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1 Introduction

The Dirichlet integral plays an important role in distribution theory. We can see the Dirich-
let integral in terms of distribution. The following classical Dirichlet integral has drawn
lots of attention:

We can use the theory of residues to evaluate this Dirichlet integral formula. G.H. Hardy
and A.C. Dixon gave a lot of different proofs for it. See [5-7]. In this paper we give an
elegant method to generalize this Lobachevsky formula.

We start with the following elementary lemma. See [1-4].

Lemma 1.1. Fora ¢ Zr, we have

1 1 1 1
o i _1 m .
sina a+z( ) (a—mrr+a—l-m7r)

m=1

Dirichlet-Integrale, wie etwa das uneigentliche Integral fooo Si'lcﬁalx des Sinus cardina-
lis, tauchen an verschiedenen Stellen der Analysis auf: beispielsweise bei der Fourier-
Transformation, in der Theorie der Distributionen, bei der Laplace-Transformation
oder in der Signaltheorie. Derartige Integrale wurden unter anderem von Godfrey Ha-
rold Hardy und Alfred Cardew Dixon untersucht. Von Nikolai Lobatschewski stammt
eine erstaunliche Formel fiir den Fall eines Integranden, der das Produkt der sinc-
Funktion und einer z-periodischen Funktion ist. Der Autor der vorliegenden Arbeit
erweitert nun die Formel von Lobatschewski auf Integranden, welche das Produkt
hoherer Potenzen von sinc und einer 7 -periodischen Funktion sind.
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Proof. For every positive integer N, denote by Cy the positively-oriented square in the
complex plane with vertices (N + %)(:l:l =1i). On the one hand, since the function 1/ sin(z)
is bounded on Cy by a constant which is independent of N, one has

f 2radz 0
—
cy (@*n? — a?)sin(rz)

as N — 00. On the other hand, by the Residue Theorem, one also gets

N
2 od 2 1
f 22MCZZ' =Z(“1)nzzoC 7T 2
cy (@*m? — a®)sin(z z) — news — a sin(a)
which proves the claim as N — 0. O

Lemma 1.2. For o ¢ Zn, we have the identity

11 +§: I ari
sinfa 02 — (@ —mm)?r  (a+mm)?)’

Proof. The identity follows by differentiating termwise the classical formula,

2 The Lobachevsky formula

Now, we present the Lobachevsky formula.

Theorem 2.1. Let f(x) be a continuous function which satisfies f(x + ) = f(x), and
f(r —x) = f(x), 0 < x < oo. If the the following integrals exist in the sense of the
improper Riemann integrals, then we have the following Lobachevsky identity

© gin? x 0 gin x z
fo f(x)dx :/0 Flayds = fo fx)dx.

x2 X

Proof. Take
o
P / SI0Y £ (e)dx:
0 X

then we can write I as

wherev =2u — 1 orv = 2u. By changingx = um +torx = um —t we get

Qu+DT ginx 5 sint
f TOT oy o (1) f £y
Zu% X 0 MUm+t
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CW%  sinx . [% sint
/ rw =t |
Qu-1)7 * 0 MU —
so we get

7 sint 1 ;
I=/0 f(r)dt+Z/ (— 1)/‘f(t)(t+mr + t—,mr)smtdt'

Consequently we can write [ in the form

3 . 1 1
= 1 — =1)#
I /0 sin ¢ ; +;—l( 1) (t+,u7r + ; _'mr) f(t)dr.

1 =/o% f(t)dt

and the proof of the identity [~ S2% f(x)dx = [* f(x)dx is complete. Now we prove
the second part of the identity. Taking

2
J=/ sin xf(x)dx
0

and

tf(t)dt;

Hence

we can write J as

O+DF gin2
J= Z/ 22 fx)dx,
.4 x2
U:O Z
where v =2y — 1 orv = 2u. By changingx = um +1torx = umwr — 1t we get
H

Qu+D3 in? x T sin?t
/ 1= | L f

1y

Cm3  sin?x sin® ¢
dr,
fw_nz fG) = / o

and

so we get

T
J—f

Consequently we can write J in form

[T (1< 1 1
J_fo sin’ ¢ f2+z((f+#7f)2+(t—/lﬂ')2) f(t)dt.

p=1

1 1 5
in“tdt.
= ((tﬂwr)2 (l‘—fwr)z)Slrl
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Hence from Lemma 1.2, we get
()
Foe= / f(@)de
0
and the proof is complete. O

3 Extension of the Lobachevsky formula

Now we give a general method for calculating the following Dirichlet integral:

00 oinlht
[ s,
0

x2n

where f(r +x) = f(x),and f(xr —x) = f(x),0 < x < oo. Here we have assumed that
f is continuous and fooo Si;;,x f(x)dx is defined in the sense of the improper Riemann

integral. We start with n = 2. As we did in the previous section, take

®© sin* x
b — — f(x)dx.
0 x

By a direct computation

d? ( 1 ) 6 4

dx? \sin’x/)  sin? (x) sin’(x)
Next, differentiating twice termwise the right-hand side of the identity of Lemma 1.2, we
get the identity

e o]

1 2 _1+Z( AR )
sinfa 3sinfa at (@ —mr)*  (a +mm)*)

m=1

From the previous method which we explained in Section 2, we can write / as
7 1 2
I:/ sin4r( — ) (t)d:r.
0 sin*r  3sin’z 1@

5 2 [T 4
I:f f@®)dt — —/ sin“ tf (t)dt.
0 3Jo
So we proved the following theorem:

Theorem 3.1. Let f satisfy f(x + ) = f(x), and f(x —x) = f(x), 0 < x < o<. Ifthe

integral
% gin x
/ — S (x)dx
0 X

Hence

is defined in the sense of the improper Riemann integral, then we have the equality

% gin* x 7 2 137 5
fo Jfx)dx _/0 f@)dr — 5/0 sin“ ¢ f (¢)dt.

x4
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In particular, if we take f(x) = 1 in the previous theorem, we obtain:

Remark 3.2. We have
f © gin® x T
7 dx = —.
0 X 3

We have also the following remark from the Lobachevsky formula:

Remark 3.3. If f(x) satisfies the condition f(x + 7) = f(x), and f(x —x) = f(x),
0 <x < o0, take

00 oin2n+1 00 .
= f M F r(x)dx = f sin? x 22X £(x)dx.
0 X 0 X

If we set sin®” xf (x) = g(x), we get g(x + 7) = g(x), g(m — x) = g(x), now if we take
fix) =1, then

/oo sin2"+1xdx _ /% sin2 xdy — @n-Dlz
0 X 0 )t 2

Now, by the following important remark, we can calculate the Lobachevsky formula for
any n > 3. Let f(z) satisfy the conditions of the beginning of Section 3.

Remark 3.4. In fact, the Dirichlet integral

00 o320
/ P 2 rydz
0

22"

has the form (for n > 3)

. /ff(z)dz+a2/700t2”_2(z) sinz”'_z(z)f(z)dz-i--"+ak/7°°t2(z) sin’(2) f (2)dz,
0 0 ’

where the constants a; can be computed by the use of the following formulas (and the help
of the engine Wolfram Alpha for instance): For every positive integer n, one can compute

d" 1 an 7 n dn—k dk
) = 1 t2 — tz)— t
2o (sinz (z)) dz”( + cot® z) k§=0 (k) Tk (cotz) i (cotz)

by the Leibnitz rule and then apply the closed formula

m

dzﬂ‘l

(cotz) = (2i)"(cot(z) — i) Z Ir;:](i cot(z) — 1)*
j=1

of Lemma 2.1. of [8], where {}} are the Stirling numbers of the second kind. Now by

applying the identity
il ( ! ) _ 3 LD
dz" \ sin? z - P (z+kn )n+2
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we can find a closed formula for such a Dirichlet integral for any n. For example, when

n = 3 we have a; = %,az = %,og = %andforn =4, a1 = %Z,az — —67%‘,053 =
1824 __ 2880 .
o2 4 = S

Remark 3.5. We have the following formulas:

1) /oo Sinﬁzdz - 1z
0

z6 40
% gin8 7 1517
2 dz =

) /o 2 7630
0 inl0 7 15619x
3) —dz = —
o 20 72576
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