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Calculus style proof of Poncelet’s theorem for two ellipses

Aleksander Simoni¢

Aleksander Simoni¢ is currently a graduate student of mathematics at the Faculty of
Mathematics and Physics, University of Ljubljana. His research interests are complex
analysis and analytic number theory, especially the interaction of both fields in the
theory of the Riemann zeta-function. He is also fascinated with geometry and the
history of mathematics.

1 Introduction

In 1813 Jean-Victor Poncelet (1788—1867) discovered the following celebrated theorem
which belongs to classical geometry.

Theorem 1 (Poncelet’s closure theorem). Let &, and & be two ellipses with &; inside
&o- Suppose that there exists an n-sided polygon circumscribed between £, and &; that is
inscribed in £, and circumscribed about &;. Then for any other point of £, there exists an n-
sided polygon circumscribed between £, and &;, which has this point for one of its vertices.

We say that a point of &, has the n-Poncelet property if it is one of the vertices of a
circumscribed n-sided polygon between &, and &;. Poncelet’s closure theorem does not

Der Schliessungssatz von Poncelet gilt als eines der schonsten und tiefsten Resultate
der klassischen projektiven Geometrie. Die zahlreichen heute bekannten Beweise sind
deutlich schwieriger als etwa der elementare Inversionsbeweis des Schliessungssatzes
von Steiner. Poncelet fand seinen Satz wihrend er von Friihling 1813 bis Sommer 1814
in Saratow an der Wolga in russischer Kriegsgefangenschaft sass. Neben seinen fun-
damentalen Beitriagen zur projektiven Geometrie war Poncelet zu Lebzeiten auch fiir
seine Leistungen als Ingenieur bekannt. So prangt sein Name neben denen von 71 wei-
teren eminenten Wissenschaftlern am Eiffelturm. Bereits vor Poncelet hatten Chapple,
Euler und Fuss Spezialfille des Schliessungssatzes gefunden. Die Beweismethoden
reichen heute von Abelschen Integralen iiber elliptische Kurven bis zur Masstheorie.
Der Autor der vorliegenden Arbeit betrachtet den Spezialfall von zwei Ellipsen, wo-
von die eine im Inneren der andern liegt. Er verwendet Ideen von Jacobi und Bertrand
und konstruiert zum Beweis eine reelle periodische Funktion, bei der schliesslich eine
Substitution fiir ein bestimmtes Integral zum Zuge kommt.
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guarantee that such point exists; Cayley’s theorem provides a criterion for this in terms
of the equations of &, and &;, see [Fla09, Chapter 10]. But if it exists, then Theorem 1 is
equivalent to the statement that every point of &, has the n-Poncelet property, see Figure 1.

3
R A) R3(B)
=0

Figure 1 Illustration of Poncelet’s theorem. Because the point A has the 5-Poncelet property every point of &
(for instance, B) has the 5-Poncelet property.

Poncelet’s theorem also holds for two nondegenerate conics in general position in the
projective plane. The reader may consult [Fla09] for a general overview on the subject and
its rich history, and [HH15] for the most recent proof.

Theorem 1 is known as the real case of Poncelet’s theorem since it considers two ellipses
in the real affine plane. Jacobi and, later, Bertrand are credited to have given the first
correct proof with the help of elliptic functions. Schoenberg [Sch83] reduced Poncelet’s
theorem in a non-elementary fashion to the case where &; is a circle having its center in the
center of &, and then continued with the Jacobi—Bertrand idea. King in [Kin94] followed
Schoenberg’s approach, but avoided elliptic integrals and Schoenberg’s non-elementary
reduction to construct a measure on &, which is invariant with respect to the map R: &, —
&o; see the beginning of Section 2 for the definition. His proof is reproduced in [Fla09,
Chapter 12] together with a section on topological conjugacy between R and a rotation of
a circle.

It is fair to say that we make a change of viewpoint, not a change in King’s proof, to give
a “higher mathematics™ or “calculus” style proof of Theorem 1. By this we mean that we
construct a periodic continuously differentiable real function R whose derivative is given
in terms of tangential distances between the outer and inner ellipse (see Theorem 2). To
say that a point with the n-Poncelet property exists is equivalent to R" (t) = ¢ + 2kx being
true for some ¢ € R and k € Z, where the superscript means the nth iterated function. In
Section 3 we apply this function to a special invariant definite integral through a theorem
on a change of variable. This allows us to say that the area under the graph of some positive
continuous function between R™ (t1) and R™ (1,) is always the same for every m € N. This
is our substitute for the invariant measure.

We hope that this approach will captivate the attention of nonmathematicians as well as

advanced high-school students interested in mathematics. Anyway, it is a nice example of
simple calculus techniques used to solve a purely geometrical problem.
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2 Preparation

Let & and & be two ellipses with & inside &,, see Figure 1. Take an arbitrary point
A € &,. Then there exist two tangents to & from A. Choose the one that is on the right-
hand side relative to A and denote the other intersection point of this tangent with &, by
R(A). This defines the map R: & — &,. Similarly, we can define the map L: & — &
by choosing the other tangent. Then a point A has the n-Poncelet property if and only if
R"(A) = A. Let X 4 be the intersection point between the line R(A)A and &;, and let Y4
be the intersection point between the line L(A)A and &;. Define pg(A) := |AX 4] and
pL(A) == |AY 4|, where | - | means length of a segment.

Theorem 2. Let Eo and &; be two ellipses with &; inside £,. There existamap ¢: R — &,
and a function R: R — R such that ¢ : [0, 2n) — &, is bijective,

RoqugaoIz’, (1)

@(t+2km) = ¢(t) and R(t+2kn) = R(t)+2kx foreveryk € Zandt € R. Furthermore,
R is continuously differentiable and

R/(t): (pLORO(P)(t). (2)

(Pro9) ()
Proof. Take an orthogonal coordinate system (x, y) with axes parallel to the axes of sym-
metry of &, and with the origin at the center of this ellipse. Let ¢: R — &, be the map
@(t) := (acost, bsint) where a and b are the semi major and minor axes of &,. Then ¢
restricted to [0, 27) is bijective and has the required periodicity property.

Define the real function R: R — R by

R(t) :=min{T: T > t,9p(T) = (Rop)(t))}.

Then (1) follows immediately from this definition and since ¢ has the period 2, R has
the desired property. Note also that R is a strictly increasing function, due to the assertion
I 34,

Define a bijective map A: R? — R? by A(x, y) := (x/a, y/b). This linear transformation
maps &, to a circle K, with radius equal to one while A (&) is also an ellipse inside K.
The idea is to work with K, instead of &, by defining maps similar to ¢ and R, namely
?(t) == (Aog)(t) = (cost,sint) and

R(t):= (@0 R) () = (cos R(t),sin R(z)) . 3)

It is clear that in the fraction (2) both functions are continuous. Therefore, (2) remains to
be proven.

We advise the reader to consult Figure 2. Choose ¢ € R. Take an arbitrary small ¢ > 0 and

let |h| < ¢. With this we assure that ‘ﬁ(t + h) — Ii‘(t)‘ is small enough. By (3) we have

R(t +h) — R() h
2 Bl

|R(1 + h), R(1)| = 2sin , @), @@ + h)| = 2sin
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Figure 2 Elements in the proof of Theorem 2.

Let X,, ,, be the intersection point between the lines @ (1) R (#1) and @ (t2) R (t2).

Assume also h # 0. Since a triangle A(R(t + h), X; 144, R(t)) is similar to a triangle
A(E(t), Xii+h, 9t + h)) by the inscribed angle theorem, it follows

[R@+h), RO| _ [R®), Xi]
7O, 2 +M [ Xen, 7 +h)|

Using the inequalities sinx < x and sinx > x(1 — x2/6) for x > 0 we get

- (1 B hz) lﬁ(t)a Xl,t+h|

R(t +h) — R()

P 272 R )
. - ~ = a2\ "L
Ri+m—R0| _ [ _ (R +h) - R()) R(), X0 ssn]
h = 24 | Xt00, @t +h)|

Since R is an increasing function, we can delete absolute values from the latter inequalities
to obtain

5 . R(t+h)—R(@) . |E(t)’xt,t+h| |E(t),X,‘
R'(t) = lim = lim — = =
h—0 h h—0 |Xr,z+h=(0(’+h)\ | X:, 2 (1)l

where X, is the intersection point between @ (¢) R (¢) and the ellipse A (&;), unique by
construction of the map R. It is easy to deduce that A maps lines to lines and preserves
ratios of distances between collinear points. Because R(¢), X, and @(¢) are collinear points,
soare (A" o R) (1) = (Ro9)(®), A" (X,) = Xy and (A~ 09) (t) = p(¢), and

[R®). X.| _ [(Rop)®). Xpw| _ pr (R(p(®))
X1, 7(0) Xy 0 (1)) PR (9(0)

The proof of Theorem 2 is thus complete. O]
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Observe that ¢ (1) = ¢ (2) implies t; = 2 + 2kx for some k € Z. For n € Ny we have
R" o ¢ = ¢ o R" due to the equation (1). By definition, the point ¢ (¢) has the n-Poncelet
property if and only if (R" o ¢) (t) = ¢(¢). Then we deduce the following important fact:
The existence of a point on &, with the n-Poncelet property is equivalent to the existence
oft € Rand k € Z with R" (t) = t + 2kx. In this case such a point is ¢(1).

3 Proof of Poncelet’s closure theorem

Here we invoke a theorem on a change of variable in the definite integral: Assume that
f(t) is a continuous function on la, b), g(t) is a continuously differentiable function on
[A, Bland g ([A, B]) = [a, b] such that a = g(A) and b = g(B). Then

b B
[ Ftydr = f (f 08) (V8 (). @
a A

Take k € N and 71, € R with #; < 1. Additionally, define ﬁo(t) — ¢. Since R is a
strictly increasing continuously differentiable function, it has the required properties for
being g(¢) in (4). Taking f(z) = 1/pr(p()) and A = R*"1(#)), B = R (1), we
obtain

/’*"”ﬂ & /’?"‘(m pL(Rp@)  dr
Ry PRO@) Sy pr (R(9(1))) pr(p (1))
by using (4) together with (1) and (2). Continuing this process gives

/"?"(’2) dr ['2 pL(Rp®)  pL(RY@®))  dr 5)
1

“ )i prR@@) T pr (R0 @) prlp®)

Ry PrP®)
Take a linear map A which maps & into a circle ;. This map is similar to that in the proof
of Theorem 2 except now taking the coordinate system in accordance with the inner ellipse
&i. Since A (&) is also an ellipse, it is sufficient to prove Poncelet’s closure theorem in
cases where the inner ellipse is a circle. But then pr = py and (5) simplifies to

/ﬁk(lz) dt /-tz dr

— /T (6)
Rapy Pr(e@®) Jy pr(e(®)
This formula justifies the name invariant integral and the integrand function is mentioned
at the end of the introduction.

In order to prove Theorem 1, let ¢ (¢1) be a point with the n-Poncelet property and take an
arbitrary #, > t;. We would like to show that ¢ (2) has the n-Poncelet property. By (6) we

have
/tz dr ]R”(tz) dr
0 PR@@)  Jytoke PR((2))

R"(t7)—2km ds Iy R"(t3)—2kx dr
/,1 Pr(p(1)) /rl o Pr(p(1))
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The second equality follows due to the fact that 1 /pr (¢(t)) is a periodic function with the

period 2z . We obtain
R (n)-2%kr 4,
[ o
2 Pr(p(t))

Since the integrand is positive, the boundary values of integration must be equal by the
mean value theorem for definite integrals. It follows t, = R" (t2) — 2kn and the point ¢ (#2)
also has the n-Poncelet property.
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