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I Elemente der Mathematik

Short note 3 in 1: A simple way to prove that er,
ln(r) and n2 are irrational

Jürgen Müller and Tom Müller

In 1947, apparently inspired by the classical Hermite method to show the transcendence of
e (see, e.g., [3, Chapter 2]), Ivan Niven published his famous note "A simple proof that it
is irrational" [6]. The key to this proof is the use of sums of different derivatives of special
polynomials in order to construct a sequence (Pn of polynomials with integer coefficients
and of degree < n fulfilling 0 < Pn {n | < 1/«!. If, in this setting, we suppose n a/bio
be a rational number, then b" Pn (n would be an integer number with 0 < \bnP,M)\ < 1

for all large n. This is of course impossible and hence it is irrational.

Soon after, Iwamoto [4] and Butlewski [2] exploited variations of Niven's method and
constructed other approximation polynomials in order to get simple irrationality proofs
for TT2, resp. ek for any integer k ^ 0. In all cases the used polynomials seem to appear
from nowhere and to show that they are actually in Z[x] is more or less tricky.

In this note we take a new look at the classic analytic irrationality proofs for n2 and the

integer powers of e, showing that the required approximation polynomials are generated
by one single integral expression. Our approach makes it obvious how the polynomials
come into existence, why they have integer coefficients and that the irrationality proofs for
n, 7T2 and ek are only different special cases derived from the same general formula.

We start by studying the integral

4(z) := zk+x f1 tkez'dt
Jo

for z e C and k e Nq. With integration by parts we get the recursive formula

h(z) zkez — klic-i(z) (1)

and considering /o(z) ez — 1 we see (by induction over k) that for every k e No there is

a polynomial (z) e Z[z] of degree k such that

hiz) rk(z)ez - (—!)*&!.
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Now, we consider the polynomials

Pn(t) t"( 1 - t)"/n\

where n is a positive integer. It is well known (and easily seen) that p„ (t) is a polynomial
of degree n with integer coefficients pnß,..., pn,n- Thus the integral

Jn(z) := zn+l [ p("\t)eztdt - y,pn,kzn~kh(z) (2)
Jo

k=0

is the sum of integer multiples of the integrals znIo(z), z"~l h(z),..., In(z)- Hence there

are two polynomials Q„(z), Rn(z) e Z[z] of degree < n with

Uz) Qniz) + Rn(z)ez. (3)

On the other hand, by repeatedly using integration by parts we can transform the integral
Jn(z) into

„2n+l rl
Mz) (—1)"-—j— / tn( 1 - t)neztdt. (4)

n\ Jo

Since 0 < t (1 — t) < 1/4 for all t e [0,1] we get

\Mz)\ < |z|eRe«^^. (5)
n\

Now suppose that z and ez are Gaussian rationals, that is, z e Q + Qi and ez e Q + Qi.
Then z (a + a'ï)/b and ez (c + c'i)/d with a, a', c,c' e Z and b,d e N. From (5)
we have db"Jn(z) —> 0 as n —oo and from (3) we see that

dbnJn(z) dbn(Qn(z) + Rn(z)ez) eZ + Zi,

i.e., a Gaussian integer. From this we obtain the following

Proposition. If Jn (z) does not eventually vanish then not both ofz and ez can be Gaussian
rationals.

If x ^ 0 is a real number, then obviously ./„ (x) is nonzero, since the integral in (4) is

positive. Thus, if x f 0 is rational, the proposition implies the irrationality of ex and

if >> f 1 is a positive rational number, the proposition (applied to z In y) shows the

irrationality of ln(y). For z Ft we have

Imtn( 1 — t)neztdt^ J f"(l — t)n sm(jzt)dt > 0 (6)

and in particular Jn(in) f 0. From em -1 and the proposition we obtain the

irrationality of tz. Moreover, since cos(,s) — cos(7r — s), the real part of the integral
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in (6) vanishes and we obtain from (4) that J„(irc) is real. Denoting the coefficients of
(Qn - Rn)(z) e Z[z] by c„,0, • • •, cn,n we have

Ln/2J

0 £ M«0 (Qn - Rn)(far) Re(ß„ - Rn)(iff) X (~1)V2^2v.

If we suppose that tz2 a/b with positive integers a and b then bnJn(in) is a nonzero
integer. Similarly as above, this contradicts (5) for large n.

Remark. (3) and (4) imply that —Qn/Rn is the (n,n)-Padé approximant of ez (cf. [1,

p. 318]). By explicitly computing the approximation polynomials used by Iwamoto, one
then sees that these actually equal Qn — Rn- The same can be observed regarding Niven's
polynomials and Re(Q„ + Rnï) which correspond to the case z in/2. Also, in the note
[5] Nesterenko used the explicit form of the Padé approximants to obtain an estimate for
/„ similar to (5) and with that the irrationality of n and ex for x eQ \ {0}.
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