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I Elemente der Mathematik

Jakob Hermanns Lösung des Kepler-Problems
mit einer Erhaltungsgrösse

Ueli Manz

Ueli Manz studierte Mathematik an der ETH Zürich. Danach arbeitete er dort einige
Jahre als Assistent und unterrichtete parallel dazu in Winterthur an der Kantonsschule
im Lee. 1997 wechselte er an die Kantonsschule Schaffhausen, wo er seither
unterrichtet. Während dieser Zeit promovierte er über Differentialgleichungen und arbeitete

für einige Jahre wieder an der ETH als Mentor im Bereich der Lehrerausbildung.
Aktuell beschäftigt er sich in seiner Freizeit mit verschiedenen mathematikhistorischen
Themen.

1 Einleitung

1.1 Die keplerschen Gesetze

Im Jahre 1609 veröffentlichte Johannes Kepler (1571-1630) sein zweites grosses Werk,
die Astronomia Nova (lat.: neue Astronomie). Er rang den Bahndaten des Mars in mühevoller

Arbeit zwei Aussagen ab, die als das erste und das zweite keplersche Gesetz in
die Geschichte eingingen. Zehn Jahre später kam aus dem Vergleich der Bahndaten
verschiedener Planeten in den Harmonices Mundi (lat.: die Harmonie der Welt) das dritte
keplersche Gesetz hinzu.

In den Jahrzehnten nach der Veröffentlichung von Keplers Gesetzen der Planetenbewegung

war das vordringliche Problem der Himmelsmechanik die Bestimmung des

Kraftgesetzes. Diese gelang Isaac Newton in seinen bahnbrechenden Arbeiten. Wie
weit ihm umgekehrt auch die Herleitung der keplerschen Gesetze aus dem Kraftgesetz

glückte, ist bis heute umstritten. Die vielleicht erste korrekte Herleitung gelang
dem Schweizer Jakob Hermann. Der Autor stellt Hermanns Lösung vor und bespricht
einen berechtigten Einwand von Johann Bernoulli. Zudem zeigt er auf, wie Hermanns
Idee auf eine Erhaltungsgrösse führt, die im Verlaufe der Jahrhunderte immer wieder
neu entdeckt wurde. Die Arbeit schliesst mit einer eleganten Herleitung von Hamiltons
Hodographen.
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1.2 Das Kraftgesetz

Auch spekulierte Kepler bereits über die Kraft, welche die Planeten auf ihrer Bahn halten
sollte. Er vermutete noch, dass sie umkehrt proportional zum Abstand sei. 1667 behauptete

der französische Astronom Ismaël Bullialdus (1605-1694) erstmals, dass die Kraft
umgekehrt proportional zum Quadrat des Abstandes sei. 1680 griff Robert Hooke (1635—

1703) diese Vermutung in einem Brief an Isaac Newton (1643-1727) auf. Später bestand
Newton allerdings darauf, das Kraftgesetz selber entdeckt zu haben.

1.3 Das direkte und das inverse Problem

Die Herleitung des Kraftgesetzes aus den Beobachtungen war ein zentrales Problem der

Naturphilosophie in der zweiten Hälfte des 17. Jahrhunderts. Das mag uns heute erstaunen,
sind wir doch viel mehr an ihrer Umkehrung interessiert, an der Herleitung der keplerschen
Gesetze aus dem Kraftgesetz. Die anders gelagerte Gewichtung spiegelt sich auch in der

Begriffsbildung wider. Die Herleitung des Kraftgesetzes war als direktes Problem und die

Herleitung der keplerschen Gesetze als inverses Problem bekannt, ein Umstand, der heute

manchmal für Verwirrung sorgt.

Für den Spezialfall der Kreisbahnen kann das direkte Problem leicht mit Hilfe des dritten
keplerschen Gesetzes gelöst werden. Für elliptische Bahnen, wie sie Kepler beobachtete,
ist die Lösung aber deutlich schwieriger. Nachweislich als Erstem gelang sie Newton im
Jahr 1684 in seinem Manuskript De motu corporum in gyrum (lat. : über die Bewegung von
Körpern auf einer Bahn). Dieses erweiterte er dann zu seiner monumentalen Philosophiae
Naturalis Principia Mathematica (lat.: die mathematischen Grundlagen der Naturphilosophie),

kurz Principia genannt (vgl. [7]).

Die Herleitung der Bahnkurven aus dem Kraftgesetz erwies sich nochmals als erheblich
schwieriger. In wieweit Newton dies löste, wird bis heute kontrovers diskutiert, wie die
Artikel von Robert Weinstock [9] und Bruce Pourciau [8] zeigen.

1.4 Jakob Hermann

Die vielleicht erste Lösung des inversen Problems gelang dem
Schweizer Jakob Hermann (1678-1733), der wie sein entfernter
Verwandter Leonhard Euler aus Basel stammte.

Seine Ausbildung erhielt Hermann von Jakob Bernoulli (1655—

1705). 1707 wurde er Professor in Padua. Nach Stationen in
Frankfurt an der Oder (ab 1713)undSt. Petersburg (ab 1724)kehr-
te er 1731 nach Basel zurück, wo er zwei Jahre später verstarb

(vgl. [1]).

Hermann veröffentlichte seine Lösung 1710 im wenig bekannten
Giornale de' letterati d'Italia [5]. Einem breiteren Publikum wurde

sie durch Auszüge seines Briefwechsels mit Johann Bernoulli
(1667-1748) bekannt, die 1710 von der Académie royale des

sciences abgedruckt wurden (vgl. [6]).

Abbildung 1

Jakob Hermann

(Quelle: [10]).
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Im gleichen Band erschien auch Johann Bernoullis Antwort [2], Dass diese ätzend ausfiel,
erstaunt wenig, wenn man Johann Bernoullis Umgang mit seinen Konkurrenten kennt.
Darüber hinaus war Hermann ein Schüler von Johanns Bruder Jakob und Johann hatte
selber eine Lösung des prestigeträchtigen inversen Problems gefunden.

2 Hermanns Herleitung der Differentialgleichung
Anders als Newtons Principia atmet Hermanns Lösung den modernen Geist des leibniz-
schen Calculus. Deshalb können wir hier seine Darstellung ohne Probleme übernehmen.

Einzig seinen in jener Zeit üblichen Gebrauch unendlich kleiner Grössen übernehmen
wir nicht. Statt mit Differentialen arbeiten wir mit endlichen Differenzen und
Grenzübergängen.

2.1 Die Ausgangslage

Hermann betrachtete einen Planeten, der sich unter dem Einfluss einer Zentralkraft mit
Zentrum S bewegt. In Abbildung 2 ist links seine Zeichnung aus [5] zu sehen und rechts
eine moderne Nachzeichnung mit Ergänzungen.

Zu einem gewissen Zeitpunkt sei der Planet im Punkt 5, eine kurze Zeitspanne Ar später
im Punkt C und eine weitere Zeitspanne Ar später in D.

2.2 Die Kraft wirkt stossweise

Hermann nahm wie Newton an, die Kraft würde nur stossweise wirken. Das erlaubte ihm,
die weitere Bewegung des Planeten in zwei Komponenten zu zerlegen:

• Allein auf Grund seiner Trägheit würde sich der Planet in C mit unveränderter
Geschwindigkeit weiter entlang der Geraden BC bewegen. Dabei würde er in der

Zeitspanne Ar dieselbe Strecke zurücklegen. Hermann nannte den Endpunkt E. Es gilt
damit CE BC.

y

ASK I J

Abbildung 2 Hermanns Originalzeichnung und eine Nachzeichnung mit Ergänzungen.
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• Nun erfolgt in C aber ein Kraftstoss in Richtung S. Der ist so gross, dass der Planet
nicht in E anlangt, sondern auf der Bahnkurve im Punkt D. In der Nachzeichnung
rechts ist das entsprechende Streckenparallelogramm eingezeichnet.

2.3 Differenzen für eine Differentialgleichung

Anders als Newton arbeitete Hermann in einem Koordinatensystem und benutzte die neue

Differentialrechnung. In diesem Sinne setzte er:

x := SI, y := IC und Ax := BH, Ay := HC.

Zusätzlich führen wir noch Axc := CK und Ayc := KD ein. Damit folgt mit dem grau
eingezeichneten Streckenparallelogramm:

A2x := - ~DF -KG - (CG - ~CK) Axc - Ax,

A2y := — ~FË -GË — GF — (.HC - Yd) Ayc - Ay.

2.4 Der Flächensatz

Ohne Begründung hielt Hermann fest, dass die Inhalte der Dreiecke CSD und BSC (im
Grenzübergang) gleich gross sind. Er nahm wohl an, dass seine Leser mit Newtons Prin-
cipia bestens vertraut sind.

Für den Beweis gehen wir denn auch genau gleich vor wie Newton in seinem Beweis des

Flächensatzes (vgl. [7]):

• Die Dreiecke BSC und CSE haben denselben Flächeninhalt, denn ihre Grundlinien
BC und CE sind gleich lang und sie haben dieselbe Höhe (den Abstand von S zur
Geraden durch B, C und E).

• Die Dreiecke CSE und CSD haben ebenfalls denselben Flächeninhalt, denn SC
ist ihre gemeinsame Grundlinie und ihre Höhen stimmen überein, da DE gemäss
Definition parallel zu SC ist.

Ebenfalls ohne Begründung gab Hermann für den Flächeninhalt folgende Formel:

Acsd Absc ^ CyAx - x Ay).

Wieder sei hier die Herleitung nachgeholt:

ABSC ASKB + A-kihb + ABHC - Asie

~ Ax)(y - Ay) + Ax(y — Ay) + ^ Ax Ay - ^xy

1111 11-xy xAy y Ax H—AxAy + y Ax — Ax Ay H—AxAy xy2 2 2 2 2 2
1 1

- yAx — —xAy.
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Im Grenzübergang Ar —> 0 folgt daraus, dass die Ableitung der Flächenfunktion
konstant ist:

Ä(r) - (xy — xy) const. (1)

Auch dieses Ergebnis verwendete Hermann später ohne weitere Erklärung oder Begründung.

2.5 Die Beschleunigung

Aus der Ähnlichkeit der Dreiecke DEF und SCI schloss Hermann, dass

DE SC

~DF~ IT

gilt und weiter

sc k2 V*2 + y2
DE — DF — Ax

SI

Für die Beschleunigung erhalten wir damit

DE A2x Vx2 + x2

Ar2 Ar2 x

und im Grenzübergang

d2DE y/x2 + y2

~diî~ ~X
x

'

2.6 Das zweite newtonsche Gesetz

2
Die Kraft im Punkt C ist gemäss Voraussetzung umgekehrt proportional zu SC Mit dem
zweiten newtonschen Gesetz folgt damit für die Beschleunigung:

1 1 d2DE y/x2 + y2

x2 + y2 ££2 dt2 x

So erhielt Hermann die Differo-Differentialgleichung (Differentialgleichung 2. Ordnung)

-ax ——^ (2)
(x2 + y2)

mit einer gewissen Proportionalitätskonstanten a.
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3 Hermanns Lösung der Differentialgleichung
3.1 Hermanns Geniestreich

Multipliziert man eine Gleichung mit einer Konstanten ungleich 0, so ändert sich die

Lösungsmenge nicht. Diese unscheinbare Tatsache nutzt man gewöhnlich, um Gleichungen

zu vereinfachen. Hermann hingegen tat genau das Gegenteil: Er multiplizierte seine

Differentialgleichung mit einer Konstanten, so dass sie scheinbar komplizierter wurde!

In seinem Geniestreich zog Hermann für den konstanten Faktor die Ableitung der Flächenfunktion

in Erwägung. Diese ist ja gemäss (1) konstant. Sie erlaubte ihm tatsächlich, die
erste Integration auszuführen, wie er schnell feststellen konnte. Für die zweite Integration
blieb er deshalb seiner Erfolgsidee treu und verwendete nochmals dieselbe Konstante.

Insgesamt multiplizierte er also die Differentialgleichung mit dem Term | (xy — xy)2, der

- wie erwähnt - wegen (1) konstant ist. Lässt man den unnötigen Faktor | noch weg, so

wird aus Gleichung (2):

2 2-a (xy - xy) • x (xy - xy) —
(x2 + y2)

Die konstanten Faktoren a und (xy — xy)2 auf der linken Seite fasste Hermann dann zu
einer Konstanten zusammen, die er der Einfachheit halber wiederum a nannte. Damit erhielt
er die Differentialgleichung:

-ax (xy-xyf *
(3)

(xz + yz)

3.2 Die erste Integration

Hermann gab für die erste Integration ohne Begründung folgendes Ergebnis:

—y
-ax (xy - xy) (4)

yjxz + yz

Auf eine Integrationskonstante verzichtete er, was ihm prompt Kritik von Johann Bernoulli
eintrug. Mehr dazu später.

Die linke Seite von (4) ist klar. Wie Hermann die rechte Seite der Differentialgleichung
integrierte, wissen wir heute nicht mehr mit Sicherheit. Eine spätere Arbeit von
Hermann (vgl. [1]) legt nahe, dass er eine geeignete Substitution verwendete. Das ist der

Lösungsweg, den wir hier angeben. Dasselbe Ergebnis hätte man auch mit etwas Geschick
mit partieller Integration erhalten können.

Wir behandeln einen der Faktoren xy — xy in der Differentialgleichung als konstanten
Vorfaktor. Für die restlichen Faktoren der rechten Seite erhalten wir so mit der Substitution

P :=x/y:
X v

(xy -xy)— —= (xy - xy)-
(x2 + y2f'2 y3 ((.x/yf + 1)3/2

x xy — xy 1
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Der letzte Term lässt sich nun leicht integrieren:

' d.^jp-p dt
{x2 + y2f<2 J ^ " (l + p*f/2

1 1

(1+P2)l/2 (l + (x/yf)1/2
y

(x2 + y2)x/2

Fügt man den konstanten Vorfaktor xy — xy wieder hinzu, so hat man Hermanns Lösung.

3.3 Die zweite Integration

Für den zweiten Integrationsschritt dividierte Hermann die Differentialgleichung durch x2.

Da er auf die Dimension der Terme achtete, musste er die Gleichung zusätzlich mit einer
Konstanten b multiplizieren:

—ab—r b(xy — xy)-x2 x2y/x2 + y2

Wieder gab Hermann das Ergebnis der Integration ohne Begründung an:

1 y/x2 + y2
ab—h c b——-——,

x x
bzw.

yjx2 +y2. (5)a + -x — Jxz + yz.
b v

Erstaunlicherweise führte er hier also eine Integrationskonstante ein.

Wiederum ist die linke Seite klar. Für die rechte Seite der Differentialgleichung können
wir ähnlich wie oben vorgehen. Mit q := y/x erhalten wir:

w. -y ,xy-xy y
b(xy — xy) r== — b-

x*y/x2 + y2 x2
+ (y/x)2

xy-xy y 1 1

b
J 1

b q q • —==«2 " yiLwi? vT?

was sich leicht integrieren lässt:

b [ (yx- xy)—~== dt b [ q q
1

dt
J x2yjx2jry2 J yfl+q2

b yj 1 +<?2 b J1 + (y/x)2 b

Damit haben wir Hermanns Behauptung bewiesen.

y/x2 + y2
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3.4 Kegelschnitte als Bahnkurven

Im Weiteren hielt Hermann - man ahnt es schon - ohne Begründung fest, dass man für
c < b eine Ellipse, für c b eine Parabel und für c > b eine Hyperbel hat. Der Beweis ist
leicht erbracht. Quadriert man Gleichung (5), so erhält man:

2ac
a" +

bzw.

a + ——x + -r^x =x + yb bl

2 2 2ac 1 V
c~ \ 2

y a H——x — I 1 -z IiH>
Der Vergleich mit der bekannten Scheitelpunktgleichung der Kegelschnitte (vgl. [11])
ergibt unmittelbar Hermanns Behauptung.

3.5 Die fehlende Integrationskonstante

Wie bereits erwähnt, kritisierte Johann Bernoulli das Fehlen der Integrationskonstante
in seinem Antwortbrief an Hermann (vgl. [2]). Dadurch hätte Hermann nicht für jeden
Fall gezeigt, dass ausschliesslich Kegelschnitte als Bahnkurven in Frage kämen. Hermann
schrieb darauf an anderer Stelle, dass die Konstante gleich 0 sei, da der Nullpunkt des

Koordinatensystems im Kraftzentrum liege, wie Eric Aiton in [1] berichtet. Um diese

Erklärung zu prüfen, folgen wir Bernoullis Analyse in [2],

Bernoulli führte bei der ersten Integration die Konstante e ein:

—y
-ax + e (xy - xy)—===. (6)

Vr + y

Für die zweite Integration multiplizierte er sie mit der Konstanten xy — xy um integrieren
zu können. Im Gegensatz zu Hermann schien Bernoulli dabei keine Bedenken wegen der
Dimension gehabt zu haben.

Seine Differentialgleichung lautete damit:

abx be (xy — xy) b (xyy — xy2)
x2 x2 XV*2 + y2

Offen ist nur noch das Integral des zweiten Terms auf der linken Seite. Es lässt sich mit
der bekannten Substitution q := y/x leicht berechnen:

Damit folgt:
ab bey byjx2 + y2

xx x
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bzw.

a H—x — ey
b

c
(7)

Quadrieren liefert:

Das ist die Gleichung eines Kegelschnitts in allgemeiner Lage (vgl. [ 11]). Wählt man die
Achse des Kegelschnitts als x-Achsc, so ist e tatsächlich gleich 0.

Bernoullis Berechnung zeigt, dass es nicht genügt, das Kraftzentrum in den Nullpunkt des

Koordinatensystems zu legen, wie Hermann nachträglich behauptet hatte.

In Hermanns Text fällt auch auf, dass er LI als Achse der Kurve bezeichnet. In diesem
Fall schneidet die Kurve LI aus Symmetriegründen rechtwinklig. Im Schnittpunkt gilt
dann y 0 und x 0. Das ist nur möglich, wenn die Integrationskonstante e in (6) gleich
0 ist:

Dass die Lösungskurven eine Symmetrieachse haben, lässt sich aber nicht a priori
rechtfertigen. Da dürfte die Suggestivkraft der bekannten Lösung Hermann in die Irre geführt
haben.

4 Eine Erhaltungsgrösse

Hermann stiess auf seinem Weg zur Lösung des inversen Problems auf etwas, das man
heute Erhaltungsgrösse nennt. Eine etwas verallgemeinerte Form wurde im Laufe der

nachfolgenden Jahrzehnte und Jahrhunderte von verschiedenen Mathematikern und Physikern

immer wieder neu entdeckt. Sie wird heute meist nach Pierre-Simon Laplace (1749-
1827), Carl Runge (1856-1927) und Wilhelm Lenz (1888-1957) benannt, wobei auch
William Rowan Hamilton (1805-1865) und Josiah Willard Gibbs (1839-1903) zu den
Wiederentdeckern gehörten. Einen Überblick über die Geschichte gibt Herbert Goldstein
in [3] und [4],

Der Laplace-Runge-Lenz-Vektor (kurz LRL-Vektor) wird meist definiert durch:

wobei G die Gravitationskonstante, M und m die Massen der beiden Himmelskörper und

L den Drehimpulsvektor bezeichnen.

Auf den ersten Blick ist kein Zusammenhang zwischen (4) und (8) erkennbar. Er lässt sich
aber in drei kleinen Schritten herstellen.

— a • 0 —F 0 - 0.
Vx2 + o2

A ?X
A := mx x L — GMm — mit r \x\, (8)
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4.1 Schritt 1: Die „fehlende" Differentialgleichung

Hermann hätte in gleicher Weise auch eine Differentialgleichung für y herleiten und
integrieren können. Da er aber das inverse Problem bereits gelöst hatte, sah er keinen Grund
dafür.

Holen wir sein „Versäumnis" nach. Die Differentialgleichung für y lautet:

-,ay (xy-xy)2 y

(xz + yz)

Für das Integral der linken Seite erhalten wir

—aj y dt ——aye\.

Wir behandeln einen der Faktoren xy — xy in der Differentialgleichung wieder als

konstanten Vorfaktor. Für die restlichen Faktoren der rechten Seite erhalten wir so mit der
Substitution q := y/x\

y y
{xy - xy)—- —= {xy - xy)

(x2 + y2f2 x2(l + (y/x)2f2
y xy —xy 1

x *z (1 + {y/x)2Y,z
q q

(i +q2f2'
Der letzte Term lässt sich wieder leicht integrieren:

/ (xy — xy) —TTxdt - [ q q Tiï clt
J (x2 + y2) J (1 +q2f2

1 1

(1 +q2)1/2 (I + (y/x)2)l/2 {x2 + y2)l/1

Fügt man den konstanten Vorfaktor xy — xy wieder hinzu, so hat man die „fehlende"
Lösung:

-ay + ei (xy - xy)-= (9)
y/xA + yz

Zusammen mit der Gleichung, die bereits Bernoulli herleitete (inklusive Integrationskonstante),

haben wir:
Y

—ay + e\ — (xy - xy)-

—ax + e2 (xy — xy)

Jx2 + y2

-y
sjx2 + y2

bzw. mit r y/x2 + y2:

e\ ay + (xy-xy)~,
y

(10)
—ß2 — ax + (xy — xy) —

r
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4.2 Schritt 2: Moderne Konstanten

Vergleichen wir Hermanns ursprüngliche Differentialgleichung (2) mit der modernen
Form

x -GM —ri
so stellen wir fest, dass a 1/(GM) ist. Hermann multiplizierte die Gleichung aber noch
mit dem Quadrat von xy — xy. Diese Grösse ist bis auf das Vorzeichen gleich dem sog.
spezifischen Drehimpuls, d.h. dem Drehimpuls L geteilt durch die Masse m des Planeten:

xy — xy —Lim.

Damit erhalten wir für die Variable a in der Form (3) der Differentialgleichung

L2

GM \ m) G Mm2

Mit diesen Konstanten wird aus (10) zunächst

L2 —L
ei

-e2

- yGMm2 m

^x -f-
GMmz m

x

r

— y
r

und weiter

a\ :=
GMm

L
GMm3

et

a2 := -

Lmy — GMm

e2 ——Lmx — GMm

x
3

r
2 y

OD

4.3 Vektoren

Mit den Vektoren

erhalten wir schliesslich die Gleichung des LRL-Vektors:

-i "> tXA mx x L — GMm —.
r

4.4 Die Bedeutung des LRL-Vektors

Auf kegelschnittförmigen Bahnen gibt es genau einen Punkt, welcher der Sonne am nächsten

liegt. In diesem Perihel (gr. peri - nahe, helios - Sonne) stehen der Ortsvektor x, der
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Geschwindigkeitsvektor x und der Drehimpulsvektor L paarweise senkrecht aufeinander.
Deshalb ist mx x L parallel zu x. In der Folge ist A parallel zu x. Der LRL-Vektor zeigt
damit vom Brennpunkt in Richtung Perihel (vgl. Abbildung 3).

x L

mx x L

GMm2- A

Abbildung 3 Der LRL-Vektor als Erhaltungsgrösse.

Da der LRL-Vektor eine Erhaltungsgrösse ist, findet im Kepler-Problem somit keine Peri-
heldrehung statt.

4.5 Die Herleitung der Bahnkurve mit dem LRL-Vektor

Mit Hilfe des LRL-Vektors kann die Bahnkurve äusserst elegant hergeleitet werden. Dazu

multiplizieren wir A skalar mit x und vereinfachen:

| A| • r cos{cp) À o x ^mx x L — GMm2—^ o.

2xoxmx x L o x — GMm
r

A - r2 -> ->

mx x x o L — GMm2— LoL — GMm2r
r

L2 - GMm2r.

Dann lösen wir nach r auf:

L2 | GMm2 + | A| cos(p)^

GMm2

GMm2 + | A\ cos(<p) i + cos(^)GMm2

Das ist die Polarform der Kegelschnittgleichung (vgl. [11]) mit dem Parameter

L2
P GMm2

GMm2-
r

GMm2-

A mx x L

Ä

GMm2-
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und der numerischen Exzentritität

|A|
GMm2

4.6 Hamiltons Hodograph

Sei nun die x-Achse des Koordinatensystems so gewählt, dass sie parallel zum LRL-
Vektor verläuft. Dann ist auch dessen zweite Komponente ü2 gleich 0. Aus dem
Gleichungssystem (11) lässt sich der Radius r leicht eliminieren. In einem ersten Schritt
isolieren wir die Terme mit dem Radius:

a\ — Lmy — GMm2-,
r

7 yLmx — GMm—,
r

Dann quadrieren wir beide Gleichungen und addieren sie:

(Lmx)2 + (ai — Lmy)2 — ^GMm2—^ + ^GMm2—j

lWx2 + L2m2 (y - G2M2m4^^
V Lm/ r1

.7 /. ai \2 /GMm\2' +yy-~Lm)={—J
Die letzte Gleichung stellt einen Kreis in deri-y-Ebene dar (vgl. Abbildung 4).

y

Abbildung 4 Hamiltons Hodograph.
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Die Geschwindigkeitsvektoren an den Stellen © bis © entsprechen den Positionen in der

vorhergehenden Graphik. Der Cosinus des Winkels a ist gleich der numerischen
Exzentrizität:

\ - Sil _ ai _
GMm2e

_C0SW - GMm - GMm2 - GMm2 ~ e'

Diese Art graphischer Darstellung von Geschwindigkeiten geht auf den englischen
Astronomen James Bradley (1693-1762) zurück. Bekannt wurde sie durch den irischen
Mathematiker und Physiker William Rowan Hamilton (1805-1865), der diese Darstellung
Hodograph nannte (von gr. hodös - Weg).
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