Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 73 (2018)

Heft: 3

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Neue Aufgaben

Lösungen sind bis zum 10. Februar 2019 erbeten und können auf postalischem Weg an

Dr. Stefan Grieder, Grebelackerstrasse 4, CH-8057 Zürich

gesandt werden. Lösungen, die in einem gängigen Format abgefasst sind, können als Attachment auch über die E-Mail-Adresse stefan.grieder@hispeed.ch eingereicht werden.

Aufgabe 1377: Sei k eine natürliche Zahl, die teilerfremd zu 10 ist, und a_n die Dezimalzahl

$$k\underbrace{111\ldots 1}_{n \text{ Ziffern}} k$$
, $(n \ge 1)$.

Man bestimme ein $k \ge 1$ und eine Primzahl p so, dass p alle a_n teilt.

Jürgen Spilker, Stegen, D

Aufgabe 1378: Seien w_{α} , w_{β} und w_{γ} die Winkelhalbierenden eines Dreieck ABC. Spiegelt man einmal A an w_{β} und zyklisch (B an w_{γ} etc.) und das andere mal A an w_{γ} und zyklisch, so erhlt man zwei neue Dreiecke. Zeige, dass deren Flchen zusammengezhlt der doppelten Flche des urspringlichen Dreiecks entspricht.

Raphael Muhr, Oberammergau, D

Aufgabe 1379 (Die einfache dritte Aufgabe): Man bestimme alle Polynome mit reellen Koeffizienten so, dass für alle reellen Zahlen x und y gilt

$$p(x + y) \le xp(x) + yp(y)$$
.

Lösungen zu den Aufgaben in Heft 3, 2017

Aufgabe 1365. Eine natürliche Zahl heisst Isozahl, wenn in ihrer Dezimaldarstellung alle Ziffern gleich sind. Man beweise, dass jede natürliche Zahl n der Länge L, d.h. $10^{L-1} \le n \le 10^L$, sich darstellen lässt als Summe von höchstens L+1 Isozahlen.

Jürgen Spilker, Stegen, D

Auswertung der eingesandten Lösungen. Es sind Beiträge von folgenden 12 Lesern eingetroffen: Moritz Adelmeyer (Zürich, CH), Jany C. Binz (Bolligen, CH), Hans Brandstetter (Wien, A), Peter Bundschuh (Köln, D), Walter Burgherr (Rothenburg, CH), Henri Carnal (Bern, CH), Frieder Grupp (Schweinfurt, D), Walther Janous (Innsbruck, A), Joachim Klose (Bonn, D), Walter Nohl (Steffisburg, CH), Albert Stadler (Herrliberg, CH) und Lienhard Wimmer (Isny, D).

Naheliegend ist, die Zahl n so in Summanden zu zerlegen, dass man jeweils die grösste Isozahl $\leq n$ subtrahiert und dann den Prozess rekursiv auf das Ergebnis anwendet. Wir folgen der Lösung von Jany C. Binz, die im wesentlichen derjenigen von Walter Burgherr entspricht.

Es seien I_L ($L=1,2,3,\ldots$) die L-stelligen Zahlen mit lauter Ziffern 1. Wegen $I_{L+1}=10I_L+1$ lässt sich jede natürliche Zahl $n\neq I_{L+1}-1$ eindeutig in der Form

$$n = aI_L + r$$
 mit $1 \le a \le 9$ und $r < I_L$

darstellen, während sich $I_{L+1} - 1 = aI_L + bI_L$ mit a + b = 10 und $a, b \ge 1$ auf verschiedene Arten als Summe von zwei Isozahlen darstellen lässt.

Startet man mit einer Zahl $n < I_{L+1}$ und zerlegt n als eine Summe $n = \mathrm{Iso}_1 + r_1$, wie oben beschrieben und iteriert den Prozess, so verschwindet einerseits spätestens r_L , wegen $r_L < I_1 = 1$ und n ist die Summe von höchstens L Isozahlen oder andrerseits ist spätestens $r_{L-1} = 10 = I_2 - 1$ eine Zahl von der Form $I_k - 1$ für ein geeignetes k und n ist die Summe von höchstens L + 1 Isozahlen. Wegen $n < I_{L+1}$ hat man sogar etwas mehr als das Geforderte gezeigt.

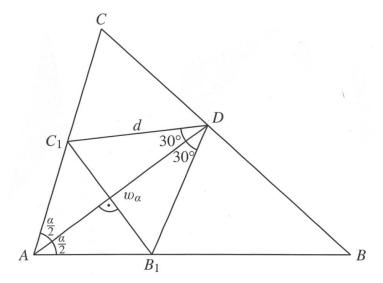
Bemerkungen: Joachim Klose weisst darauf hin, dass die Schranke L+1 scharf ist und dass sich die Zahlen $n_L=10^L-L$ nicht als Summe von höchstens L Isozahlen schreiben lassen.

Einige Löser bemerkten den kleinen Fehler in der Aufgabenstellung, nämlich $n \le 10^L$ statt $n < 10^L$. Dieser Fehler schlich sich beim Redaktor ein und nicht etwa beim Autor.

Aufgabe 1366. Sei F_0 die Fläche des kleinsten gleichseitigen Dreiecks, welches in einem Dreieck mit der Fläche F einbeschrieben ist. Man zeige $4 \cdot F_0 \leq F$.

Gheorghe Bercea, München, D

Auswertung der eingesandten Lösungen. Folgende 11 Leser haben Beiträge zugesandt: Moritz Adelmeyer (Zürich, CH), Hans Brandstetter (Wien, A), Henri Carnal (Bern, CH), Frieder Grupp (Schweinfurt, D), Walther Janous (Innsbruck, A), Joachim Klose (Bonn, D),



Walter Nohl (Steffisburg, CH), Volkhard Schindler (Berlin, D), Albert Stadler (Herrliberg, CH), Michael Vowe (Therwil, CH) und Lienhard Wimmer (Isny, D).

In dieser Aufgabe kamen vielfältige Lösungsmethoden zum Einsatz. Während einige ein Minimalproblem lösten, kamen andere mit bekannten Ungleichungen schnell zum Ziel. Wir folgen der Lösung von *Frieder Grupp*, der mit elementaren Methoden direkt das Resultat erhält.

Es sei o.B.d.A. Winkel $\alpha \ge 60^{\circ}$ und $c \ge b$. Die Winkelhalbierende w_{α} schneide BC in D und die beiden Geraden durch D, die mit w_{α} einen 30° Winkel einschliessen, schneiden AC in C_1 und AB in B_1 . Wegen $\sphericalangle(CDA) = \beta + \frac{\alpha}{2} > 30^{\circ}$ liegen die Punkte C_1 (resp. B_1) im Innern der Strecken AC (resp. AB).

Das Viereck C_1 , AB_1D ist nun ein Drachenviereck und Dreieck C_1B_1D ein gleichseitiges Dreieck, dessen Seitenlänge mit d und dessen Fläche mit $F_1 = \frac{\sqrt{3}}{4}d^2$ bezeichnet werde. Nachfolgend wird $4F_1 \le F$ bewiesen, worauf $4F_0 \le F$ folgt.

Es gilt $F = \frac{1}{2}bc\sin(\alpha) = \frac{1}{2}w_{\alpha}(b+c)\sin(\frac{\alpha}{2})$, also

$$w_{\alpha} = \frac{2bc}{b+c}\cos\left(\frac{\alpha}{2}\right). \tag{1}$$

Andrerseits ist

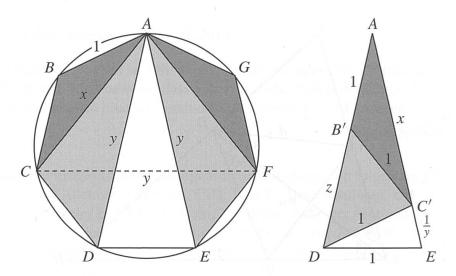
$$w_{\alpha} = \frac{\sqrt{3}}{2}d + \frac{d}{2\tan(\frac{\alpha}{2})} = \frac{\sqrt{3}\tan(\frac{\alpha}{2}) + 1}{2\tan(\frac{\alpha}{2})}d.$$

Es gilt daher

$$F \ge 4F_1 \iff \frac{1}{2}w_{\alpha}(b+c)\sin\left(\frac{\alpha}{2}\right) \ge \sqrt{3}d^2 = \sqrt{3}w_{\alpha}^2 \frac{4\tan^2\left(\frac{\alpha}{2}\right)}{\left(\sqrt{3}\tan\left(\frac{\alpha}{2}\right)+1\right)^2}.$$

Diese Ungleichung ist wegen (1) äquivalent zu

$$\frac{(b+c)^2}{bc} \ge \frac{16\sqrt{3}\tan\left(\frac{\alpha}{2}\right)}{\left(\sqrt{3}\tan\left(\frac{\alpha}{2}\right)+1\right)^2}.$$



Wegen $(b+c)^2 \ge 4bc$ ($\Leftrightarrow (b-c)^2 \ge 0$) ist nun hinreichend, dass

$$\left(\sqrt{3}\tan\left(\frac{\alpha}{2}\right)+1\right)^2 \geq 4\sqrt{3}\tan\left(\frac{\alpha}{2}\right) \;\Leftrightarrow\; \left(\sqrt{3}\tan\left(\frac{\alpha}{2}\right)-1\right)^2 \geq 0.$$

Dem Beweis entnimmt man noch, dass in $F \ge 4F_1$ Gleichheit genau dann gilt, wenn $\alpha = 60^{\circ}$ und b = c ist, das Dreieck ABC also gleichseitig ist.

Aufgabe 1367 (Die einfache dritte Aufgabe). Sei ABCDEFG ein regelmässiges Siebeneck. Beweise, dass

$$\frac{AD^3}{AC^3} + \frac{2AB - AC}{AB + AD} = 2.$$

Dragoljub Milošević, Gornji Milanovac, SRB

Auswertung der eingesandten Lösungen. Von folgenden 16 Lesern sind Lösungen eingetroffen: Moritz Adelmeyer (Zürich, CH), Šefket Arslanagić (Sarajevo, BIH), Gheorghe Bercea (München, D), Hans Brandstetter (Wien, A), Peter Bundschuh (Köln, D), Walter Burgherr (Rothenburg, CH), Henri Carnal (Bern, CH), Frieder Grupp (Schweinfurt, D), Peter Hohler (Aarburg, CH), Walther Janous (Innsbruck, A), Walter Nohl (Steffisburg, CH), Volkhard Schindler (Berlin, D), Albert Stadler (Herrliberg, CH), Michael Vowe (Therwil, CH), Gerhard Wanner (Genève, CH) und Lienhard Wimmer (Isny, D).

Die meisten Lösungen lassen sich in eine von zwei Kategorien einteilen. Entweder wird mit dem Satz des Ptolemäus für Sehneviereck argumentiert, oder die zu beweisende Behauptung wird auf eine Identität für $x = \cos(\frac{\pi}{7})$ reduziert. *Gerhard Wanner*, dessen Lösung wir präsentieren, argumentiert auch mit historischen Mitteln.

So ändern sich die Zeiten: Was damals eine grosse Entdeckung des grossen Archimedes war, nämlich das Siebeneck zu enträtseln, was dann Generationen von grossen Arabern beschäftigte (siehe z.B. J.P. Hogendijk (1984), *Greek and Arabic constructions of the regular heptagon*, Arch. f. Hist. of Ex. Sciences 30; oder Dj. Paunić, *Pravilni Poligoni*, Beograd 2006), ist jetzt "die einfache dritte Aufgabe".

Wir nehmen AB = 1 und bezeichnen AC = x, AD = AE = CF = y (siehe linkes Bild). Da alle Kreisbögen gleich lang sind, sind alle Peripheriewinkel gleich oder ein ganzes Mehrfaches davon.

Die Idee, die so ungefähr auf F. Viète (1593) zurückgeht, ist, im linken Bild das Dreieck ABC auf ACD umzuklappen, und anschliessend beide zusammen auf ADE zu klappen. So entsteht die rechte Figur. Nun ist $DAE \sim EDC'$ und $CAF \sim DC'B'$. So sehen wir im rechten Bild, zusammen mit Thales,

$$y = z + 1,$$
 $z = \frac{y}{x},$ $x + \frac{1}{y} = y.$ (1)

Damit wird die zu zeigende Behauptung $z^3+\frac{2-x}{1+y}=2$, nach Einsetzen von $x=1+\frac{1}{z}$ und y=z+1 und Heraufmultiplizieren der Nenner zu

$$(z^3 - 2)(2z + z^2) + z - 1 = (z^2 + z + 1)(z^3 + z^2 - 2z - 1) = 0.$$

Die Gleichung $z^3 + z^2 - 2z - 1 = 0$, die man aus (1) durch Elimination von x und y erhält, war schon Viète bekannt.

Bemerkung: Ein Leser gibt an, dass eine zu dieser Aufgabe äquivalente Aufgabenstellung als Aufgabe J348 in *Mathematical Reflections* 4 (2015) vom gleichen Autor vorgeschlagen wurde.