

Zeitschrift:	Elemente der Mathematik
Herausgeber:	Schweizerische Mathematische Gesellschaft
Band:	73 (2018)
Heft:	3
Artikel:	A short and elementary proof of the structure theorem for finitely generated modules over PIDs
Autor:	Spindler, Karlheinz
DOI:	https://doi.org/10.5169/seals-780945

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 13.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

Short note

**A short and elementary proof
of the structure theorem for
finitely generated modules over PIDs**

Karlheinz Spindler

*Dedicated to Prof. Karl Heinrich Hofmann
on the Occasion of His 85th Birthday*

While preparing an algebra class, I was looking for a way to adapt the slick proof in [1, Chapter 6, Theorem 6.9], attributed to Schenkman, of the structure theorem for finitely generated abelian groups to the corresponding structure theorem for finitely generated modules over principal ideal domains (PIDs). A research on the internet (see [2]) and in the literature (see [3]) confirmed that such a proof (requiring only minimal prerequisites, i.e., neither much theoretical background nor computations involving the Smith normal form for matrices over PIDs) is indeed available. The proof presented here is a modification of the one outlined in [3], with an extra corner cut off. It is hard to see how this proof could still be shortened. To make the presentation self-contained, we include the two auxiliary results used in [3].

Lemma 1. *Let R be a PID and let r_1, \dots, r_n be relatively prime elements of R . Then there is a matrix $A \in R^{n \times n}$ which has (r_1, \dots, r_n) as its first row and a unit of R as its determinant (which can be chosen to be 1 if $n \geq 2$).*

Proof. We use induction on n , the case $n = 1$ being trivial. Assume that the statement is true for some number n and consider $n + 1$ relatively prime elements $r_0, r_1, \dots, r_n \in R$. Let d be a gcd of r_1, \dots, r_n ; then $r_i = d\rho_i$ with relatively prime elements ρ_1, \dots, ρ_n . By induction hypothesis, there is a matrix $B \in R^{n \times n}$ with $\det(B) = \xi \in R^\times$ whose first row is (ρ_1, \dots, ρ_n) . Let $B_0 \in R^{(n-1) \times n}$ be the matrix which is obtained from B by striking out the first row. Now $1 = \gcd(r_0, r_1, \dots, r_n) = \gcd(r_0, \gcd(r_1, \dots, r_n)) = \gcd(r_0, d)$. Since a gcd is only determined up to multiplication by a unit, we may as well write $\gcd(r_0, d) = \xi^{-1}$; hence there are elements $u, v \in R$ such that $ur_0 - vd = \xi^{-1}$, due to the linear representation of the gcd of two elements. Then the matrix

$$A := \begin{bmatrix} r_0 & r_1 & \cdots & r_n \\ v & u\rho_1 & \cdots & u\rho_n \\ 0 & * & \cdots & * \\ \vdots & \vdots & & \vdots \\ 0 & * & \cdots & * \end{bmatrix} = \begin{bmatrix} r_0 & d\rho_1 & \cdots & d\rho_n \\ v & u\rho_1 & \cdots & u\rho_n \\ 0 & * & \cdots & * \\ \vdots & \vdots & & \vdots \\ 0 & * & \cdots & * \end{bmatrix}$$

with B_0 in its lower-right corner has (r_0, r_1, \dots, r_n) as its first row. Using expansion by the first column, the determinant of this matrix is seen to be $\det(A) = r_0u \det(B) - vd \det(B) = (r_0u - vd) \det(B) = \xi^{-1}\xi = 1$, so that A has the desired property. This concludes the induction step. \square

Lemma 2. *Let R be a PID, let r_1, \dots, r_n be relatively prime elements of R and let M be a finitely generated R -module. If (x_1, \dots, x_n) is a system of generators for M , then there is also a system of generators (y_1, \dots, y_n) for M such that $y_1 = r_1x_1 + \dots + r_nx_n$.*

Proof. By Lemma 1 there is a matrix $A \in R^{n \times n}$ whose first row is (r_1, \dots, r_n) and which possesses a matrix inverse $B = A^{-1}$ in $R^{n \times n}$. Let

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} := A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} r_1 & \cdots & r_n \\ * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \text{so that} \quad \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = B \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

Then each element x_i is a linear combination of y_1, \dots, y_n over R . Consequently, (y_1, \dots, y_n) is a system of generators for M which has the desired property. \square

We are now ready to give a succinct proof of the structure theorem for finitely generated modules over PIDs. We follow the convention of allowing the formation of greatest common divisors of elements which are not necessarily nonzero. Then clearly

$$\gcd(a_1, \dots, a_m, 0, \dots, 0) = \gcd(a_1, \dots, a_m)$$

whenever a_1, \dots, a_m are nonzero elements, and $\gcd(a_1, \dots, a_n) = 0$ if and only if $a_1 = \dots = a_n = 0$. Also, we say that the zero element of a PID has an infinite number of prime factors, because each prime element divides the zero element with arbitrarily high multiplicity. These conventions allow us to carry out a proof by induction without having to distinguish between free modules and modules with torsion elements.

Theorem. *Let R be a PID, and let M be a module over R . If M is generated by n but not by $n - 1$ elements, then M decomposes into a direct sum of n cyclic modules.*

Proof. We use induction on n , the case $n = 1$ being trivial. Let $n \geq 2$ and consider a module M generated by n but not by $n - 1$ elements. Then a system (x_1, \dots, x_n) of generators can be chosen for which the annihilator $\text{Ann}(x_1)$ of x_1 in R (which is an ideal and hence a principal ideal of R) has a generator d with a minimal number of prime factors (counted with multiplicity) amongst all elements of minimal generating sets. (Note that if $d = 0$ then $\text{Ann}(x_i) = \{0\}$ for $1 \leq i \leq n$, this being the case of a torsion-free module.) We claim that we then have a direct sum decomposition

$$M = (Rx_1) \oplus (Rx_2 + \dots + Rx_n). \quad (*)$$

We prove this claim by showing that in each relation

$$r_1x_1 + r_2x_2 + \dots + r_nx_n = 0 \quad (**)$$

we must have $d \mid r_1$ and hence $r_1 x_1 = 0$. Let $g := \gcd(r_1, d)$. By the linear representation of a gcd, there are elements $u, v \in R$ with $g = ur_1 + vd$, which implies that $gx_1 = ur_1 x_1$. Hence multiplying $(\star\star)$ with u becomes $gx_1 + ur_2 x_2 + \cdots + ur_n x_n = 0$. Let $\gamma := \gcd(g, ur_2, \dots, ur_n)$. If $\gamma = 0$ then $g = ur_2 = \cdots = ur_n = 0$, and $g = 0$ implies $r_1 = d = 0$; hence we are done in this case (which is the case of a torsion-free module). Let $\gamma \neq 0$. Then, according to Lemma 2, there is a generating system (y_1, \dots, y_n) for M such that $y_1 = (g/\gamma)x_1 + (ur_2/\gamma)x_2 + \cdots + (ur_n/\gamma)x_n$, and by construction we have $\gamma y_1 = 0$. Due to the minimality property of x_1 (or d), the element γ cannot have less prime divisors than d . (Thus necessarily $d \neq 0$.) On the other hand, we have $\gamma \mid g$ and $g \mid d$, so that γ is a divisor of d . These two facts imply that d and γ are associates, i.e., differ only by multiplication with a unit of R . Since γ is a divisor of r_1 by construction, then so is d , as claimed. Thus the directness of the sum (\star) is established. Since, by induction hypothesis, the submodule $Rx_2 + \cdots + Rx_n$ decomposes into a direct sum of $n - 1$ cyclic submodules, the induction step is concluded. (Note that $Rx_2 + \cdots + Rx_n$ is not generated by less than $n - 1$ elements because otherwise M would be generated by less than n elements.) \square

The argument in the proof can be easily extended to show that d divides each coefficient r_i in any relation $r_1 x_1 + \cdots + r_n x_n = 0$. This observation can be exploited to derive the invariant factor decomposition for the module under consideration. However, the form of the theorem presented here fully suffices to derive the Jordan canonical form for nilpotent endomorphisms of a finite-dimensional vector space over a field K (and hence the Jordan canonical form for arbitrary endomorphisms if the field K is algebraically closed).

References

- [1] Joseph R. Rotman: *An Introduction to the Theory of Groups*; Springer, New York 1995.
- [2] <https://mathoverflow.net/questions/12009/is-there-a-slick-proof-of-the-classification-of-finitely-generated-abelian-group>
- [3] Louis Halle Rowen: *Graduate Algebra: Commutative View*, American Mathematical Society, Providence (Rhode Island) 2006; Chapter 2, Exercises 15–17.

Karlheinz Spindler

Hochschule RheinMain

Kurt-Schumacher-Ring 18

D-65197 Wiesbaden, Germany