j' mod(L;yJ, 17), and b 17/ + j'. Now

105 16

2-17W-mod (LvJ,17) ^2-17'-7' £ Ya^m+n2Xlm+n-Xli-]'
^

m—0 7—0

When we consider mod 2, we can eliminate any term where the exponent of 2 is at least

1, i.e., we're left with exponents satisfying 17m + n — \li -Ï < 0. When we take the

floor, we exclude any of the small exponents because 1/2 + 1/4 H hl /2e < 1 for any
finite c. Therefore the only exponent of 2 we allow is 0. Hence 17m + n — 17/ — j' 0.

This implies n j' mod 17, but both n and j' are between 0 and 16, so n j', and then

m i, which is what we wanted to prove.

4 Writing using Tupper's self-referential formula

From Lemma 1 we can extrapolate an algorithm to find a k to build any picture in a

106 x 17 grid. Indeed, write a 1 on any unit square that is painted black and a 0 otherwise.
Now starting at the square with bottom-left corner (0,0), read the digits from bottom to top
on each column. This binary number (read from right to left) will be k' and so k — Ilk'.
Problem: For a given sentence, find the integer k such that the graph of Tupper's formula
looks like that sentence for 0 < x < 106 and k < y < k + 17.

As in the walk example, the key is figuring out how to do a letter first. Let's demonstrate
how to do the letter a. Consider Figure 7. We read the number as 11101 10101 11111. To

transform it into a number that fits in the 106 x 17 grid, we need to fill in the necessary
0's, which is equivalent to multiplying numbers in the ^-column by 217^~1\ Therefore,

we associate the letter "a" with the number

17((l+2+4+16) + (l+4+16)2l7 + (l+2 + 4 + 8 + 16)234) (11)

Figure 7 Breaking down the letter "a" in binary.

We can now move a letter around the grid by multiplying it by 217m+" to place it where
the bottom-left corner of the letter is (m, n). If we create all letters with a height of at most
5 squares and width of at most 5 squares (the letters "m" and "w" need 5 squares, and the
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rest need 3), we can then fit up to three rows of letters to spell a short sentence. Given

a letter a, let /(a) be the number we associate with a with bottom-left corner on (0, 0).
We'll let /blank 0 and for letters with width 3, we'll multiply their numbers by 217,7 to
create a buffer between letters.

Theorem 2. Given a sentence a «i«2 • fik, where a, represents a single letter or a
blank space and k < 63, we use the following formula to figure out the value of k for the

range where the plot of Tupper's formula is a:

min(21,&) min(42,&) k

^ 2850-l)+12y(a.)+ ^ 285(''"22)+6/(ai)+ 285('-43)/(a,). (12)
i=l i=22 i=43

Proof Each letter fits in a block of width 5 and height 5. To move from one letter to the

next (to the right), we need to multiply by 217*5 285. This is where the 85's in the

exponents come from. The reason we add 12 and 6 (depending on how many letters we
have) is because the first row consists of numbers in the top "strip" (k + 12 < y < y + 17),

so we have to multiply by 212 to move upwards. The numbers in the middle strip (k + 6 <
y < y + 11) need a shift of 26, and the bottom row needs no translation. The formula
follows.

As an example of finding a k for a particular phrase, Figure 8 is the plot of Tupper's
formula for 0 < x < 106 and k\ — y < k\ + 17 for a certain

k\ — 6.20234... x 10461. (13)

i' n sorry daue r m
aFraid i can- L do
that

Figure 8 Graph of (6) in the range 0 < x < 106 and k\ < y < k\ + 17.

Appendix: Full decimal digit expansion of constants in the paper.
The value of S in (1) is

S =6384779382043951036217348661253680515005885357484535471589654514956414794662

721006368542597248986985323127416704519810815261318970154183

/
2325883917745942049757836185241614509931652354199417792900768637378045721962

8733546438113622840434097944400691400517693873107252115668992. (14)

The value of.ko in (8) is

*0 =1445202489708975828479425373371945674812777822151507024797188139685490

8873568298734888825132090576643817888323197692344001666776474924212512

7The only letters not multiplied by 217 are "m" and "n"
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8995265907053708020473915320841631792025549005418004768657201699730466

3833949016013743197155209961811452497819450190683595005106578043256408

0119786755686314228025969420625409608166564241736740394638417077453742

7319606443899923010379398938675025786929455234476319291860957618345432

2480049217280333494198162067498544720381939397385138489604767597826733

13437697051994580681869819330446336774047268864, (15)

The value of k\ in (13) is

ki =6202342045523518696372190728132145377913289497819263812843155643364944

0461939615515996102292719598762206682015817244444562918664906697777197

5007949955351598702405129648571930754026169504789347614953307622064658

7662203381308047340029024837030531000814297140117523848644113896733785

5616409282734138890208876466646383764272086299397454808405688789312744

7832949435883695715278636348898143061593729742606126050532003884145813

574480854000747397523613796592272870866944. (16)

The value of rG in (5) is

ra
3477838176632809766274027652998361070109305198798526822993346685629729543816284212324168906789690775547148059136594

5650708415322762044997606235997855677049782095397960796362753436599841518280673260542696144332265810919906062866086

7300310028185786493083481099698081973220156381116333517929438873090176653898133176194667067667046684812642590682921

7676064926655968063069943083237148802645189802820278834066659917243976811957017195714300536678576755193478646225748

0029718138397905599265918142472752199419439333830496840583774337111547232356603947260968981693338103053145854635253

6556487569357115640975974485570693I72272764417938367108726707881765559137578753568579282574517818911608998412741042

0227212620869607503190020705525648927347045787545010799076183740241404923921318243481736923524124663788869995658064

979237623823793040796245032038915964365542425983861767038136342582I742408854318599877016505639048938I02659648790392

9595397634307377756861919915276546513631911373910771937588542354894963935837136025758958018813262204515835086096680

5708164505804035890264351831753362652746839651784749459769618297620283942247979473521463646695449617575428923630172

0483591538711675276566969776077077093216794342308880360116044571717992965087557491510480694730625476830869629084918

033015243529544452231709225676345013193266498024410437654912451671971313530414023800859264753806887I086358474426810

322883927506272987073696326433185009256918986839520373908359068734I84085584762165527664913I461408882329507967011133

9673513989596387755006734087403631374900979733345825183520000390763148149610355789986385442991553413321157523278681

45707766312317178218396132450634618877653742I468549629341430535973056324282084292I56094838I48745966820738942671834I

0208201125760638630177927567438294560420792809301856500683312377648424972104939732771020518033666376045372522I52359

636532309374286025864873650975871534147216249979499715038337659916704164549556542324819193183070040I690739885894446

59251388287807825293324654190115345331681667327032120207244203305407659148087I9296089874268534962295074250221700319

4354384010924295515836192696117735 8364073534329151207431065750433578280964784754265 84678135447571530015321875975666

0288499555262323407672275144428184247080572013967367202580538705898188934186489884901842932385285873056974563406043

2972003424454777927419274342586200406369883986949725285622098211132577303257888674921256677207569164691929862742553

6434760361740959640882424911067801423858038854691012806455532141473569316256449253261282819184164210728465538046I28

8689316433179357074775456515481274301511980843961573141008058309365269614398459837204683190833300361309048467141298

7077183501524879707368429696020266759574384790866466734735759122149901064852517874055671305612116400142877895886450

1717055895264820300249217342710966276085484922766003610831279480622647998891816267884673999729550256532945744911484

645733135631057611761752216260411951296540801078437899760770086345I72445086293207674352782398107651511216442200192I

680189222I05049395620318339597314825921238685959879563451291529889890533694897395604445227224153243I935859I3I543491

8841290611039546092076535887617550365638779065363723042885225828369392365302807084634122922

/
5425427555547183235387483138677443269370516110125718034418458072780400020660097464368420331167768059210326095280700

7960754517818980320913237680771539405202704824855426057414759118003163672774854I420239843716643711478I6596771028104

6441014848078122087947108444254899832081659029137741969600347998581332358020366378254707477828257293605011341272917

7555747527995632047517011038746128120784347825211963664998369471837665640062502456285346080810630834125801925184520

2625907527220125563925851141313331030922107272915406124790182288452890603674783060337942569320897590240195578623903

95661572005533766512986259993770155713871I04684704890153438758597565922203766335415142118372693980I0309207318883562

6661594155820595537918980228922993377013997290067594729152329146585615037257856776126270118053463580693713572941709
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0234335508300132571024621930514890212320934438015747210297144734254112822232392753999420252062509544044913507097587

9350699695390168912767463858081679059061108453821615559680371903283785451415371400938993626727592450435669695632669

7254222479018247794025921399900915178303441159892932368904241515358090051156613040271864216857817861614058082054879

7992961270430349541616758800746625539427565309875638214927919257745396009984319529064787174938772005587710967554787

3134637767111202690659149688125290400377854774888701800589697431906307040676654222644000854136099592624341159355680

4025055285850722385200868824064066076467668623572504966498893887720846592451499855656864232341936775024254014988573

6479995630540608861215015614298371308536980538926684840420124076706834851544084593920349240191074869574272723680521

712704704986992030133005010816103462841235952948137450752843778371796I628384774969135064191568538488550802164466946

2991844172716763186432074166709520943957216137007438680496257872185964930482173472798553657122383518454992612482965

8983430312485656075937606211310154685225690149806271811259712611252549777641482169337757296336319039098051110001043

7499227486471556829577571187480183096203689144604478969275431212534506308782256889985344653287072554683775069061486

3014073442952271232361355689066831264378429515802977509102274184384658882941102930608058230829056588956526453972913

5174248235942763565173944771076327253058869928258224619285181326402922888853044020007731096127030815289259831325582

5255354353810146217297245345948544438608118775507870315659930862311032719187735199457377847675540579010031134555663

4489008835672563900761318061355322849160270301707208801750032777202061389610811502156139259718144929520269648838872

0466980806627099676908203772701028988981196334425767237037978129102064210173720253085972283392852129043684301723824

2526468727429343973246435674499354269034727279971334516277822171422775378729827488841283446462926242824176152611082

7525355700871671055020654492230456283388123851578103617271263271404921176203093075586296285974629333519569598503406

2164519084107133103865309775307272676431232643151623368126225771314148471748923659994901815532321569291863200955776

1945338825314444239627509164817263099215974450756080971015744259843605203901279813501743110877702438536565400720937

3657055236584191717148472650721961987021467849755631867227974194334896125257314027790401535.
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