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Short note 3 in 1: A simple way to prove that e",
In(r) and 7? are irrational

Jirgen Miiller and Tom Miiller

In 1947, apparently inspired by the classical Hermite method to show the transcendence of
e (see, e.g., [3, Chapter 2]), Ivan Niven published his famous note “A simple proof that 7
is irrational” [6]. The key to this proof is the use of sums of different derivatives of special
polynomials in order to construct a sequence (P,) of polynomials with integer coefficients
and of degree < n fulfilling 0 < | P, ()| < 1/n!.If, in this setting, we suppose # = a /b to
be a rational number, then b" P, () would be an integer number with 0 < |b" P, ()| < 1
for all large n. This is of course impossible and hence 7 is irrational.

Soon after, Iwamoto [4] and Butlewski [2] exploited variations of Niven’s method and
constructed other approximation polynomials in order to get simple irrationality proofs
for 72, resp. X for any integer k # 0. In all cases the used polynomials seem to appear
from nowhere and to show that they are actually in Z[x] is more or less tricky.

In this note we take a new look at the classic analytic irrationality proofs for z2 and the
integer powers of e, showing that the required approximation polynomials are generated
by one single integral expression. Our approach makes it obvious how the polynomials
come into existence, why they have integer coefficients and that the irrationality proofs for
, n2 and e* are only different special cases derived from the same general formula.

We start by studying the integral

1
Ii(z) := ! / ket dt
0
for z € Cand k € Np. With integration by parts we get the recursive formula

L(z) = 2*e* — kl1(2) (1)

and considering Ip(z) = e* — 1 we see (by induction over k) that for every k € Ny there is
a polynomial r(z) € Z[z] of degree k such that

I (2) = ri(z)et — (—1)*k!.
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Now, we consider the polynomials
pat) = "(1 = 1) /n!,,

where #n is a positive integer. It is well known (and easily seen) that p,(qn) (¢) is a polynomial
of degree n with integer coefficients p, 0, . .., pu,n. Thus the integral

1 n
Ju(z) = 2" f pP(O)edt = puiz" " Ii(2) 2)
0
k=0

is the sum of integer multiples of the integrals 7" Io(z), 2" "' 11(z), . .., I,(z). Hence there
are two polynomials Q,(z), R, (z) € Z[z] of degree < n with

Jn(2) = On(2) + Ry (Z)ez- )

On the other hand, by repeatedly using integration by parts we can transform the integral

Jy (z) into

Z211—1—1

Jn (Z) = (_1)11

1
/ (1 — )t e“dt. “4)
0

n!

Since 0 <t(1 —1t) < 1/4forallt € [0, 1] we get

z/2 2n
PAGIE IzleRe(Z)%. N

Now suppose that z and e* are Gaussian rationals, that is, z € Q + Qi and ¢* € Q + Qi.
Then z = (a + a’i)/b and e* = (c + c'i)/d witha,a’,c,c’ € Z and b,d € N. From (5)
we have db" J,(z) — 0 as n — oo and from (3) we see that

db"Ju(2) = db" (Qn(2) + Ra(2)e?) € Z + Zi,
i.e., a Gaussian integer. From this we obtain the following

Proposition. If J,, (z) does not eventually vanish then not both of z and e* can be Gaussian
rationals.

If x # 0 is a real number, then obviously J,(x) is nonzero, since the integral in (4) is
positive. Thus, if x # 0 is rational, the proposition implies the irrationality of ¢* and
if y # 1 is a positive rational number, the proposition (applied to z = Iny) shows the
irrationality of In(y). For z = iz we have

1 1
Im([ (1 — r)"ez"‘dt) :f t"(1 =)' sin(zt)dr > 0 (6)
0 0

and in particular J,(ir) # 0. From ¢ = —1 and the proposition we obtain the ir-
rationality of z. Moreover, since cos(s) = —cos(xr — s), the real part of the integral
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in (6) vanishes and we obtain from (4) that J,(iz) is real. Denoting the coefficients of
(@n — Ry)(2) € Z[z] by cpn, - . ., Cn,n We have

[n/2]
0 # Jn(ir) = (Qn — Ry)(ix) = Re(Qn — R (ix) = D (=1)’cppvz™.

v=0

If we suppose that 72 = a/b with positive integers a and b then b"J,(iz ) is a nonzero
integer. Similarly as above, this contradicts (5) for large n.

Remark. (3) and (4) imply that —Q, /R, is the (n,n)-Padé approximant of e* (cf. [1,
p. 318]). By explicitly computing the approximation polynomials used by Iwamoto, one
then sees that these actually equal O, — R,,. The same can be observed regarding Niven’s
polynomials and Re(Q,, + R,i) which correspond to the case z = iz /2. Also, in the note
[5] Nesterenko used the explicit form of the Padé approximants to obtain an estimate for
Jy, similar to (5) and with that the irrationality of 7 and e* for x € Q \ {0}.
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