Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 73 (2018)

Heft: 4

Artikel: The Lucas property for linear recurrences of second order
Autor: Elsner, Carsten / Spilker, Jurgen

DOl: https://doi.org/10.5169/seals-787381

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-787381
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Elem. Math. 73 (2018) 151 — 160 © Swiss Mathematical Society, 2018
0013-6018/18/040151-10
DOI 10.4171/EM/368 | Elemente der Mathematik

The Lucas property for linear recurrences of second order

Carsten Elsner and Jiirgen Spilker

Jiirgen Spilker, Jahrgang 1935, studierte und promovierte an der Universitit Gottingen
und arbeitete an der Universitit in Freiburg (Breisgau) bis zu seinem Ruhestand 2001.
Seine Forschungsgebiete sind die automorphen Formen, die zahlentheoretischen
Funktionen sowie Probleme der elementaren Zahlentheorie. Sein Hobby ist die Ge-
schichte der deutschen Post.

Carsten Elsner, Jahrgang 1961, studierte, promovierte und habilitierte sich an der ehe-
maligen Universitdt Hannover, heute Gottfried Wilhelm Leibniz Universitit Hannover.
Er forscht seit 1988 in der Zahlentheorie mit den Schwerpunkten diophantische Ap-
proximation und Transzendenztheorie. Nach einem kurzen Ausflug als versicherungs-
mathematischer Gutachter kehrte er 2003 an eine Hochschule zuriick und arbeitet seit-
dem an der FHDW Hannover im Institut fiir Informatik und Wirtschaftsinformatik als
Dozent fiir Mathematik.

Die Lucas-Eigenschaft modulo einer Primzahl p stellt eine Verbindung her zwischen
allen Funktionswerten f (n) einer Funktion f : N —> N und dem Produkt f (ng) f (n1)
-+« f(n,), wobei die no, ..., n, die Ziffern der p-adischen Entwicklung von n sind,
namlich " ' i '
fn) = fo)f(ni)--- f(n,) (mod p) (n=1).

Diese Eigenschaft kommt jeder Exponentialfunktion f(r) = ¢" mit ¢ € N und jeder
Primzahl p zu. Erstmalig wurde eine solche Beziehung 1878 von E. Lucas fiir Binomi-
alkoeffizienten aufgestellt. In der vorliegenden Arbeit werden Funktionen g betrachtet,
die einer linearen Rekursion zweiter Ordnung mit konstanten Koeffizienten geniigen.
Sollte eine solche Funktion g die Lucas-Eigenschaft modulo p noch nicht haben, so
folgen die Autoren einer in der Zahlentheorie gingigen Vorgehensweise, indem sie die
auf arithmetischen Progressionen beruhenden Teilfolgen f (1) := g(an-+b) betrachten
und charakterisieren, wann f wieder die Lucas-Eigenschaft modulo p hat. Dies haben
in einer kiirzlich erschienenen Arbeit bereits H. Zhong und T. Cai fiir die Fibonacci-
Funktion F(n) getan. So hat etwa f (n) = F(4n +7) die Lucas-Eigenschaft modulo 3.
In dieser Arbeit wird gleichzeitig das Konzept der Lucas-Eigenschaft von den Prim-
zahlen auf die Carmichael-Zahlen erweitert, die ja bekanntlich eine bedeutende Rolle
in der Kryptographie spielen.
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1 Introduction

Let p be a fixed prime number. It is well known that every positive integer n can be
expressed by a p-adic representation, i.e.,

n= > mp  (O=n<p), (1.1)
o<i<r

A real function f : Ng — Z is said to fulfill the Lucas property modulo p if the following
two conditions are satisfied, cf. [6].

1) fO =1 (mod p),
2) fy =[] f@) (modp) (=1
0o<i<r

For every integer k and every prime number p the exponential function f(n) = k" has the
Lucas property modulo p. When p divides £ it is trivial, and for all integers k which are
coprime with p the Lucas property is a consequence of Fermat’s little theorem, because

p=((p—1)+1) =1 (mod p—1)fori > 0 gives
fn) = grotniptetnep” _ gnopmp | pnep”
= K"k" k" = f(no)f(n1)--- f(n,) (mod p).

Two rules follow immediately from the definition of the Lucas property modulo p, namely,

f(m) = f(mp®) (mod p)  (m=>=0,a=0), (1.2)
and
fm' +m") = fm")f(m") (mod p), (1.3)
if the p-adic representations of m” and m” are
m = z mglp"' and m” = Zmizpiz.
0<iy<j i2>]

Recently, Zhong and Cai [7] applied the concept of the Lucas property to the Fibonacci
numbers F (n). They proved that the function f(n) := F(an + b), where a, b are positive
integers, has the Lucas property for a prime p if and only if the congruences F(a) = 0
(mod p) and F(b) = 1 (mod p) hold. Some more examples of functions with the Lucas
property are contained in [7].

Lucas himself [5] applied the concept to binomial coefficients. From his result we obtain

the striking congruence
n n;
( ) = H ( ) (mod p), (1.4)
m iy

0<i<r

where the numbers n; and m; are the p-adic coefficients of n and m, respectively, given
by (1.1). Here, the specific Lucas property occurs for the first time, generalized to two
variables m and n. More precisely, Lucas proved the following theorem.
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Theorem A (E.Lucas, [5]). If p is a prime, n, r, no, and ro are nonnegative integers, and
ng and ro are both less than p, then

np +n n\ (n
(nim) = C)() e
rp+ro rJ \ro
If n and m are given by their p-adic representation, the iterated application of Theorem A
gives the result of (1.4).

Example 1.
123 e R P O 2\ /3\ (4
= + T = =0 (mod7),
12 0-724+1-745 oJ\1/\5
123 BT 3BT d N /3\ (4
= + Sl =5 (mod7).
10 (1 I, G, Y 0/\1/\3

Variations of Lucas’ result in Theorem A are obtained by Bailey [2].

The subject of this note is to prove two sufficient and necessary criterions for the Lucas
property of functions satisfying a second-order linear recurrence relation. At the same time
we generalize the concept to Carmichael numbers. For the sake of simplicity we denote
Carmichael numbers again by p. A Carmichael number p is an odd composite number

satisfying the congruence
p—1
r

1 (mod p) (1.5)

for all integers r which are coprime with p. Carmichael numbers are squarefree; the
smallest Carmichael number is 561 = 3 - 11 - 17. In 1994 it was proven by W. Alford,
A. Granville, and C. Pomerance [1] that there exist infinitely many Carmichael numbers.
For some elementary properties of these numbers we refer the reader to the book of
O.Forster [3]. In (1.1) we may suppose that p is a Carmichael number, and we define
the Lucas property modulo p in the same way as for a prime p. Moreover, the above
formulas (1.2) and (1.3) remain valid if p is a Carmichael number.

2 The main theorem

Throughout this paper p either denotes a fixed prime number or a fixed Carmichael num-
ber, and u, v are fixed integers. Let g : N9 — Z be a solution of the linear recurrence
formula

gn+2) = ugn+1)+og(n) (n=>0). (2.1)

Moreover, set

d = g(2)g(0) — g*(1) = ug(0)g(l)+vg*(0) — g*(1).

Theorem 1. Let (v, p) = 1 and (d, p) = 1. Moreover, let f(n) := g(an + b) for nonneg-
ative integers a, b. In the case when p is a Carmichael number, we additionally presume
that ( (), p) = 1. Then the following three statements about the function f (n) are equiv-
alent.
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(i) f(n) has the Lucas property modulo p.

(ii) g(b) =1 (mod p) and g(0)g(a + 1) = g(1)g(a) (mod p).
(ii1) f(rn) = f"(1) (mod p) holds for all integers n > 0.

From this theorem the above-mentioned result of Zhong and Cai for the Fibonacci se-
quence F(n) = g(n) with F(0) =0, F(1) = 1, and u = v = 1, can be rediscovered in
the case of primes p. This follows from the equivalence between (i) and (ii).

We organize our paper as follows. In Section 3 we present more applications of Theorem 1.
In order to prove the main result in Section 6, we need a lemma, which will be treated in
Sections 4 and 5.

3 Applications of the main theorem

1.) We apply Theorem 1 to the difference of two exponential functions. Let k and / be two
different integers, and set g(n) := k" — [". It can easily be seen that (2.1) is fullfilled by

gn+2) = (k+0gn+1)—kigln) (n=0).

Next, let p be either a prime number or a Carmichael number such that p and kl(k —
[) are coprime. Then the conditions of the coprimality of p and v = —kl as well as
the coprimality of p and d = —(k —[)? in Theorem 1 are satisfied. Thus the theorem
guarantees the Lucas property modulo p for every function f(n) = g(an+b) with positive
integers a, b 1f and only if the two congruences

k> —1” =1 (mod p) and k“—1 =0 (mod p) (3.1)

hold; note that g(0) =0and g(1) =k — ! # 0 (mod p).

2.) The congruences from (3.1) allow to construct more concrete examples. Let k = 7,
| = =3, p=41,a = 10, and b = 3. One easily checks that the congruences in (3.1) are
fulfilled as well as the condition k/(k — [) # 0 (mod p). Hence, the function

f(n) — 7[0)’1-{"3 _ (_3)|0H+3 — 7]0”-]—3 o 3]0I’I+3 (” > 0)

has the Lucas property modulo 41. Moreover, it turns out that the function f(n) (mod 41)
is periodic, namely, for m > 0 we obtain

f(4m) = 1 (mod4l),
f@m+1)= 9 (mod4l),
f@m+2)=40 (mod 41),
f(@dm +3)=32 (mod41).

Even the function f(n) satisfies a linear recurrence formula of order two, namely

fln+2) = 282534298 f (n + 1) — 16679880978201 f(n)  (n > 0).
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In the general case, if g(n) satisfies the recurrence formula (2.1), the function f(n) =
g(an + b) satisfies a linear second-order recurrence formula, too, namely

fn+2) = Pau,0)f(n+ D+ D" f(n) (n=0),

where P,(u,v) is an integer polynomial of total degree a. In the case just considered we
have u =4, v = 21, and the polynomial

Pio(u,v) := (® + 20)(@® + 8ubo + 19u*0? + 12u%0° +0%).
Fora = 1, 2, 3, 4 the polynomials P, (u, v) are given by
Pi(u,v) =u,
Py(u,v) = u® + 20 ,
Py(u,v) = u? +3uv
Py(u,v) = u* + 4uo + 207,

3) Letk =41, = —20,a = 40, and b = 29. Then, (3.1) is fulfilled for the smallest
Carmichael number p = 561, such that the function

f(n) P 4140n+29 +2040n+29 (” > 0)

has the Lucas property modulo 561. Note that ( £ (1), 561) = 1 because 41%? +20% is not
divisible by 3, 11, and 17. Here the periodicity of f(n) mod 561 is given by

f@m)= 1 (mod 561),
f@2m+1)=67 (mod 561)

for all integers m > 0.

4 An auxiliary result

Let g : No — Z be a function satisfying (2.1) with d # 0. Moreover, we introduce the
matrices

_ (w0 _ [ 8n+1)  gn)
C._(1 0) and G(n).—( 2(n) g(n—l)) n=>1).

Hence, the recurrence formula (2.1) can be expressed by G(n+1) = CG(r) for all integers
n > 1. Consequently the iterated process yields

Gn+1) =CGn-1) =---=C'G(l) (=0). (4.1)
Since
detG(1) = g()g(0) — g>(1) = d # 0,
there exists the inverse matrix

iy L 80 —g(D)
S (”‘d(—g(l) ¢ ) )
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Applying (4.1) three times, we obtain for positive integers n, m

G +m)=C""1G(1) = C"IG(HG I (HC"G(1)

=Gm)G '(HGm+ 1) (4.2)
= G(n)H(m),
where
H(m) == G {(1)G(m + 1) =: ( : Jy‘ ) (4.3)
with

1
x == (s@)glm +1) — g(D)g(m)),
(4.4)

1
¥ E(g(z)g(m) —g()g(m + 1)).

The element g(n + m) in the first row and second column of the matrix G(n + m) can be
expressed using (4.2) and (4.3),

gn+m) = xgn+ 1)+ yg(n). (4.5)

The above preliminaries will be useful in the subsequent Section 5 in order to prove the
following lemma.

Lemma 1. Let g : Ng — Z be a function satisfying (2.1) with d # 0. Then we have for
all integers n,m with n > m > 0 the identity

g+ mg(n —m) — () = — ()" " (gO)gm + 1) ~ g(1)g(m)”

Remark 1. In the case of Fibonacci numbers g(n) = F(n) the equation in Lemma 1
reduces to Catalan’s identity, namely

F’(n) — Fn+m)F(n —m) = ()" " F*(m),
cf. [4, p. 59].

5 Proof of Lemmal
Letn > m > 0 be integers. From (4.5) we have
gn) = g((n—m)y+m) = xgln —m+ 1)+ yg(n —m). (5.1)

Next, we express the left-hand side of the identity in Lemma 1 by a determinant and then
substitute the right-hand sides of (4.5) and (5.1) for the elements of the first column.

gla+m)  gn)

g(n+m)gn —m) — g*(n) = ‘ o) glr—m)
- xg(n+ 1)+ yg(n) g(n) (5.2)
| xgn—m+ 1)+ yg(n—m) gn—m) '
gn+1) g(n)

gln—m+1) gn—m) |’
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The last determinant in (5.2) can be computed as follows. Firstly, we apply the recurrence
formula (2.1) to the elements of the first column and then take determinant rules into
account, among them we interchange the columns. This gives

‘ gln+1) gy | _| wvgln—1) g(n)
gn—-m+1) glh—m) | |vgn—m—1) gh—m)
_ g(n) gln—1)
=0 g—m) g—m—1) |-

We iterate this process (n — m — 1) more times. Then it ends with
glm+1) glm)

g1y g (5.3)
= (—0)""(g©)g(m + 1) — g(1)g(m)).

Substituting the right-hand sides of the first equation from (4.4) and from (5.3) for the
corresponding terms in (5.2), we obtain the identity in Lemma 1. 1

gn+1) g(n) _ n—m
‘ gimh—m+1) gn—m) = (=)

6 Proof of Theorem 1

The proof of the theorem is divided into four parts.
(i) = (iii). The map

No — Z/pZ x 7/ pZ,
n
(g(n) mod p, g(n + 1) mod p)

takes at most p many values. By the pigeonhole principle there are two integers 0 < n; <
ny such that

gn) =g(na) (mod p),

gni+1)=gk2+1) (modp).

This together with (2.1) leads by the induction principle to the congruence
gni+n) = gh2+n) (modp) (n=0).
Here, we replace n by n — ny > 0 and introduce g := ny — ny. Then,
gin+gq) = glna+n—n1) = gl +n—n) = gn) (mod p).  (6.1)

This holds initially for n > nj, but the hypothesis v # 0 (mod p) allows to derive the
congruence

gn+qg—1) = o~ ! (g(n +qg+1)—ugn +q)) (mod p)

from the recurrence relation (2.1). Again by the induction principle it follows that (6.1)
additionally holds for 0 < n < nj. Thus, by (6.1), the function g(n) mod p has the period
g, and the same is true for the function f(n) = g(an + b) mod p.
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Next, we consider the map i +— p’ mod g, which takes at most finitely many values.
Therefore, there are integers 1 < i; < iy satisfying pit = p2 (mod q). Since f has
the Lucas property modulo p, we may apply (1.2) and (1.3). This together with the g-
periodicity of f and with i — iy > 0 yields

f@) = f(np) = f(np™ — (p — p™))
= f(p" (1 + (n— 1)p2™1))
= f(L+ (n—1)p2™1)

= f(Df((n — Dp2™)
= f()f(n—1) (mod p).

The iterated application of this congruence gives

f)y = FPOfr-2)=---= f"(DFO) = f'(1) (mod p)  (n>0),
which is (iii).
(ili) = (i). Let n € N be given by its p-adic representation,

n = Z n,,'pi = n0+mp with m = Z nipiil,

O<i<r 1<i<r
say.
Case 1. p is a prime number. If p and f(1) are coprime, Fermat’s little theorem yields
(f"M)" = f"(1) (mod p),
otherwise p divides f (1) and the congruence becomes trivial.

Case 2. p is a Carmichael number. Then the above congruence holds by (1.5) with r =
S™(1), since f(1) and p are coprime by the hypothesis of the theorem.

Taking (iii) into account, we obtain for all integers n > 1,

fl) = (1) = M)Ay = )11 = flng)f(m) (mod p).

Repeating this process r times and observing £(0) = f%(1) = 1 (mod p) by (iii), it turns
out that

fn) = fno)f(n)--- f(n)fQO) = fno)f(n)--- f(n,) (mod p),
which is (i), the Lucas property modulo p of f.
(iii) = (ii). We have f(n) = g(an + b) forn > 0. Setting n = 0 in (iii) gives

gb) = f(0) = (1) =1 (mod p). (6.2)

In order to prove the second congruence in (ii) we first apply (iii) with n = 2.

ga+b) = f2) = f*(1) = g*(@a+b) (mod p). (6.3)
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Then, we use the identity from Lemma 1l withn = a + b and m = a.

d(g(2a+ b)g(b) — g*(@+b)) = ()’ (2(O)gla+ 1) — g()g(@)).

Here, the left-hand side is divisible by p, which follows from (6.2) and (6.3). On the
right-hand side we know by the hypothesis of Theorem 1 that v and p are coprime. p is
squarefree in any case, and then g(0)g(a + 1) — g(1)g(a) is divisible by p, which proves
the second congruence in (ii).

(il) = (iii). We prove the congruence
fn) = f"(1) (mod p)  (n>0) (6.4)

by induction with respect to n. For n = 0 we have by (ii),

fO) = gb) =1=f°(1) (mod p),

while (6.4) is trivial forn = 1. Next, let n > 2, and assume that (6.4) is already proven for
1,2,...,n.In Lemma 1 we replace n by an + b and m by a. Then,

d[g(a(n + 1)+ b)g(a(n — 1) + b) — g*(an + b)]
— () @D+ (gO)g(a + 1) — g(1)g(@)’.

Since the right-hand side of (6.5) vanishes by (ii), the same is true for the left-hand side.
By the hypothesis of the theorem d and p are coprime, such that the term inside the square
brackets in (6.5) is divisible by p. This fact can be rewritten by the congruence

(6.5)

f+Df—1) = f*@n) (mod p).
Here we may apply the induction hypothesis forn — 1 and n, i.e.,

fla+1f"~11) = f2'(1) (mod p). (6.6)
If (f(1), p) = 1, we get

f+1) = 411 (mod p),

since f~!(1) mod p exists. Then the induction is finished, so that (6.4) is proved. In the
case when p is a Carmichael number, we already have the coprimality of f(1) and p by
the hypothesis of the theorem.

Thus, if p is a prime, we finally must show that
f(1) =0 (mod p) (6.7)
is impossible. In (4.4) and (4.5) we set m = a and n = b. This yields

glb+a) = xgb+ 1)+ yg(b) (6.8)
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with
dx = g0)gla+1)—g(l)g(a).
From (ii) it follows that dx = 0 (mod p), and since d is not divisible by p we conclude
that x = 0 (mod p). Together with g(b) = 1 (mod p) from (ii) the identity (6.8) simpli-
fies to
y=gb+a)= f(1) =0 (mod p), (6.9)

where the last congruence holds by (6.7). We apply (4.5) for a second time withn = b — 1
and m = a. Then,

glb+a—1) = xgb)+ygb—1) =0 (mod p) (6.10)
by x =y =0 (mod p). From (2.1) withn = b +a — 2 > 0 we have
vglb+a—-2) = gb+a)—ugb+a-1).

The right-hand side is divisible by p, which follows from (6.9) and (6.10). By v # 0
(mod p) it turns out that

glb+a—-2)=0 (mod p). (6.11)

This process via (6.9), (6.10), and (6.11), can be iterated, finally leading to the congruence
g(b) = 0 (mod p). This contradicts to g(b) = 1 (mod p) in (ii). Hence (6.7) does not
hold. This completes the proof of (6.4), and herewith the proof of Theorem 1. U
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