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Calculus style proof of Poncelet's theorem for two ellipses

Aleksander Simonie

Aleksander Simonie is currently a graduate student of mathematics at the Faculty of
Mathematics and Physics, University of Ljubljana. His research interests are complex
analysis and analytic number theory, especially the interaction of both fields in the

theory of the Riemann zeta-function. He is also fascinated with geometry and the

history of mathematics.

1 Introduction
In 1813 Jean-Victor Poncelet (1788-1867) discovered the following celebrated theorem
which belongs to classical geometry.

Theorem 1 (Poncelet's closure theorem). Let £0 and £\ be two ellipses with £\ inside
£0. Suppose that there exists an n-sidedpolygon circumscribed between £0 and £\ that is
inscribed in £0 and circumscribed about £\. Thenfor any otherpoint of£0 there exists an n-
sidedpolygon circumscribed between £0 and £\, which lias this pointfor one of its vertices.

We say that a point of £0 has the n-Poncelet property if it is one of the vertices of a

circumscribed «-sided polygon between £0 and £\. Poncelet's closure theorem does not

Der Schliessungssatz von Poncelet gilt als eines der schönsten und tiefsten Resultate
der klassischen projektiven Geometrie. Die zahlreichen heute bekannten Beweise sind
deutlich schwieriger als etwa der elementare Inversionsbeweis des Schliessungssatzes
von Steiner. Poncelet fand seinen Satz während er von Frühling 1813 bis Sommer 1814
in Saratow an der Wolga in russischer Kriegsgefangenschaft sass. Neben seinen
fundamentalen Beiträgen zur projektiven Geometrie war Poncelet zu Lebzeiten auch für
seine Leistungen als Ingenieur bekannt. So prangt sein Name neben denen von 71

weiteren eminenten Wissenschaftlern am Eiffelturm. Bereits vor Poncelet hatten Chappie,
Euler und Fuss Spezialfälle des Schliessungssatzes gefunden. Die Beweismethoden
reichen heute von Abelschen Integralen über elliptische Kurven bis zur Masstheorie.
Der Autor der vorliegenden Arbeit betrachtet den Spezialfall von zwei Ellipsen, wovon

die eine im Inneren der andern liegt. Er verwendet Ideen von Jacobi und Bertrand
und konstruiert zum Beweis eine reelle periodische Funktion, bei der schliesslich eine
Substitution für ein bestimmtes Integral zum Zuge kommt.
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guarantee that such point exists; Cayley's theorem provides a criterion for this in terms
of the equations of £„ and £\, see [Fla09, Chapter 10]. But if it exists, then Theorem 1 is

equivalent to the statement that every point of £0 has the n-Poncelet property, see Figure 1.

Figure 1 Illustration of Poncelet's theorem. Because the point A has the 5-Poncelet property every point of S0

(for instance, B) has the 5-Poncelet property.

Poncelet's theorem also holds for two nondegenerate conics in general position in the

projective plane. The reader may consult [Fla09] for a general overview on the subject and

its rich history, and [HH15] for the most recent proof.
Theorem 1 is known as the real case of Poncelet's theorem since it considers two ellipses
in the real affine plane. Jacobi and, later, Bertrand are credited to have given the first
correct proof with the help of elliptic functions. Schoenberg [Sch83] reduced Poncelet's
theorem in a non-elementary fashion to the case where £\ is a circle having its center in the

center of £0, and then continued with the Jacobi-Bertrand idea. King in [Kin94] followed
Schoenberg's approach, but avoided elliptic integrals and Schoenberg's non-elementary
reduction to construct a measure on £0 which is invariant with respect to the map R : £0 —>

£0\ see the beginning of Section 2 for the definition. His proof is reproduced in [Fla09,
Chapter 12] together with a section on topological conjugacy between R and a rotation of
a circle.

It is fair to say that we make a change of viewpoint, not a change in King's proof, to give
a "higher mathematics" or "calculus" style proof of Theorem 1. By this we mean that we
construct a periodic continuously differentiable real function R whose derivative is given
in terms of tangential distances between the outer and inner ellipse (see Theorem 2). To

say that a point with the n-Poncelet property exists is equivalent to R" (t) t + 2kn being
true for some t e M and k e Z, where the superscript means the nth iterated function. In
Section 3 we apply this function to a special invariant definite integral through a theorem

on a change of variable. This allows us to say that the area under the graph of some positive
continuous function between Rm (t\) and R"' (t2) is always the same for every m e N. This
is our substitute for the invariant measure.

We hope that this approach will captivate the attention of nonmathematicians as well as

advanced high-school students interested in mathematics. Anyway, it is a nice example of
simple calculus techniques used to solve a purely geometrical problem.
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2 Preparation
Let £0 and £\ be two ellipses with £\ inside £0, see Figure 1. Take an arbitrary point
A £0. Then there exist two tangents to £\ from A. Choose the one that is on the right-
hand side relative to A and denote the other intersection point of this tangent with £0 by
R(A). This defines the map R : £0 —>• £0. Similarly, we can define the map L : £0 —» £0

by choosing the other tangent. Then a point A has the n-Poncelet property if and only if
R"(A) A. Let Xa be the intersection point between the line R(A)A and £\, and let Ya

be the intersection point between the line L(A)A and £\. Define Pr(A) := |AXa| and

pi(A) := \AYa\, where | • | means length of a segment.

Theorem 2. Let £0 and £\ be two ellipses with £\ inside £„. There exist a map Ç9 : R —» £a

and a function R : R —> M such that (p : [0, 27r) —> £0 is bijective,

R o (p (p o R, (1)

tp(t+2kn) <p(t) and R(t+2kn) R(t)+2kn for every k eZandt G R. Furthermore,
R is continuously dijferentiable and

(PL o Rom) (t)
R'(t) (2)

(PR ° <P) (t)

Proof. Take an orthogonal coordinate system (x, y) with axes parallel to the axes of
symmetry of £0 and with the origin at the center of this ellipse. Let tp : R —> £0be the map
tp (t) := (a cos t, b sin t) where a and b are the semi major and minor axes of £0. Then tp

restricted to [0,2n) is bijective and has the required periodicity property.

Define the real function R : R -+ E by

R(t) := min [T : T > t, (p(T) (R o <p) (r)}.

Then (1) follows immediately from this definition and since tp has the period 2n, R has

the desired property. Note also that R is a strictly increasing function, due to the assertion

T > t.

Define a bijective map A : R2 R2 by A(x, y) := (x/a, y/b). This linear transformation

maps £0 to a circle IC0 with radius equal to one while A (£;) is also an ellipse inside KL0.

The idea is to work with /C0 instead of £0 by defining maps similar to tp and R, namely
lp(t) := (A o <p) (t) (cos t, sin t) and

R(t) := (ftp o R^j (t) (cos R(t), sin /?(t)) (3)

It is clear that in the fraction (2) both functions are continuous. Therefore, (2) remains to
be proven.
We advise the reader to consult Figure 2. Choose t g R. Take an arbitrary small s > 0 and

let \h\ < e. With this we assure that R(t + h) — ^(t) is small enough. By (3) we have

J R(t + h), /?(?) I 2 sin
R(t + h) - R(t)

Itp(t), tp(t + h)\ — 2 sin



148 A. Simonie

Figure 2 Elements in the proof of Theorem 2.

Let Xt] j2 be the intersection point between the lines (p (t\) R (ti) and (p fa) R fe)-
Assume also h / 0. Since a triangle A(/?(r + h), Xu+/,, R(t)) is similar to a triangle

/+/,, <p(t + /t)) by the inscribed angle theorem, it follows

\~R(t+h),R(t)\ _ \R{t),XIJ+h\
\<p(t),<p(t +h)\ \XtJ+h,<p(t +h)[

Using the inequalities sinx < x and sinx > x(l — x2/6) forx >0 we get

R(t+h) - R(t)
h

1-*
24

Im,*,,,
IXi t+h, <p(t + h)I

R(t + h) - R(t)
h

(RQ+h)-R«))2\ \R(t),Xltl+h\
24 J JXt,t+h, V>(t + h)\

Since R is an increasing function, we can delete absolute values from the latter inequalities
to obtain

*<(,) Mm «1AÛAÀ2 Mm
| |*(Q,X,|

h-+ 0 h h^O \Xt,t+h, <p(t + h)\ \Xt,<p(t)\

where X, is the intersection point between Jp (t) R (t) and the ellipse A (£j), unique by
construction of the map R. It is easy to deduce that A maps lines to lines and preserves
ratios of distances between collinear points. Because R(t), X, and^ä(f) are collinear points,
so are (A"1 o /?) (t) — (R o (p){t), A-1 (X,) X^) and (A-1 o (t) <p(t), and

\R(t),X,\ _
\(Ro<p)(t), Xp(f)| pL (R((p(t)))

\Xt,lp(t)\ \Xtp(t)i

The proof of Theorem 2 is thus complete.

PR {(pif))
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Observe that tp (t\) <p fe) implies t\ to + 2kn for some k e Z. For n e Mo we have
Rn o (p <p o R" due to the equation (1). By definition, the point <p(t) has the n-Poncelet

property if and only if (Rn o <p) (t) (pit). Then we deduce the following important fact:
The existence of a point on S0 with the n-Poncelet property is equivalent to the existence

oft e R and teZ with R" (t) t + 2kn. In this case such a point is (pit).

3 Proof of Poncelet's closure theorem

Here we invoke a theorem on a change of variable in the definite integral: Assume that

f(t) is a continuous function on [a, b\ g(t) is a continuously differentiable function on
[A, B] and g ([A, ß]) [a, b] such that a g (A) and b g(B). Then

Take k e N and t\, t2 e M with t\ < to- Additionally, define R°(t) t. Since R is a

strictly increasing continuously differentiable function, it has the required properties for
being g(t) in (4). Taking f(t) — 1 /pR((p(t)) and A Rk~l (fi), B — Rk~l {tf), we

/•**<&) dt
_

1('2>
pL (R((p(t))) At

JrHh) Pr(<P(0) PR (R(<P(t))) PR(<P(t))

by using (4) together with (1) and (2). Continuing this process gives

/•**&) At r'l PL {Rfpim PL (Rk((pjt))) At

JrHh) PR(<P(t)) Jh pR (R(<p(t))) PR (Rk(<p(t))) pR(<p(t))'

Take a linear map A which maps £\ into a circle K.\. This map is similar to that in the proof
of Theorem 2 except now taking the coordinate system in accordance with the inner ellipse
£{. Since A (£0) is also an ellipse, it is sufficient to prove Poncelet's closure theorem in

cases where the inner ellipse is a circle. But then pR pl and (5) simplifies to

This formula justifies the name invariant integral and the integrand function is mentioned
at the end of the introduction.

In order to prove Theorem 1, let tp (t\) be a point with the n-Poncelet property and take an

arbitrary to> t\. We would like to show that 1rp (to has the n-Poncelet property. By (6) we
have

(4)

obtain

(6)

t\ PR(<PU)) Jn+2kx PR(<P(0)

pRn(t2)-2kTC af'It 1

At R"(t2)-2kj[ fa

PR ((flit)) PR (fit))



150 A. Simonie

The second equality follows due to the fact that 1/pr (cp(t)) is a periodic function with the

period 2%. We obtain

Since the integrand is positive, the boundary values of integration must be equal by the

mean value theorem for definite integrals. It follows *2 R" (U) — 2kit and the point <p (ti)
also has the n-Poncelet property.
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