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I Elemente der Mathematik

The Lucas property for linear recurrences of second order

Carsten Eisner and Jürgen Spilker

Jürgen Spilker, Jahrgang 1935, studierte und promovierte an der Universität Göttingen
und arbeitete an der Universität in Freiburg (Breisgau) bis zu seinem Ruhestand 2001.
Seine Forschungsgebiete sind die automorphen Formen, die zahlentheoretischen
Funktionen sowie Probleme der elementaren Zahlentheorie. Sein Hobby ist die
Geschichte der deutschen Post.

Carsten Eisner, Jahrgang 1961, studierte, promovierte und habilitierte sich an der
ehemaligen Universität Hannover, heute Gottfried Wilhelm Leibniz Universität Hannover.
Er forscht seit 1988 in der Zahlentheorie mit den Schwerpunkten diophantische
Approximation und Transzendenztheorie. Nach einem kurzen Ausflug als
versicherungsmathematischer Gutachter kehrte er 2003 an eine Hochschule zurück und arbeitet
seitdem an der FHDW Hannover im Institut für Informatik und Wirtschaftsinformatik als

Dozent für Mathematik.

Die Lucas-Eigenschaft modulo einer Primzahl p stellt eine Verbindung her zwischen
allen Funktionswerten f(n) einer Funktion / : N -> N und dem Produkt /(«o)/(«i)
• • • /(«r)> wobei die no, nr die Ziffern der p-adischen Entwicklung von n sind,
nämlich

/(») f (no) fini) f(nr) (mod p) (n > 1).

Diese Eigenschaft kommt jeder Exponentialfunktion f(n) c" mit c e N und jeder
Primzahl p zu. Erstmalig wurde eine solche Beziehung 1878 von E. Lucas für Binomi-
alkoeffizienten aufgestellt. In der vorliegenden Arbeit werden Funktionen g betrachtet,
die einer linearen Rekursion zweiter Ordnung mit konstanten Koeffizienten genügen.
Sollte eine solche Funktion g die Lucas-Eigenschaft modulo p noch nicht haben, so

folgen die Autoren einer in der Zahlentheorie gängigen Vorgehensweise, indem sie die
auf arithmetischen Progressionen beruhenden Teilfolgen f(n) := g(an+b) betrachten
und charakterisieren, wann / wieder die Lucas-Eigenschaft modulo p hat. Dies haben

in einer kürzlich erschienenen Arbeit bereits H. Zhong und T. Cai für die Fibonacci-
Funktion F(n) getan. So hat etwa /(«) F (An + 7) die Lucas-Eigenschaft modulo 3.

In dieser Arbeit wird gleichzeitig das Konzept der Lucas-Eigenschaft von den
Primzahlen auf die Carmichael-Zahlen erweitert, die ja bekanntlich eine bedeutende Rolle
in der Kryptographie spielen.
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1 Introduction
Let p be a fixed prime number. It is well known that every positive integer n can be

expressed by a p-adic representation, i.e.,

n y nip1 (0 < rii < p). (1.1)
0<i<r

A real function / : No —» Z is said to fulfill the Lucas property modulo p if the following
two conditions are satisfied, cf. [6],

1.) /(0) 1 (mod p),

2.) /(«) /(«,) (mod p) (n > 1).
0<i<r

For every integer k and every prime number p the exponential function f(n) k" has the

Lucas property modulo p. When p divides k it is trivial, and for all integers k which are

coprime with p the Lucas property is a consequence of Fermat's little theorem, because

Pl — ((P — 1) + l)' 1 (mod p — 1) for i > 0 gives

f(n) k"0+nip+-+nrPr k"°knip k"rpr
kn°kni knr /(«o)/(«i) • • f(nr) (mod p).

Two rules follow immediately from the definition of the Lucas property modulo p, namely,

f(m) f(mpa) (mod p) (m > 0, a > 0), (1.2)

and

f(m' + m") f(m')f(m") (mod p), (1.3)

if the p-adic representations of m' and m" are

m — y /«,-j p'1 and m" y m/2 p'2

0<ii<j i2>j

Recently, Zhong and Cai [7] applied the concept of the Lucas property to the Fibonacci
numbers F(n). They proved that the function f(n) := F {an + b), where a, b are positive
integers, has the Lucas property for a prime p if and only if the congruences F (a) 0
(mod p) and F{b) 1 (mod p) hold. Some more examples of functions with the Lucas

property are contained in [7],

Lucas himself [5] applied the concept to binomial coefficients. From his result we obtain
the striking congruence

(") - n ("')W \m)
(1.4)

where the numbers n-, and mt are the p-adic coefficients of n and m, respectively, given
by (1.1). Here, the specific Lucas property occurs for the first time, generalized to two
variables m and n. More precisely, Lucas proved the following theorem.
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Theorem A (E. Lucas, [5]). Ifp is a prime, n, r, no, and ro are nonnegative integers, and

no and ro are both less than p, then

(:;:)=(:)(:)
If n and m are given by their p-adic representation, the iterated application of Theorem A
gives the result of (1.4).

Example 1.

c,?)-e:::;;;)-QQQ"
(9-(I:!":;:;)-QOQ-' <-">

Variations of Lucas' result in Theorem A are obtained by Bailey [2].

The subject of this note is to prove two sufficient and necessary criterions for the Lucas

property of functions satisfying a second-order linear recurrence relation. At the same time
we generalize the concept to Carmichael numbers. For the sake of simplicity we denote
Carmichael numbers again by p. A Carmichael number p is an odd composite number
satisfying the congruence

rp~l 1 (mod p) (1.5)

for all integers r which are coprime with p. Carmichael numbers are squarefree; the
smallest Carmichael number is 561 3 • 11 • 17. In 1994 it was proven by W. Alford,
A.Granville, and C.Pomerance [1] that there exist infinitely many Carmichael numbers.
For some elementary properties of these numbers we refer the reader to the book of
O. Forster [3]. In (1.1) we may suppose that p is a Carmichael number, and we define
the Lucas property modulo p in the same way as for a prime p. Moreover, the above
formulas (1.2) and (1.3) remain valid if p is a Carmichael number.

2 The main theorem

Throughout this paper p either denotes a fixed prime number or a fixed Carmichael number,

and u, v are fixed integers. Let g : No —> Z be a solution of the linear recurrence
formula

gin + 2) ug(n + 1) + vg{n) (n > 0). (2.1)

Moreover, set

d := g(2)g(0) - g2(\) wg(0)g(l) + ug2(0) -g2(l).

Theorem 1. Let (v, p) — 1 and (d, p) 1. Moreover, let f(n) \= g(an + b) for nonnegative

integers a, b. In the case when p is a Carmichael number, we additionally presume
that (/(I p) 1- Then thefollowing three statements about the function f(n) are equivalent.
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(i) f(n) has the Lucas property modulo p.

(ii) g(b) 1 (mod p) and g(0)g(a + 1) g(l)g(a) (mod p).

(iii) /(n) /"( 1) (mod p) holdsfor all integers n > 0.

From this theorem the above-mentioned result of Zhong and Cai for the Fibonacci
sequence F(n) g(n) with F(0) 0, F( 1) 1, and u v 1, can be rediscovered in
the case of primes p. This follows from the equivalence between (i) and (ii).

We organize our paper as follows. In Section 3 we present more applications of Theorem 1.

In order to prove the main result in Section 6, we need a lemma, which will be treated in
Sections 4 and 5.

3 Applications of the main theorem

1.) We apply Theorem 1 to the difference of two exponential functions. Let k and / be two
different integers, and set g(n) k" — It can easily be seen that (2.1) is fullfilled by

g(n + 2) (k + l)g(n + 1) - klg(n) (n > 0).

Next, let p be either a prime number or a Carmichael number such that p and kl(k —

I) are coprime. Then the conditions of the coprimality of p and v —kl as well as

the coprimality of p and d — —{k — I)2 in Theorem 1 are satisfied. Thus the theorem

guarantees the Lucas property modulo p for every function f(n) g(an+b) with positive
integers a, b if and only if the two congruences

kh — lb 1 (mod p) and ka — la =0 (mod p) (3.1)

hold; note that g(0) 0 and g(l) k — I ^ 0 (mod p).

2.) The congruences from (3.1) allow to construct more concrete examples. Let k 7,
/ —3, p 41, a 10, and b — 3. One easily checks that the congruences in (3.1) are
fulfilled as well as the condition kl(k — I) ^0 (mod p). Flence, the function

f(n) ;= 7I0"+3 - (-3)'°"+3 7I0"+3 + 310"+3 (n > 0)

has the Lucas property modulo 41. Moreover, it turns out that the function f(n) (mod 41)
is periodic, namely, for m > 0 we obtain

/(4/n) 1 (mod 41),

/(4/n + 1) 9 (mod 41),

/(4m + 2) 40 (mod 41),

/(4m +3) 32 (mod 41)

Even the function f(n) satisfies a linear recurrence formula of order two, namely

f(n + 2) 282534298f(n + 1) - 16679880978201/(n) (h > 0)
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In the general case, if gin) satisfies the recurrence formula (2.1), the function fin)
g(an + b) satisfies a linear second-order recurrence formula, too, namely

fin + 2) Pa(u, v)f(n + 1) + (-1 )"~V/(«) (« > 0),

where Pa(u,v) is an integer polynomial of total degree a. In the case just considered we
have u 4, v =21, and the polynomial

P\o(u, v) := (u2 + 2v)(w8 + 8u6v + 19u4v2 + 12w2d3 + v4)

Fora 1, 2, 3, 4 the polynomials Pa(u, v) are given by

P\(u,u) u

P2(u, v) u2 +2v

P3(u, v) u3 + 3uv

P^{u, v) — u4 + 4a2n + 2d2

3.) Let k 41, / —20, a 40, and 29. Then, (3.1) is fulfilled for the smallest
Carmichael number p 561, such that the function

fin) := 4i40"+29 + 2040"+29 (n > 0)

has the Lucas property modulo 561. Note that (/(l),56l) 1 because 4169 + 2069 is not
divisible by 3, 11, and 17. Here the periodicity of /(«) mod 561 is given by

/(2m) 1 (mod 561),

/(2m + 1) 67 (mod 561)

for all integers m > 0.

4 An auxiliary result

Let g : No —> Z be a function satisfying (2.1) with d / 0. Moreover, we introduce the

matrices

c :— j 0 A)
Hence, the recurrence formula (2.1) can be expressed by G(« + 1) CG(«) for all integers
n > 1. Consequently the iterated process yields

G(n + 1) C2G(/i - 1) ••• CG(1) (n>0). (4.1)

Since

detG(l) g(2)g(0)-g2(l) d £ 0,
there exists the inverse matrix

r-Gn -
1 g^0) \G (1) " d \ -gi1) g(2)
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Applying (4.1) three times, we obtain for positive integers n, m

G(n +m) C"+m_1G(l) Cn-1G(1)G-1(1)C",G(1)

G(n)G~'(l)G(/w + 1)

G(n)H(m),

where

with

H (m) := G (l)G(m + 1)

X -(g(O)g(m + 1) -g(l)g(/n)),

y ~ s(])g(>n + 1)) •

(4-2)

(4.3)

(4.4)

The element gin + m) in the first row and second column of the matrix G(n + m) can be

expressed using (4.2) and (4.3),

gin + m) xgin + 1) + yg(n). (4.5)

The above preliminaries will be useful in the subsequent Section 5 in order to prove the

following lemma.

Lemma 1. Let g : No -> Z be a function satisfying (2.1) with d f 0. Then we have for
all integers n, m with n > m > 0 the identity

g(n +m)g(n - m) - g2(n) ^(-v)n~m (g(0)g(m + 1) - g(l)g(m))2.

Remark 1. In the case of Fibonacci numbers g(n) F(n) the equation in Lemma 1

reduces to Catalan's identity, namely

\ T?/ I \ c1 \ / i \n m r?21F (n) — F(n + m)F(n — m) (—1)" mF (m),

cf. [4, p. 59].

5 Proof of Lemma 1

Let n > m > 0 be integers. From (4.5) we have

g(n) g((n ~ tn) + m) — xg(n - m + 1) + yg(n - m). (5.1)

Next, we express the left-hand side of the identity in Lemma 1 by a determinant and then

substitute the right-hand sides of (4.5) and (5.1) for the elements of the first column.

g(n + m)g(n - m) - g~(n)
g(n+m) g(n)

g{n) gin-m)
xgin + 1) + ygin) gin)

xgin — m + 1) + ygin — m) gin — m)

gin + 1) gin)
gin — m + 1) gin — m)

(5.2)
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The last determinant in (5.2) can be computed as follows. Firstly, we apply the recurrence
formula (2.1) to the elements of the first column and then take determinant rules into
account, among them we interchange the columns. This gives

gin + 1) g(n)
gin — m + 1) g(n — m)

vg(n - 1) g(n)
vg(n — m — 1) g(n — m)

gin) g(n - 1)

gin — m) g(n — m — 1)
(-«)

We iterate this process (n — m — 1) more times. Then it ends with

(-v)n~m
gin + 1) g(n)

gin — m + 1) g(n — m)

(-a)"

g(m + 1) g(m)
5(1) 5(0)

(g(0)g(m + 1) - g(l)g(m))
(5.3)

Substituting the right-hand sides of the first equation from (4.4) and from (5.3) for the

corresponding terms in (5.2), we obtain the identity in Lemma 1.

6 Proof of Theorem 1

The proof of the theorem is divided into four parts.

(i) =*> (iii). The map

No — x Z/pZ,
n I—>

(g(n) mod p, g(n + 1) mod p)

takes at most p2 many values. By the pigeonhole principle there are two integers 0 < n \ <
ti2 such that

5("i) =g(n2) (mod p),
g{n\ + i)= g{n2 + \) (mod p).

This together with (2.1) leads by the induction principle to the congruence

g{ni + n) g{n2 + n) (mod p) (n > 0)

Here, we replace n by n — n\ >0 and introduce q \= n2 — n\ Then,

g(n +q) g(n2 + n - ni) g{n\ + n - n\) g(n) (mod p). (6.1)

This holds initially for n > n\, but the hypothesis v ^ 0 (mod p) allows to derive the

congruence

gin + q - 1) v~x (gin + q + 1) - ugin + q)) (mod p)

from the recurrence relation (2.1). Again by the induction principle it follows that (6.1)
additionally holds for 0 < n < n\. Thus, by (6.1), the function gin) mod p has the period

q, and the same is true for the function fin) gian + b) mod p.
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Next, we consider the map i p' mod q, which takes at most finitely many values.

Therefore, there are integers 1 < i\ < h satisfying p'] p'1 (mod q). Since / has

the Lucas property modulo p, we may apply (1.2) and (1.3). This together with the q-
periodicity of / and with «2 — ' l >0 yields

fin) f(np'2) f (npn - (pn - /?"))

/(p''> (l + (n-lV'2-''>))
/( i + (n_i)pi2-'i)
/(!)/((« -Dp'2"'1)
/(!)/(«- 1) (mod p).

The iterated application of this congruence gives

/(n) /2(l)/(n-2) /n(l)/(0) ee /"(l) (mod/7) (n> 0),

which is (iii).

(iii) (i). Let n e N be given by its /7-adic representation,

n ^ nj pl no + mp with m — ^ 1

0<;<r l</<r

say.

Case 1. /7 is a prime number. If p and /( 1) are coprime, Fermat's little theorem yields

(fn(X)Y s r(l) (mod/7),

otherwise /> divides /(l) and the congruence becomes trivial.

Cflic 2. /7 is a Carmichael number. Then the above congruence holds by (1.5) with r —

/'" (1), since /( 1) and p are coprime by the hypothesis of the theorem.

Taking (iii) into account, we obtain for all integers n > 1,

f{n) /"(l) r°(l)/m"(l) r°(l)/m(l) f (no) fini) (mod p).

Repeating this process r times and observing /(0) /°(1) I (mod p) by (iii), it turns
out that

fin) f («o)/ (it) • • finr)fi0) /(no)/(«i) • • f(nr) (mod p),

which is (i), the Lucas property modulo p of /.
(iii) =>• (ii). We have fin) gian + b) for n > 0. Setting n 0 in (iii) gives

gib) /(0) /°(1) 1 (mod p). (6.2)

In order to prove the second congruence in (ii) we first apply (iii) with n 2.

gi2a + b) /(2) /2(1) g2(a + /7) (mod /?). (6.3)
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Then, we use the identity from Lemma 1 with n a + b and m a.

d(g{2a + b)g(b) - g2(a + b)) (~v)b(g(0)g(a + 1) - g(l)g(a))2

Here, the left-hand side is divisible by p, which follows from (6.2) and (6.3). On the

right-hand side we know by the hypothesis of Theorem 1 that v and p are coprime. p is

squarefree in any case, and then g(0)g(a + 1) — g(l)g(a) is divisible by p, which proves
the second congruence in (ii).

(ii) (iii). We prove the congruence

/(«) /"(!) (mod p) (n > 0) (6.4)

by induction with respect to n. For n 0 we have by (ii),

/(0) g(b) 1 /°(1) (mod p),

while (6.4) is trivial for n — 1. Next, let n > 2, and assume that (6.4) is already proven for
1,2,...,«. In Lemma 1 we replace n by an + b and m by a. Then,

d[g(a(n + 1) + b)g(a(n - 1) + b) — g2(an + b)\

(_„)«(»-l)+"(g(0)^(n + 1) -g(1)g(n»2.

Since the right-hand side of (6.5) vanishes by (ii), the same is true for the left-hand side.

By the hypothesis of the theorem d and p are coprime, such that the term inside the square
brackets in (6.5) is divisible by p. This fact can be rewritten by the congruence

fin + 1 )f(n - 1) f2(n) (mod p).

Here we may apply the induction hypothesis forn — 1 and n, i.e.,

fin + l)/"-1 (1) f2ni1) (mod p). (6.6)

If (/(l),p) 1, we get

/(„ + /«+»(!) (mod p),

since /"' (1) mod p exists. Then the induction is finished, so that (6.4) is proved. In the

case when p is a Carmichael number, we already have the coprimality of /(1) and p by
the hypothesis of the theorem.

Thus, if p is a prime, we finally must show that

/(1) 0 (mod p) (6.7)

is impossible. In (4.4) and (4.5) we set m a and n b. This yields

gib + a) xg(b + 1) + yg(b) (6.8)
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with
dx g(0)g(a + 1) - g(l)g(a) •

From (ii) it follows that dx 0 (mod p), and since d is not divisible by p we conclude
thatx 0 (mod p). Together with g(b) 1 (mod p) from (ii) the identity (6.8) simplifies

to

y g(b + a) /(1) 0 (mod p) (6.9)

where the last congruence holds by (6.7). We apply (4.5) for a second time with n b — 1

and m — a. Then,

g(b + a - 1) xg(b) + yg(b - 1) 0 (mod p) (6.10)

by x y 0 (mod p). From (2.1) with n b + a — 2 > 0 we have

vg(b + a - 2) g(b + a) - ug(b + a - 1).

The right-hand side is divisible by p, which follows from (6.9) and (6.10). By v ^ 0

(mod p) it turns out that

g(b + a —2) 0 (mod p). (6.11)

This process via (6.9), (6.10), and (6.11), can be iterated, finally leading to the congruence
g(b) 0 (mod p). This contradicts to g{b) 1 (mod p) in (ii). Hence (6.7) does not
hold. This completes the proof of (6.4), and herewith the proof of Theorem 1.
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