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Eine in Basis vier notierte reelle Zahl kann als zweidimensionaler Gitterweg interpre-
tiert werden: Man startet im Ursprung und betrachtet die Ziffern 0, 1, 2 und 3 je als
Schritt nach rechts, oben, links und unten. Umgekehrt kann man jeden Gitterweg, der
nicht mit einer Bewegung nach rechts beginnt, in entsprechender Weise als reelle Zahl
auffassen. Insbesondere lassen sich beliebige Schriftzeichen, die man sich als Gitter-
pfade gezeichnet denkt, in reelle Zahlen verwandeln. Die Autoren der vorliegenden
Arbeit geben eine Formel an, die als Input einen Satz aus gegebenen Schriftzeichen
hat, und als Ontput eine rationale Zahl liefert, die genau diesen Satz ins Gitter schreibt.
Zudem wird eine Variante von Tuppers Formel diskutiert, die mit Pixeln statt mit Pfa-
den arbeitet: Tuppers Formel kann in Abhédngigkeit einer natiirlichen Zahl jede Graphik
in einem 106 x 17-Display darstellen, inklusive die Formel selber.
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1 Walking on numbers

In [1], Aragén Artacho, et al. describe the process of a walk on the plane using the digits of
a number base 4.! Consider a number x written in base 4, x = d,d,_1 .. .dod_1d—>....
We start at the origin in the Cartesian plane. If d, = 0 we move a unit to the right, if
it is 1, we move a unit upwards, if it is 2, we move a unit to the left, and if it is 3, we
move downwards. We continue this process with d,,—1,d,—2,...,d|,dy,d—1, ..., and
this process creates a “walk.” For example, the number 419636198 is rewritten in base 4
as 1210003020332124. The walk would look like Figure 1.

Start  End

Figure 1 Walk for the number 419636198, which is 1210003020332124.

In [1], they show several other walks, including walks on 7 and e using 100 billion digits.
The one that inspired this paper is the following: Consider the rational number

0 =10490122716774994374866192805654486016175673584915608761668483808431443
58447252875551629247027759555570453715679313058783247729772021770818187
96590637365767487981422801328592027861019258140957135748704712290267465
1513128059541953997504202061380373822338959713391954
/
16122269626942909129404900662735492142298807557254685123533957184651913
53017348814314017504539969445479353012064383327267097007933052629203035
09209736004509554561365966493250783914647728401623856513742952945308961
2268152748875615658076162410788075184599421938774835.

The walk on this number is Figure 2.2

Figure 2 Walk on Q.

In Section 2 we describe an algorithm that, given any sentence o, it can find a rational
number whose walk creates an image that spells out . We do something similar in Section
4, but instead of using walks as our starting point we use Tupper’s self-referential formula,
which is described in Section 3.

'They describe the process in any base, but for the purposes of this paper, we’ll focus on base 4.

ZThis figure comes from [1]. As the authors explain, the color in this walk indicates the path followed by the
walk. It is shifted up the spectrum (red-orange-yellow-green-cyan-blue-purple-red).



Walking on rational numbers and a self-referential formula 163

2  Writing using walks

For each letter of the alphabet a, we wish to find a rational r whose walk produces an
image of a, just as the previous rational has produced the Q in Figure 2. How do you find
the rational for a particular letter? First, find a string of digits that “spell out” your letter
in such a way that you finish where you started. You can do this by hand. For example, for
the letter “D”, you can draw a stylish D as in Figure 3, then translate every movement as
digits. In this case we obtain 2, 1,0, 1,2,1,0,1,2,1,0,1,2,1,0,1,2,1,0,1,2,1,0, 1,

2;1,0:1,2,1,0, 1,2, 1,0, 1, 2, 1,0, 1,2, 1,0, 1, 2, 1,0, 1, 2, 1,0, 1,2, 1,0, 0, 0, 0, 0,
3,2.3,0,0.32,30,032300,323,00,3,2,.30,3,2,3,0,.3,2, 30,3, 23,
0,3,2,303,22,3,0,3,2,2,3,0,3,2,2,3,0,3,2,2,3,0, 3, 2, 2, 2, 2. Now, grab the

1

first digit and multiply it by %, then add to it the second digit multiplied by 27 and so on.

In our example we’d have
1 1 1 6.38477...x 107
s=2(-)+1{5)+1(5)+ = - 1
‘ (4)+ (42)+ (44)+ 2.32588 ... x 1074 &,

Figure 3 Walk on the ratio-
nal J creating the letter “D”.

]
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If we do a walk of & with 124 steps, then we’ll get Figure 3. However, this rational has only
124 significant digits base 4, i.e., every digit afterwards is 0. Therefore, if you consider the
“infinite walk”, then it will not spell “D” anymore, it will start heading eastwards, creating
an underlined “D”. To fix this, we create copies of the digits that form one loop of “D” and
glue them every 124 steps, which is equivalent to multiplying & by powers of 4~'2* and
adding them up. We get the geometric series:

D= 4~124(5 4—]24 2 1 4]24
=d+ +( )(5+"':1_4—1246=4124_1

The walk for D for any number of steps > 124 will create Figure 3.

J. 2)

Now, suppose that for every letter a (a variable representing an uppercase letter from the
English alphabet), you find a rational r, and an integer n,, such that the walk of r, with
ngq steps spells the letter a in such a way that the last step ends at the origin. We will also
define rpjank = nplank = O, i.e., representing a blank space. Finally, suppose the base of
each letter is at most w, i.e., the length of a blank space is w.

Theorem 1. Suppose we are given a sentence o which we’ll write as 0 = a1a2a3 - - - o,
where a; is a letter or a space. Let

k
n=> ng+2k-Dw, 3)

i=1

3Because of the lentgh of many numbers in this paper, we will restrict most of them to their first six digits. In
the case of fractions we also keep the power of 10 to show how many digits a number has. The complete numbers
can be found in the Appendix.
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and

4)

Zk: 2'411)(1_W)

=] 4(2} ll(na +w)) i 3 _4(ijl(naj+w)) '

Then a walk on r of length n spells out ¢. Furthermore, a walk on 21%’ of any length
m > n spells out 0.

Proof. The idea is to focus on the digits first. We have n,, digits to represent a, then we
include w zeroes to give space for the next letter. We follow this with n,, digits of the
second letter, followed by w zeroes, and so on. When we “write” the last letter, we have
used ng, + ng, + - -+ +ng + (kK — Dw digits. But the walk is (k — 1)w steps to the right.
To get back to the origin, we need to take (k — 1)w steps to the left, i.e., we need (k — )w
2’s in the digit expansion. Therefore we’ve used n digits where n is the same as in (3).

Now we want to find the rational that has this digit expansion. To account for the letter o;
in the desired position, we need to multiply it by 47 where x is the number of digits used
so far. For a, we’ve used 0, for oy we’ve used na[ + w, for a3z we’ve used (ng, + w) +
(ng, +w), and in general for a;, we’ve used Z (n,x/ + w). Finally, we have to take into
account the final (k — 1)w 2’s. To do this, we can think of Fagy = 0.22---24 and place it

after all the digits so far, which have been Zi:l (ng; + w) + ng, . Therefore

Z(.l )+ kak_H

i=1 4 J 1 (g +w) 4(Zi71(nai+w)—m)

I

|
.M’“

Fa; n 4w (2 n 2 n 2 n i 2 )
14( ;ill(n,li—l-u))) 4(21'(:1(”@“"“)) 4 42 43 qQk—Nw J -

By completing the geometric series we can verify this matches (4). By construction, the
walk for r with n steps spells out ¢. Furthermore, by the same process as that in (2), we
find the rational whose infinite walk spells out & . O

11

Theorem 1 suggests how to build a program to find a rational number for any sentence. As
an example, a certain rational

3.47783 ... x 10319
5.42542 ... x 103195’

(5)

Fo =

creates Figure 4.

nHayYy THE FORCE BE UTTH YOU

Figure 4 The walk for rs as in (5) after 10000 steps.
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3 Tupper’s self-referential formula

In [4], Tupper introduced the formula*

1 Y | 5=171x)—mod(Ly].17) )J
=% [mod ([17J2 2) | (6)

This formula has the amazing property that if you graph the equation® for 0 < x < 106
and k <y < k+ 17 fork as in (7) ¢ you get Figure 5.

%ﬂI_mod(l!-",-'.JE-"H-m“w'l"n:',ﬁll

Figure 5 Graph of (6) intherange 0 <x < 106 andk <y < k + 17.

k =4858450036189713423582095962494202044 581400587983244549483093085061934704708309
92845064476986552436484999724702491511911041160573917740785691975432657 18554420
5721044573588368182982375413963433822519945219165128434833290513119319995350241
3758765239264874613394906870130562295813219481113685339535565290850023875092856
8926945559742815463865107300491067230589335860525440966643512653493636439571255
6569593681518433485760526694016125126695142155053955451915378545752575659074054
0157929001765967965480064427829131488548259914721248506352686630476300. (N

It turns out that the formula doesn’t only graph itself, by considering different values of &,
we can graph anything that can be represented by pixels in a 106 x 17 table. For example,
a certain value

ko = 1.4452 ... x 10%3¢ (8)

gives the interval in which the graph looks like Figure 6.

e

Figure 6 Graph of (6) intherange 0 < x < 106 and kg <y < kg + 17.

The main reason why we can build anything in a 106 x 17 grid is the following lemma:

Lemma 1. Let k = 17k’ for a nonnegative integer k' < 21917 Suppose we write k' in

binary as follows:
105 16

B e Z Za17m+n217m+n_ (9)

m=0 n=0

4The formula was given as an example of a formula that graphing software had difficulties with, but Tupper’s
graphing software can handle.

5By this we mean that the point (x, y) is painted black if it satisfies the inequality and not painted if it doesn’t.

6In [2] and many other places, the value of k is given differently because of the convention in computer science
that positive y go downwards.
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Then

| mod (L%J 7V Tlsl=mod WLID), 9) | = g, (10)

forb =17|x]+ mod(|y], 17).

Therefore, the point (x, y) is painted whenever ap, = 1 and not painted when ap, = 0, i.e.,
it depends only on the binary expansion of k'.

Proof. Let |x] =i and |y] = j = 17k’ + j' for some 0 < j’ < 16. Then | % | = K/,
j'=mod(|y],17), and b = 17i + j'. Now

105 16
[1))_7J o—171x]=mod (Ly,17) _ p/p—17i=j" _ Z Za17m+n217m+n—l7i—j’_
m=0 j=0

When we consider mod 2, we can eliminate any term where the exponent of 2 is at least
1, i.e., we're left with exponents satisfying 17m +n — 17i — j° < 0. When we take the
floor, we exclude any of the small exponents because 1/2+4 1/4+ ---+ 1/2 < 1 for any
finite c. Therefore the only exponent of 2 we allow is 0. Hence 17m +n — 17i — j' = 0.
This implies n = j' mod 17, but both n and ;' are between 0 and 16, so n = j’, and then
m = i, which is what we wanted to prove. O

4 Writing using Tupper’s self-referential formula

From Lemma 1 we can extrapolate an algorithm to find a k to build any picture in a
106 x 17 grid. Indeed, write a 1 on any unit square that is painted black and a 0 otherwise.
Now starting at the square with bottom-left corner (0, 0), read the digits from bottom to top
on each column. This binary number (read from right to left) will be k" and so k = 17k’.

Problem: For a given sentence, find the integer k such that the graph of Tupper’s formula
looks like that sentence for 0 < x < 106and k <y < k + 17.

As in the walk example, the key is figuring out how to do a letter first. Let’s demonstrate
how to do the letter a. Consider Figure 7. We read the number as 11101 10101 11111. To
transform it into a number that fits in the 106 x 17 grid, we need to fill in the necessary
0’s, which is equivalent to multiplying numbers in the £-column by 2'7¢=1_ Therefore,
we associate the letter “a” with the number

17((1+2+4+16)+(1+4+16)2”+(1+2+4+8+16)234). (1)

13

1

0]
1

P
M

Figure 7 Breaking down the letter “a” in binary.

We can now move a letter around the grid by multiplying it by 27"+ to place it where
the bottom-left corner of the letter is (m, n). If we create all letters with a height of at most
5 squares and width of at most 5 squares (the letters “m” and “w” need 5 squares, and the
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rest need 3), we can then fit up to three rows of letters to spell a short sentence. Given
a letter a, let f(a) be the number we associate with a with bottom-left corner on (0, 0).
We'll let folank = O and for letters with width 3, we’ll multiply their numbers by 2177 to
create a buffer between letters.

Theorem 2. Given a sentence ¢ = a1ay - - - ag, where a; represents a single letter or a
blank space and k < 63, we use the following formula to figure out the value of k for the
range where the plot of Tupper’s formula is o :

min(21,k) min(42,k)
Z 285(1—1)+12f(a )+ z 285(1 22)+6f(a )+ Z 285(! 43)f(a ) (12)
i=22 i=43

Proof. Each letter fits in a block of width 5 and height 5. To move from one letter to the
next (to the right), we need to multiply by 2173 = 285 This is where the 85’s in the
exponents come from. The reason we add 12 and 6 (depending on how many letters we
have) is because the first row consists of numbers in the top “strip” (k+12 <y < y+17),
so we have to multiply by 2! to move upwards. The numbers in the middle strip (k + 6 <
y < y + 11) need a shift of 2%, and the bottom row needs no translation. The formula
follows. O

As an example of finding a k for a particular phrase, Figure 8 is the plot of Tupper’s
formulafor0 < x < 106 and k1 < y < ky + 17 for a certain

ki = 6.20234 ... x 10*! (13)

M 50rry DDdUE I'M
[a'Ei:I I CdN' £ dO

Figure 8 Graph of (6) in therange 0 < x < 106 and k| <y < k| + 17.

I
dF
Lh

Appendix: Full decimal digit expansion of constants in the paper.
The value of 4 in (1) is

J =06384779382043951036217348661253680515005885357484535471589654514956414794662
721006368542597248986985323127416704519810815261318970154183
/
2325883917745942049757836185241614509931652354199417792900768637378045721962
8733546438113622840434097944400691400517693873107252115668992. (14)

The value of kg in (8) is

ko =1445202489708975828479425373371945674812777822151507024797188139685490
8873568298734888825132090576643817888323197692344001666776474924212512

TThe only letters not multiplied by 2!7 are “m” and “n”.
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8995265907053708020473915320841631792025549005418004768657201699730466
3833949016013743197155209961811452497819450190683595005 106578043256408
0119786755686314228025969420625409608166564241736740394638417077453742
73196064438999230103793989386750257869294552344763 19291860957618345432
2480049217280333494198162067498544720381939397385138489604767597826733
13437697051994580681869819330446336774047268864, (15)

The value of ky in (13) is

k1 =6202342045523518696372190728132145377913289497819263812843 155643364944
0461939615515996102292719598762206682015817244444562918664906697777197
5007949955351598702405129648571930754026169504789347614953307622064658
76622033813080473400290248370305310008142971401 17523848644 113896733785
5616409282734138890208876466646383764272086299397454808405688789312744
7832949435883695715278636348898143061593729742606126050532003884145813
574480854000747397523613796592272870866944. (16)

The value of r, in (5) is
rg =

34778381766328097662740276529983610701093051987985268229933466856297295438 16284212324 168906789690775547148059 136594
56507084153227620449976062359978556770497820953979607963627534365998415182806732605426961443322658 109 19906062866086
73003100281857864930834810996980819732201563811163335179294388730901766538981331761946670676670466848 12642590682921
7676064926655968063069943083237148802645189802820278834066659917243976811957017195714300536678576755193478646225748
0029718138397905599265918 1424727521994 19439333830496840583774337111547232356603947260968981693338103053145854635253
6556487569357115640975974485570693172272764417938367108726707881765559137578753568579282574517818911608998412741042
02272126208696075031900207055256489273470457875450107990761837402414049239213 1824348 1736923524 124663788869995658064
9792376238237930407962450320389159643655424259838617670381363425821742408854318599877016505639048938 102659648790392
95953976343073777568619199152765465136319113739107719375885423548949639358371360257589580188132622045 15835086096680
5708164505804035890264351831753362652746839651784749459769618297620283942247979473521463646695449617575428923630172
04835915387116752765669697760770770932167943423088803601160445717179929650875574915104806947306254768308696290849 18
0330152435295444522317092256763450131932664980244104376549124516719713135304140238008592647538068871086358474426810
322883927506272987073696326433185009256918986839520373908359068734 184085584762165527664913146140888232950796701 1133
9673513989596387755006734087403631374900979733345825183520000390763 1481496 10355789986385442991553413321157523278681
457077663123171782183961324506340188776537421468549629341430535973056324282084292 156094838 148745966820738942671834 |
0208201 12576063863017792756743829456042079280930 18565006833 12377648424972104939732771020518033666376045372522152359
636532309374286025864873650975871534147216249979499715038337659916704 164549556542324819193 183070040 1690739885894446
5925138828780782529332465419011534533168166732703212020724420330540765914808719296089874268534962295074250221700319
4354384010924295515836192696117735836407353432915120743106575043357828096478475426584678135447571530015321875975666
0288499555262323407672275144428184247080572013967367202580538705898 188934 1 86489884901842932385285873056974563406043
297200342445477792741927434258620040636988398694972528562209821 1 13257730325788867492125667720756016469 1929862742553
6434760361740959640882424911067801423858038854691012806455532141473569316256449253261282819184164210728465538046128
86893164331793570747754565 1548127430151 1980843961573 141008058309365269614398450837204683190833300361309048467141298
70771835015248797073684296960202667595743847908664667347357591221499010648525 1 78740556713056121 164001 42877895886450
171705589526482030024921734271096627608548492276600361083127948062264799889 181626788467399972955025653294574491 1484
6457331356310576117617522162604119512965408010784378997607700863451724450862932076743527823981076515112164422001921
6801892221050493956203183395973148259212386859598795634512915298898905336948973956044452272241532431935859131543491
884129061 1039546092076535887617550365638779065363723042885225828369392365302807084634122922

/
54254275555471832353874831386774432693705161101257 180344 1845807278040002066009746436842033 11677680592 10326095280700
7960754517818980320913237680771539405202704824855426057414759118003163672774854142023984371664371147816596771028104
644101484807812208794710844425489983208 165902913774 196960034799858 1332358020306637825470747782825729360501 1341272917
75557475279956320475170110387461281207843478252119636649983694718376656400625024562853460808 10630834 125801925184520
2625907527220125563925851141313331030922107272915406124790182288452890603674783060337942569320897590240195578623903
95661572005533766512986259993770155713871104684704890153438758597565922203766335415142118372693980103092073 18883562
66615941558205955379189802289229933770139972900675947291523291465856015037257856776126270118053463580693713572941709
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