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I Elemente der Mathematik

Short note Eine Dobinski-Reihe für die
Anzahl surjektiver Abbildungen

Alfred Schreiber

Auf Dobinski [3] geht die berühmte Darstellung der Beil-Zahlen B(r) in Form einer
unendlichen Reihe zurück:

Der Formel (1) soll in diesem Beitrag ein Analogon zur Seite gestellt werden, das die

Anzahl der surjektiven Abbildungen (mit r-elementiger Definitionsmenge) ebenfalls als

unendliche Reihe darstellt.

Zu ganzem r > 1 bezeichnet die Beil-Zahl B(r) die Anzahl möglicher Zerlegungen
(Partitionen) einer Menge R von r Elementen in paarweise disjunkte (nichtleere) Teilmengen.
Sortieren wir die Partitionen nach der Anzahl j der sie bildenden Teilmengen (1 < j < r),
so können wir schreiben:

Hierbei bezeichnet {(} eine Stirling-Zahl zweiter Art; sie gibt an, auf wie viele Weisen
sich Zerlegungen von R herstellen lassen, die aus y Teilmengen bestehen (y-Partitionen).

Sei / : R —> {1,...eine surjektive Abbildung. Dann bilden die Urbildmengen
/-![{/}] mit 1 < i < y eine /-Partition von R. Offensichtlich erhalten wir sämtliche Sur-

jektionen vom Typ R -> {1,...indem wir jede y-Partition von R mit den möglichen
Anordnungen der Bildmenge {1,..., y'} paaren. Damit ergeben sich y !{)} Surjektionen
einer r-elementigen Menge auf eine y-elementige Menge.

In Entsprechung zu (2) bilden wir die totale Surjektionszahl S(r) als Anzahl der surjektiven

Abbildungen, deren Definitionsmenge aus r Elementen besteht:

(1)
k= 1

r
(2)

r
(3)
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Alternativ kann S(r) aufgefasst werden als Anzahl aller Partitionen einer r-elementigen
Menge, worin die Teilmengen eine geordnete Folge bilden; sie erzeugen so eine schwache

Ordnung der Elemente (wie sie etwa beim Pferderennen entsteht, wo jeweils alle Pferde,
die zeitgleich die Ziellinie erreichen, einer Teilmenge zugerechnet werden).

Auch für diesen Zählausdruck lässt sich eine der Dobiriski-Reihe (1) ähnliche Reihendarstellung

finden:

Satz.

/ N
1 ^ V

S^ ~ 2 ^ 2*' (4)
k= 1

Dem Beweis des Satzes werde zunächst eine einfache kombinatorische Betrachtung
vorausgeschickt.

Beiden Reihen (1) und (4) gemeinsam ist der im Summanden auftretende Zähler kr ; er lässt
sich auffassen als Anzahl aller Abbildungen von R in eine Menge K von k Elementen (k >
1 ganz). Es gilt hier die bekannte und für die Stirling-Zahlen zweiter Art charakteristische
Identität:

r

Z
j=l

*(* - 1) • • • (k - j + 1). (5)

(5) ist kombinatorisch interpretierbar. Wir bilden dazu eine j -Partition {Ci,... ,Cj\ von
R (1 < j < r), was auf {'} Weisen geschehen kann. Nun werde ein a\ e K gewählt und
sämtlichen Elementen aus C\ als Bild zugeordnet; sodann werde aj e K \ {<rzj} gewählt
und sämtlichen Elementen aus Ci als Bild zugeordnet, usw. Für j Elemente a\,aj
gibt es somit k{k — 1)— (Je — j + 1) =: (k)j Auswahlmöglichkeiten. - Es ist klar, dass

sich umgekehrt auf diese Weise jede Abbildung R —> K beschreiben lässt.

Aus (5) ergibt sich unmittelbar, dass eine Summe gewichteter r-ter Potenzen y\ + y{Lr +
b 7n n' wie folgt umgewandelt werden kann:

X ykv X V ' X y* • ®
t=i j=i

(6)

k=j

W

In [5] wird diese Beziehung für unterschiedliche Belegungen der yk ausgewertet. Wählen
wir etwa yk 1 /k\, so erhalten wir für die unterklammerte Summe:

n rt\ " i

(*) y ^i y _J_ e für« —> oo,

was mit (6) unmittelbar die Dobiriski-Reihe (1) liefert.

Abschließend führen wir nach dieser einfachen Methode den noch ausstehenden
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Beweis des Satzes. Wir wählen y£ xk, wobei x 6 I und \x\ < 1. Zunächst wird wieder
die unterklammerte Summe in (6) ausgewertet:

Spezialisieren wir hier x so resultiert unter Berücksichtigung von (3) die behauptete
Reihendarstellung (4).

Die Reihe (4) ist nicht neu; sie wurde bereits von Gross [4] mit analytischen Methoden

gefunden. Dasef und Kautz [2] haben gezeigt, dass die Ausdrücke (4) und (3) diesselbe

rekurrente Gleichung erfüllen und daher übereinstimmen. Auf Comtet [1], S.238, geht
die Bezeichnung 'Fubini-Zahlen' für die S(r) zurück, sofern bei r-facher Integration sich

die Einzelintegrale in Fubinis Theorem auf S(r) Weisen angeordnet gruppieren lassen.

In [1] findet man auch eine mit (4) verwandte Reihenentwicklung unter Verwendung von
Euler-Zahlen.
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Mit (6) ergibt sich hieraus die für \x \ < 1 konvergente Reihe
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