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Aufgaben

Neue Aufgaben

Lösungen sind bis zum 10. Februar 2019 erbeten und können auf postalischem Weg an

Dr. Stefan Grieder, Grebelackerstrasse 4, CH-8057 Zürich

gesandt werden. Lösungen, die in einem gängigen Format abgefasst sind, können als

Attachment auch über die E-Mail-Adresse Stefan. grieder@hispeed. ch eingereicht

werden.

Aufgabe 1377: Sei k eine natürliche Zahl, die teilerfremd zu 10 ist, und an die Dezimalzahl

kill ...Ik, (n > 1).

n Ziffern

Man bestimme ein k > 1 und eine Primzahl p so, dass p alle a„ teilt.

Jürgen Spilker, Stegen, D

Aufgabe 1378: Seien wa, Wß und wy die Winkelhalbierenden eines Dreieck ABC. Spiegelt

man einmal A an wß und zyklisch (B an wy etc.) und das andere mal A an wy und
zyklisch, so erhlt man zwei neue Dreiecke. Zeige, dass deren Flehen zusammengezhlt der

doppelten Flehe des ursprnglichen Dreiecks entspricht.

Aufgabe 1379 (Die einfache dritte Aufgabe): Man bestimme alle Polynome mit reellen
Koeffizienten so, dass für alle reellen Zahlen x und y gilt

p(x + y) <xp(x) + yp(y).

Raphael Muhr, Oberammergau, D

Yagub N. Aliyev, Baku, AZ
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Lösungen zu den Aufgaben in Heft 3,2017

Aufgabe 1365. Eine natürliche Zahl heisst Isozahl, wenn in ihrer Dezimaldarstellung alle
Ziffern gleich sind. Man beweise, dass jede natürliche Zahl n der Länge L, d.h. 10L_1 <
n < 10L, sich darstellen lässt als Summe von höchstens L + 1 Isozahlen.

Jürgen Spilker, Stegen, D

Auswertung der eingesandten Lösungen. Es sind Beiträge von folgenden 12 Lesern
eingetroffen: Moritz Adelmeyer (Zürich, CH), Jany C. Binz (Bolligen, CH), Hans Brand-
stetter (Wien, A), Peter Bundschuh (Köln, D), Walter Burgherr (Rothenburg, CH), Henri
Carnal (Bern, CH), Frieder Grupp (Schweinfurt, D), Walther Janous (Innsbruck, A),
Joachim Klose (Bonn, D), Walter Nohl (Steffisburg, CH), Albert Stadler (Herrliberg, CH) und
Lienhard Wimmer (Isny, D).

Naheliegend ist, die Zahl n so in Summanden zu zerlegen, dass man jeweils die grösste
Isozahl < n subtrahiert und dann den Prozess rekursiv auf das Ergebnis anwendet. Wir
folgen der Lösung von Jany C. Binz, die im wesentlichen derjenigen von Walter Burgherr
entspricht.

Es seien IL (L — 1,2, 3,... die L-stelligen Zahlen mit lauter Ziffern 1. Wegen Il+i
10Ii + 1 lässt sich jede natürliche Zahl n ^ Il+i — 1 eindeutig in der Form

n — alL+r mit 1 < a < 9 und r < Il
darstellen, während sich Il+i — 1 üIl + blL mit a + b — 10 und a,b > 1 auf
verschiedene Arten als Summe von zwei Isozahlen darstellen lässt.

Startet man mit einer Zahl n < Il+i und zerlegt n als eine Summe n Isoj +n, wie
oben beschrieben und iteriert den Prozess, so verschwindet einerseits spätestens ri, wegen

ri < li l und n ist die Summe von höchstens L Isozahlen oder andrerseits ist spätestens

ri-1 10 h — 1 eine Zahl von der Form 4 — 1 für ein geeignetes k und n ist die
Summe von höchstens L + 1 Isozahlen. Wegen n < Il+i hat man sogar etwas mehr als

das Geforderte gezeigt.

Bemerkungen: Joachim Klose weisst darauf hin, dass die Schranke L + 1 scharf ist und
dass sich die Zahlen m — 10L — L nicht als Summe von höchstens L Isozahlen schreiben
lassen.

Einige Löser bemerkten den kleinen Fehler in der Aufgabenstellung, nämlich n < 10L

statt n < 10L. Dieser Fehler schlich sich beim Redaktor ein und nicht etwa beim Autor.

Aufgabe 1366. Sei Fo die Fläche des kleinsten gleichseitigen Dreiecks, welches in einem
Dreieck mit der Fläche F einbeschrieben ist. Man zeige 4 Fo < F.

Gheorghe Bercea, München, D

Auswertung der eingesandten Lösungen. Folgende 11 Leser haben Beiträge zugesandt:
Moritz Adelmeyer (Zürich, CH), Hans Brandstetter (Wien, A), Henri Carnal (Bern, CH),
Frieder Grupp (Schweinfurt, D), Walther Janous (Innsbruck, A), Joachim Klose (Bonn, D),
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Walter Nohl (Steffisburg, CH), Volkhard Schindler (Berlin, D), Albert Stadler (Herrliberg,
CH), Michael Vowe (Therwil, CH) und Lienhard Wimmer (Isny, D).
In dieser Aufgabe kamen vielfältige Lösungsmethoden zum Einsatz. Während einige ein

Minimalproblem lösten, kamen andere mit bekannten Ungleichungen schnell zum Ziel.
Wir folgen der Lösung von Frieder Grupp, der mit elementaren Methoden direkt das
Resultat erhält.

Es sei o.B.d.A. Winkel a > 60° und c > b. Die Winkelhalbierende wa schneide BC in D
und die beiden Geraden durch D, die mit wa einen 30° Winkel einschliessen, schneiden
AC in C\ und AB in B\. Wegen <(CDA) ß + § > 30° liegen die Punkte Ci (resp. B\)
im Innern der Strecken AC (resp. AB).
Das Viereck C\, AB\D ist nun ein Drachenviereck und Dreieck C\B\D ein gleichseitiges

Dreieck, dessen Seitenlänge mit d und dessen Fläche mit Fi ^dr bezeichnet werde.

Nachfolgend wird 4 F < F bewiesen, worauf 4Fq < F folgt.
Es gilt F ^bcsm(a) \wa(b + c) sin(|), also

(1)

Andrerseits ist

w
V27

a 2 2tan(|) 2tan(|)
d V3 tan(f) + 1

T—T" d

Es gilt daher

A for|2 /
F>AF\ <4- \wa{b 4- c) sin(|) > Vïd2 \/3m2 ^

Diese Ungleichung ist wegen (1) äquivalent zu

Cb + c)2 16V3tan(|)

(V3tan(f) + l)2
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Wegen (b + c)2 > Abc (•& (b — c)2 > 0) ist nun hinreichend, dass

(a/3 tan(|) + l) >4\/3tan (I) ® tan(|) — 1^ >0.

Dem Beweis entnimmt man noch, dass in F > 4Fj Gleichheit genau dann gilt, wenn
a 60° und b c ist, das Dreieck ABC also gleichseitig ist.

Aufgabe 1367 (Die einfache dritte Aufgabe). Sei ABCDEFG ein regelmässiges
Siebeneck. Beweise, dass

AD3 2AB - AC
t + — 2.

AC3 AB + AD

Dragoljub Milosevic, Gornji Milanovac, SRB

Auswertung der eingesandten Lösungen. Von folgenden 16 Lesern sind Lösungen
eingetroffen: Moritz Adelmeyer (Zürich, CH), Sefket Arslanagic (Sarajevo, BIH), Gheorghe
Bercea (München, D), Hans Brandstetter (Wien, A), Peter Bundschuh (Köln, D), Walter

Burgherr (Rothenburg, CH), Henri Carnal (Bern, CH), Frieder Grupp (Schweinfurt, D),
Peter Hohler (Aarburg, CH), Walther Janous (Innsbruck, A), Walter Nohl (Steffisburg,
CH), Volkhard Schindler (Berlin, D), Albert Stadler (Herrliberg, CH), Michael Vöwe

(Therwil, CH), Gerhard Wanner (Genève, CH) und Lienhard Wimmer (Isny, D).

Die meisten Lösungen lassen sich in eine von zwei Kategorien einteilen. Entweder wird
mit dem Satz des Ptolemäus für Sehneviereck argumentiert, oder die zu beweisende
Behauptung wird auf eine Identität für x — cos(y) reduziert. Gerhard Wanner, dessen

Lösung wir präsentieren, argumentiert auch mit historischen Mitteln.

So ändern sich die Zeiten: Was damals eine grosse Entdeckung des grossen Archimedes

war, nämlich das Siebeneck zu enträtseln, was dann Generationen von grossen Arabern

beschäftigte (siehe z.B. J.P. Hogendijk (1984), Greek and Arabic constructions of the

regular heptagon, Arch. f. Hist, of Ex. Sciences 30; oder Dj. Paunic, Pravilni Poligoni,
Beograd 2006), ist jetzt „die einfache dritte Aufgabe".
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Wir nehmen AB 1 und bezeichnen AC x, AD — AE CF y (siehe linkes Bild).
Da alle Kreisbögen gleich lang sind, sind alle Peripheriewinkel gleich oder ein ganzes
Mehrfaches davon.

Die Idee, die so ungefähr auf F. Viète (1593) zurückgeht, ist, im linken Bild das Dreieck
ABC auf ACD umzuklappen, und anschliessend beide zusammen auf ADE zu klappen.
So entsteht die rechte Figur. Nun ist DAE ~ EDC' und CAF ~ DC'B'. So sehen wir
im rechten Bild, zusammen mit Thaies,

y 1

y z + 1, z =-, x + - y. (1)
x y

Damit wird die zu zeigende Behauptung z3 + 2, nach Einsetzen von x — l + ~

und y z + 1 und Heraufmultiplizieren der Nenner zu

(z3 - 2) (2z + z2) + z - 1 (z2 + z + l) (z3 + z2 - 2z - l) 0.

Die Gleichung z3 +z2 — 2z — 1 =0, die man aus (1) durch Elimination von x und y erhält,
war schon Viète bekannt.

Bemerkung: Ein Leser gibt an, dass eine zu dieser Aufgabe äquivalente Aufgabenstellung
als Aufgabe J348 in Mathematical Reflections 4 (2015) vom gleichen Autor vorgeschlagen
wurde.
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