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Jakob Hermanns Losung des Kepler-Problems
mit einer Erhaltungsgrosse

Ueli Manz

Ueli Manz studierte Mathematik an der ETH Ziirich. Danach arbeitete er dort einige
Jahre als Assistent und unterrichtete parallel dazu in Winterthur an der Kantonsschule
im Lee. 1997 wechselte er an die Kantonsschule Schaffhausen, wo er seither unter-
richtet. Wihrend dieser Zeit promovierte er iiber Differentialgleichungen und arbeitete
fiir einige Jahre wieder an der ETH als Mentor im Bereich der Lehrerausbildung. Ak-
tuell beschiftigt er sich in seiner Freizeit mit verschiedenen mathematikhistorischen
Themen.

1 Einleitung

1.1 Die keplerschen Gesetze

Im Jahre 1609 veréffentlichte Johannes Kepler (1571-1630) sein zweites grosses Werk,
die Astronomia Nova (lat.: neue Astronomie). Er rang den Bahndaten des Mars in miihe-
voller Arbeit zwei Aussagen ab, die als das erste und das zweite keplersche Gesetz in
die Geschichte eingingen. Zehn Jahre spiter kam aus dem Vergleich der Bahndaten ver-
schiedener Planeten in den Harmonices Mundi (lat.: die Harmonie der Welt) das dritte
keplersche Gesetz hinzu.

In den Jahrzehnten nach der Veroffentlichung von Keplers Gesetzen der Planetenbe-
wegung war das vordringliche Problem der Himmelsmechanik die Bestimmung des
Kraftgesetzes. Diese gelang Isaac Newton in seinen bahnbrechenden Arbeiten. Wie
weit ihm umgekehrt auch die Herleitung der keplerschen Gesetze aus dem Kraftge-
setz gliickte, ist bis heute umstritten. Die vielleicht erste korrekte Herleitung gelang
dem Schweizer Jakob Hermann. Der Autor stellt Hermanns Losung vor und bespricht
einen berechtigten Einwand von Johann Bernoulli. Zudem zeigt er auf, wie Hermanns
Idee auf eine Erhaltungsgrosse fiihrt, die im Verlaufe der Jahrhunderte immer wieder
neu entdeckt wurde. Die Arbeit schliesst mit einer eleganten Herleitung von Hamiltons
Hodographen.
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1.2 Das Kraftgesetz

Auch spekulierte Kepler bereits iiber die Kraft, welche die Planeten auf ihrer Bahn halten
sollte. Er vermutete noch, dass sie umkehrt proportional zum Abstand sei. 1667 behaup-
tete der franzosische Astronom Ismaél Bullialdus (1605-1694) erstmals, dass die Kraft
umgekehrt proportional zum Quadrat des Abstandes sei. 1680 griff Robert Hooke (1635—
1703) diese Vermutung in einem Brief an Isaac Newton (1643-1727) auf. Spiter bestand
Newton allerdings darauf, das Kraftgesetz selber entdeckt zu haben.

1.3 Das direkte und das inverse Problem

Die Herleitung des Kraftgesetzes aus den Beobachtungen war ein zentrales Problem der
Naturphilosophie in der zweiten Hélfte des 17. Jahrhunderts. Das mag uns heute erstaunen,
sind wir doch viel mehr an ihrer Umkehrung interessiert, an der Herleitung der keplerschen
Gesetze aus dem Kraftgesetz. Die anders gelagerte Gewichtung spiegelt sich auch in der
Begriffsbildung wider. Die Herleitung des Kraftgesetzes war als direktes Problem und die
Herleitung der keplerschen Gesetze als inverses Problem bekannt, ein Umstand, der heute
manchmal fiir Verwirrung sorgt.

Fiir den Spezialfall der Kreisbahnen kann das direkte Problem leicht mit Hilfe des dritten
keplerschen Gesetzes geldst werden. Fiir elliptische Bahnen, wie sie Kepler beobachtete,
ist die Losung aber deutlich schwieriger. Nachweislich als Erstem gelang sie Newton im
Jahr 1684 in seinem Manuskript De motu corporum in gyrum (lat.: iiber die Bewegung von
Korpern auf einer Bahn). Dieses erweiterte er dann zu seiner monumentalen Philosophiae
Naturalis Principia Mathematica (lat.: die mathematischen Grundlagen der Naturphiloso-
phie), kurz Principia genannt (vgl. [7]).

Die Herleitung der Bahnkurven aus dem Kraftgesetz erwies sich nochmals als erheblich
schwieriger. In wieweit Newton dies 10ste, wird bis heute kontrovers diskutiert, wie die
Artikel von Robert Weinstock [9] und Bruce Pourciau [8] zeigen.

1.4 Jakob Hermann

Die vielleicht erste Losung des inversen Problems gelang dem
Schweizer Jakob Hermann (1678-1733), der wie sein entfernter
Verwandter Leonhard Euler aus Basel stammte.

Seine Ausbildung erhielt Hermann von Jakob Bernoulli (1655—
1705). 1707 wurde er Professor in Padua. Nach Stationen in
Frankfurt an der Oder (ab 1713) und St. Petersburg (ab 1724) kehr-
te er 1731 nach Basel zuriick, wo er zwei Jahre spiter verstarb
(vgl. [1]).
Hermann veroffentlichte seine Losung 1710 im wenig bekannten
Abbildung 1 Giornale de’ letterati d’Italia [5]. Einem breiteren Publikum wur-
Jakob Hermann de sie durch Ausziige seines Briefwechsels mit Johann Bernoul-
(Quelle: [10D). li (1667-1748) bekannt, die 1710 von der Académie royale des
sciences abgedruckt wurden (vgl. [6]).
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Im gleichen Band erschien auch Johann Bernoullis Antwort [2]. Dass diese dtzend ausfiel,
erstaunt wenig, wenn man Johann Bernoullis Umgang mit seinen Konkurrenten kennt.
Dariiber hinaus war Hermann ein Schiiler von Johanns Bruder Jakob und Johann hatte
selber eine Losung des prestigetriichtigen inversen Problems gefunden.

2 Hermanns Herleitung der Differentialgleichung

Anders als Newtons Principia atmet Hermanns Losung den modernen Geist des leibniz-
schen Calculus. Deshalb konnen wir hier seine Darstellung ohne Probleme iibernehmen.
Einzig seinen in jener Zeit iiblichen Gebrauch unendlich kleiner Grossen iibernehmen
wir nicht. Statt mit Differentialen arbeiten wir mit endlichen Differenzen und Grenz-
ibergingen.

2.1 Die Ausgangslage

Hermann betrachtete einen Planeten, der sich unter dem Einfluss einer Zentralkraft mit
Zentrum S bewegt. In Abbildung 2 ist links seine Zeichnung aus [5] zu sehen und rechts
eine moderne Nachzeichnung mit Ergéinzungen.

Z
s A S d A S K I J
Abbildung 2 Hermanns Originalzeichnung und eine Nachzeichnung mit Ergéinzungen.

Zu einem gewissen Zeitpunkt sei der Planet im Punkt B, eine kurze Zeitspanne Az spiter
im Punkt C und eine weitere Zeitspanne At spiter in D.

2.2 Die Kraft wirkt stossweise

Hermann nahm wie Newton an, die Kraft wiirde nur stossweise wirken. Das erlaubte ihm,
die weitere Bewegung des Planeten in zwei Komponenten zu zerlegen:

e Allein auf Grund seiner Trigheit wiirde sich der Planet in C mit unverinderter Ge-
schwindigkeit weiter entlang der Geraden B C bewegen. Dabei wiirde er in der Zeit-
spanne At dieselbe Strecke zuriicklegen. Hermann nannte den Endpunkt E. Es gilt
damit CE = BC.
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e Nun erfolgt in C aber ein Kraftstoss in Richtung S. Der ist so gross, dass der Planet
nicht in £ anlangt, sondern auf der Bahnkurve im Punkt D. In der Nachzeichnung
rechts ist das entsprechende Streckenparallelogramm eingezeichnet.

2.3 Differenzen fiir eine Differentialgleichung

Anders als Newton arbeitete Hermann in einem Koordinatensystem und benutzte die neue
Differentialrechnung. In diesem Sinne setzte er:

x =81, yzzﬁ und Ax := BH, Ay = HC.

Zusiitzlich fiihren wir noch Axc := CK und Ayc := K D ein. Damit folgt mit dem grau
eingezeichneten Streckenparallelogramm:

A%x = —ﬁz—ﬁz—@—C—K):Axc—Ax,
A’y:= —FE=-GE - GF =—(HC —KD) = Ayc — Ay,

2.4 Der Flachensatz

Ohne Begriindung hielt Hermann fest, dass die Inhalte der Dreiecke CSD und BSC (im
Grenziibergang) gleich gross sind. Er nahm wohl an, dass seine Leser mit Newtons Prin-
cipia bestens vertraut sind.

Fiir den Beweis gehen wir denn auch genau gleich vor wie Newton in seinem Beweis des
Flichensatzes (vgl. [7]):

e Die Dreiecke BSC und C S E haben denselben Flicheninhalt, denn ihre Grundlinien
BC und CE sind gleich lang und sie haben dieselbe Hohe (den Abstand von S zur
Geraden durch B, C und E).

e Die Dreiecke CSE und CSD haben ebenfalls denselben Fliacheninhalt, denn SC
ist ihre gemeinsame Grundlinie und ihre Hohen stimmen iiberein, da DE gemiss
Definition parallel zu SC ist.

Ebenfalls ohne Begriindung gab Hermann fiir den Flacheninhalt folgende Formel:

1
Acsp = Apsc = 5 (yAx — xAy).
Wieder sei hier die Herleitung nachgeholt:
Apsc = AskB+ AkiHB + AprC — Asic

1 1 1
= z(x —Ax)(y — Ay)+ Ax(y — Ay) + EAxAy — Exy

1 1 1 1 1 1

= zxy — ExAy - EyAx -+ EAxAy + yAx — AxAy + EAxAy - Exy
1 1

= —yAx — —xAy.

2 2
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Im Grenziibergang At — 0 folgt daraus, dass die Ableitung der Fldchenfunktion kon-
stant ist:

‘ 1
A(r) = 7 (xy — xy) = const. (1)
Auch dieses Ergebnis verwendete Hermann spiter ohne weitere Erkldrung oder Begriin-
dung.
2.5 Die Beschleunigung

Aus der Ahnlichkeit der Dreiecke DE F und SCI schloss Hermann, dass

DE _SC
DF  §1
gilt und weiter
[ F ) /2 2
DE:DF.E_I_z_Az x_+y
X

Fiir die Beschleunigung erhalten wir damit

DE _ A%x  x2+x2

A2 Ar2 x

und im Grenziibergang

d’DE . Vx4 y?
== ————

dr2 X

2.6 Das zweite newtonsche Gesetz

Die Kraft im Punkt C ist gemiss Voraussetzung umgekehrt proportional zu S_Cz. Mit dem
zweiten newtonschen Gesetz folgt damit fiir die Beschleunigung:

1 1 d’DE . Vx24y?
~ = —X s —,

x2 4 y2 5, SC° dt? X

So erhielt Hermann die Differo-Differentialgleichung (Differentialgleichung 2. Ordnung)

v X

mit einer gewissen Proportionalitétskonstanten a.
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3 Hermanns Losung der Differentialgleichung

3.1 Hermanns Geniestreich

Multipliziert man eine Gleichung mit einer Konstanten ungleich 0, so dndert sich die
Losungsmenge nicht. Diese unscheinbare Tatsache nutzt man gewohnlich, um Gleichun-
gen zu vereinfachen. Hermann hingegen tat genau das Gegenteil: Er multiplizierte seine
Differentialgleichung mit einer Konstanten, so dass sie scheinbar komplizierter wurde!

In seinem Geniestreich zog Hermann fiir den konstanten Faktor die Ableitung der Flichen-
funktion in Erwigung. Diese ist ja gemdss (1) konstant. Sie erlaubte ihm tatsdchlich, die
erste Integration auszufiihren, wie er schnell feststellen konnte. Fiir die zweite Integration
blieb er deshalb seiner Erfolgsidee treu und verwendete nochmals dieselbe Konstante.
Insgesamt multiplizierte er also die Differentialgleichung mit dem Term %{ (ty — xy)?, der
— wie erwihnt — wegen (1) konstant ist. L&sst man den unnétigen Faktor ;11 noch weg, so
wird aus Gleichung (2):

X

(247"

Die konstanten Faktoren ¢ und (y — x¥)? auf der linken Seite fasste Hermann dann zu ei-
ner Konstanten zusammen, die er der Einfachheit halber wiederum « nannte. Damit erhielt
er die Differentialgleichung:

—a- Gy —x3)? % = (ky — xy)?

X

———n- 3)

—aj = (ky — xj)
(¥ +%)

3.2 Die erste Integration

Hermann gab fiir die erste Integration ohne Begriindung folgendes Ergebnis:
=¥

VX2 +y?

Auf eine Integrationskonstante verzichtete er, was ihm prompt Kritik von Johann Bernoulli
eintrug. Mehr dazu spiter.

Die linke Seite von (4) ist klar. Wie Hermann die rechte Seite der Differentialgleichung
integrierte, wissen wir heute nicht mehr mit Sicherheit. Eine spitere Arbeit von Her-
mann (vgl. [1]) legt nahe, dass er eine geeignete Substitution verwendete. Das ist der

Losungsweg, den wir hier angeben. Dasselbe Ergebnis hitte man auch mit etwas Geschick
mit partieller Integration erhalten kénnen.

—ax = (Xy —xy)

4)

Wir behandeln einen der Faktoren xy — xy in der Differentialgleichung als konstanten
Vorfaktor. Fiir die restlichen Faktoren der rechten Seite erhalten wir so mit der Substitution
pi=x/y:

X X

(xy —xy)—————== = @Ey —xy)
(x2 +y2)*? V3 (/)2 + 1)
_x Xy —xy 1 = s 1
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Der letzte Term lisst sich nun leicht integrieren:

X 1
(yx—xy'>—dt=/p-p-—dr
/ (x2+y2)3/2 (1 _|_pz)3/2
. 1 L 1
1+ (1 + 6P
y

Fiigt man den konstanten Vorfaktor xy — xy wieder hinzu, so hat man Hermanns Losung.

3.3 Die zweite Integration

Fiir den zweiten Integrationsschritt dividierte Hermann die Differentialgleichung durch x2.
Da er auf die Dimension der Terme achtete, musste er die Gleichung zusitzlich mit einer
Konstanten b multiplizieren:

b}& b ) =y
—ab— =b(xy — xy)————.
x2 Y Y x2 /x2+y2

Wieder gab Hermann das Ergebnis der Integration ohne Begriindung an:

1 2 2
VNP L, Ll
X X
bzw.
O T,
a—l-gx— x< + y=4. 5

Erstaunlicherweise fiihrte er hier also eine Integrationskonstante ein.

Wiederum ist die linke Seite klar. Fiir die rechte Seite der Differentialgleichung kénnen
wir dhnlich wie oben vorgehen. Mit ¢ := y/x erhalten wir:

— Xy —Xx
Y _pxy—iy y

b(xy — xy =
N LN S
bxj)—)éy y 1 b 1
o i+ o/)? Vite?

was sich leicht integrieren lésst:

i ; -y 1
bf(yx—xy)——dtzbfq-q-—"—dt
xZ /x2+y2 1+q2

2+y2
= b o1 A g2 = b of 1 Y. e o
+4q + (y/x) i

Damit haben wir Hermanns Behauptung bewiesen.
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3.4 Kegelschnitte als Bahnkurven

Im Weiteren hielt Hermann — man ahnt es schon — ohne Begriindung fest, dass man fiir
¢ < b eine Ellipse, fiir c = b eine Parabel und fiir ¢ > b eine Hyperbel hat. Der Beweis ist
leicht erbracht. Quadriert man Gleichung (5), so erhilt man:

2ac c?
2 2 2 2
a+ —x+ sx"=x"4+y°,
b b? d

bzw.

Der Vergleich mit der bekannten Scheitelpunktgleichung der Kegelschnitte (vgl. [11]) er-
gibt unmittelbar Hermanns Behauptung.

3.5 Die fehlende Integrationskonstante

Wie bereits erwéhnt, kritisierte Johann Bernoulli das Fehlen der Integrationskonstante
in seinem Antwortbrief an Hermann (vgl. [2]). Dadurch hitte Hermann nicht fiir jeden
Fall gezeigt, dass ausschliesslich Kegelschnitte als Bahnkurven in Frage kimen. Hermann
schrieb darauf an anderer Stelle, dass die Konstante gleich 0 sei, da der Nullpunkt des
Koordinatensystems im Kraftzentrum liege, wie Eric Aiton in [1] berichtet. Um diese Er-
kldrung zu priifen, folgen wir Bernoullis Analyse in [2].

Bernoulli fiihrte bei der ersten Integration die Konstante e ein:

=y
Vx2 4 yz'

Fiir die zweite Integration multiplizierte er sie mit der Konstanten x y — x y um integrieren
zu konnen. Im Gegensatz zu Hermann schien Bernoulli dabei keine Bedenken wegen der
Dimension gehabt zu haben.

—ak +e=(Fy —x3) (6)

Seine Differentialgleichung lautete damit:

abx P be (xy —xy) b (xy)') - xyZ)
£e x? ENGES TR

Offen ist nur noch das Integral des zweiten Terms auf der linken Seite. Es lidsst sich mit
der bekannten Substitution g := y/x leicht berechnen:

Xy —xy . k
M dt= | —gdt=—q=-=.
[ 2 ar= [—qar=—q=-2

Damit folgt:
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a—l—%x—ey:,/xz-}-yz. (7)

bzw.

Quadrieren liefert:

2

2 2ac
g+ %xz — —foy —I-ezy2 + ~Z—x —2aey = x* + y?
. 2 2
(1 = %)x2 =+ %xy + (1 = e2) y? — —Zcx + 2aey = a’.

Das ist die Gleichung eines Kegelschnitts in allgemeiner Lage (vgl. [11]). Wihlt man die
Achse des Kegelschnitts als x-Achse, so ist e tatsichlich gleich 0.

Bernoullis Berechnung zeigt, dass es nicht geniigt, das Kraftzentrum in den Nullpunkt des
Koordinatensystems zu legen, wie Hermann nachtriglich behauptet hatte.

In Hermanns Text féllt auch auf, dass er L1 als Achse der Kurve bezeichnet. In diesem
Fall schneidet die Kurve LI aus Symmetriegriinden rechtwinklig. Im Schnittpunkt gilt
dann y = O und x = 0. Das ist nur méglich, wenn die Integrationskonstante e in (6) gleich
0 ist:
o+ (Ey — xP) 040 —2 _—0
e =ax Xy —Xxy)—=a- P
/x2 + y2 /x2 + 02

Dass die Losungskurven eine Symmetrieachse haben, lédsst sich aber nicht a priori recht-
fertigen. Da diirfte die Suggestivkraft der bekannten Losung Hermann in die Irre gefiihrt
haben.

4 [Eine Erhaltungsgrosse

Hermann stiess auf seinem Weg zur Losung des inversen Problems auf etwas, das man
heute Erhaltungsgrdsse nennt. Eine etwas verallgemeinerte Form wurde im Laufe der
nachfolgenden Jahrzehnte und Jahrhunderte von verschiedenen Mathematikern und Physi-
kern immer wieder neu entdeckt. Sie wird heute meist nach Pierre-Simon Laplace (1749-
1827), Carl Runge (1856—1927) und Wilhelm Lenz (1888-1957) benannt, wobei auch
William Rowan Hamilton (1805-1865) und Josiah Willard Gibbs (1839-1903) zu den
Wiederentdeckern gehorten. Einen Uberblick iiber die Geschichte gibt Herbert Goldstein
in [3] und [4].

Der Laplace—Runge-Lenz-Vektor (kurz LRL-Vektor) wird meist definiert durch:

A:=mx x L —GMm?= mit r:=|¥| (8)

~ | =

wobei G die Gravitationskonstante, M und m die Massen der beiden Himmelskorper und
L den Drehimpulsvektor bezeichnen.

Auf den ersten Blick ist kein Zusammenhang zwischen (4) und (8) erkennbar. Er lédsst sich
aber in drei kleinen Schritten herstellen.



104 Ueli Manz

4.1 Schritt 1: Die ,,fehlende Differentialgleichung

Hermann hiitte in gleicher Weise auch eine Differentialgleichung fiir y herleiten und inte-
grieren kdnnen. Da er aber das inverse Problem bereits geldst hatte, sah er keinen Grund
dafiir.

Holen wir sein ,,Versdumnis™ nach. Die Differentialgleichung fiir y lautet:
Y

—aj = (ky — xy)?
(x> +57)

3/2.-°
Fiir das Integral der linken Seite erhalten wir

—a/jidtz—aj)—l—el.

Wir behandeln einen der Faktoren xy — xy in der Differentialgleichung wieder als kon-
stanten Vorfaktor. Fiir die restlichen Faktoren der rechten Seite erhalten wir so mit der
Substitution g := y/x:

y
% (L+ (/2)?
_Y xy—xy 1 :_q.q.;
0 3 ( +(y/x)2)3/2 a +q2)3/2

Der letzte Term lédsst sich wieder leicht integrieren:

: y y 3 5
(Xy —xy)————3/2 = (xy — xy)

(2 +5?) 7"

. . y . 8 1
A RN

1 1 X

(1 +q2)1/2 - (1 + (y/x)z)l/Z - (xz +y2)1/2'

Fiigt man den konstanten Vorfaktor Xy — xy wieder hinzu, so hat man die ,fehlende"
Losung:

. . . X
—ay +e1=({y —xy) . )
x2 + y?
Zusammen mit der Gleichung, die bereits Bernoulli herleitete (inklusive Integrationskon-

stante), haben wir:
x

/2 + y2°
—

X242

—ay+e = (ty —xy)

—ax +e = (xy — xy)

bzw. mit r = /x2 4+ y2:

Il

. ) .
é1 ay + Xy —xy)—,
i’ (10)

. 2 .
—ep = —ax + (xy — xy);.
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4.2 Schritt 2: Moderne Konstanten

Vergleichen wir Hermanns urspriingliche Differentialgleichung (2) mit der modernen

Form
X

r_3’

X=-GM

so stellen wir fest, dass @ = 1/(G M) ist. Hermann multiplizierte die Gleichung aber noch
mit dem Quadrat von Xy — xy. Diese Grosse ist bis auf das Vorzeichen gleich dem sog.
spezifischen Drehimpuls, d.h. dem Drehimpuls L geteilt durch die Masse m des Planeten:

Xy —xy=—L/m.

Damit erhalten wir fiir die Variable @ in der Form (3) der Differentialgleichung

1 A L2
= =—m—=ii Ete— — =
GM m GMm?

Mit diesen Konstanten wird aus (10) zunéchst

L? ! +—L x
éi = == =y
: GMmzy m r
= N ~L y
—_—ey) = — X — . —
% GMm? m r
und weiter
GMm3 ) 7 X
ay = ey = Lmy—GMm~ - —,
L r
(11)
GMm3 . 5 Y
ap .= — ey =—Lmx —GMm~ - =.
L r
4.3 Vektoren
Mit den Vektoren
X X . 0 . ai
¥=|yLx={yL, L=[0]und A= |
0 0 L 0

erhalten wir schliesslich die Gleichung des LRL-Vektors:

A:mfc’x E—GMmzf.
r

4.4 Die Bedeutung des LRL-Vektors

Auf kegelschnittférmigen Bahnen gibt es genau einen Punkt, welcher der Sonne am nich-
sten liegt. In diesem Perihel (gr. peri — nahe, helios — Sonne) stehen der Ortsvektor X, der
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Geschwmd}gkeitsvektor X und der Drehimpulsvektor L paarwelse senkrecht aufeinander.
Deshalb ist m¥ x L parallel zu x. In der Folge ist A parallel zu x. Der LRL-Vektor zeigt
damit vom Brennpunkt in Richtung Perihel (vgl. Abbildung 3).

LY
w

=

Abbildung 3 Der LRL-Vektor als Erhaltungsgrosse.

Da der LRL-Vektor eine Erhaltungsgrosse ist, findet im Kepler-Problem somit keine Peri-
heldrehung statt.
4.5 Die Herleitung der Bahnkurve mit dem LRL-Vektor

Mit Hilfe des LRL-Vektors kann die Bahnkurve dusserst elegant hergeleitet werden. Dazu
multiplizieren wir A skalar mit ¥ und vereinfachen:

|A] - rcos(p) = AoX = (mfc' ij—GMmzf)oic'
r

- -

2x oX

=mxxLoX—GMm

r

. - 2]"2 - - )

=mxxxolL—-—GMm“— =LoL —GMm*“r
r

= L2 — GMm>r.
Dann 16sen wir nach r auf:
L? = (GMm2 + 4] cos(go)) o

2
2 _L”
L GMm?

T GMm? + |A| cos(p) 1+ 5 'A' cos(p)

m2

Das ist die Polarform der Kegelschnittgleichung (vgl. [1 1]) mit dem Parameter
L2

P= oMm?
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und der numerischen Exzentrititiit
|A]
&= 5
GMm

4.6 Hamiltons Hodograph

Sei nun die x-Achse des Koordinatensystems so gewihlt, dass sie parallel zum LRL-
Vektor verlduft. Dann ist auch dessen zweite Komponente a; gleich 0. Aus dem Glei-
chungssystem (11) lédsst sich der Radius r leicht eliminieren. In einem ersten Schritt iso-
lieren wir die Terme mit dem Radius:

a1 — Lmy = — GMm?%,
P

Emi = — CMm2Z.

r

Dann quadrieren wir beide Gleichungen und addieren sie:

(Lmi)? + (a1 — Lmy)? = (GMmz%)2 + (G‘?"’”’z)f)2

4x2+y?

a 2
e N (jl —- —1) =G*M’m
Lm 2

.2+(. a )2 GMm\?
X -——) ={—]) .
YT Im L

Die letzte Gleichung stellt einen Kreis in der x-y-Ebene dar (vgl. Abbildung 4).

r

Abbildung 4 Hamiltons Hodograph.
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Die Geschwindigkeitsvektoren an den Stellen @ bis @ entsprechen den Positionen in der
vorhergehenden Graphik. Der Cosinus des Winkels a ist gleich der numerischen Exzen-
trizitét: ” 5
COS(OL) _ G% - ay _ GMm~“e
gim — GMm*  GMm?
Diese Art graphischer Darstellung von Geschwindigkeiten geht auf den englischen Astro-
nomen James Bradley (1693-1762) zuriick. Bekannt wurde sie durch den irischen Ma-
thematiker und Physiker William Rowan Hamilton (1805-1865), der diese Darstellung
Hodograph nannte (von gr. hodés — Weg).

=é&.
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