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1 Introduction
The Dirichlet integral plays an important role in distribution theory. We can see the Dirich-
let integral in terms of distribution. The following classical Dirichlet integral has drawn
lots of attention: ^

-dx
71I0 X 2

We can use the theory of residues to evaluate this Dirichlet integral formula. G.H. Hardy
and A.C. Dixon gave a lot of different proofs for it. See [5-7]. In this paper we give an

elegant method to generalize this Lobachevsky formula.

We start with the following elementary lemma. See [1-4].

Lemma 1.1. For a hit, we have

— 1 + Z(-ir (——+ -1-)sin a a ' \a—mn a+mn)m=1

Dirichlet-Integrale, wie etwa das uneigentliche Integral J0°° s"^ dx des Sinus cardina-
lis, tauchen an verschiedenen Stellen der Analysis auf: beispielsweise bei der Fourier-
Transformation, in der Theorie der Distributionen, bei der Laplace-Transformation
oder in der Signaltheorie. Derartige Integrale wurden unter anderem von Godfrey
Harold Hardy und Alfred Cardew Dixon untersucht. Von Nikolai Lobatschewski stammt
eine erstaunliche Formel für den Fall eines Integranden, der das Produkt der sinc-
Funktion und einer n -periodischen Funktion ist. Der Autor der vorliegenden Arbeit
erweitert nun die Formel von Lobatschewski auf Integranden, welche das Produkt
höherer Potenzen von sine und einer n -periodischen Funktion sind.
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Proof. For every positive integer N, denote by Cn the positively-oriented square in the

complex plane with vertices (N +1)(±1 ±i). On the one hand, since the function 1/ sin(z)
is bounded on C/v by a constant which is independent of N, one has

271 adz
Tcn iz27i2 - a2) sin(7rz)

as N -> oo. On the other hand, by the Residue Theorem, one also gets

r 2ttadz y. 2a 1

JcN (z2n2 — a2) sin(7rz) n2Tt2 — a2 sin(ot)
/v n=—N

which proves the claim as N —»• oo.

Lemma 1.2. For a <£ "Lit, we have the identity

1

_ J_ y / 1 1 \
sin2 a a2 (a+mu)2/'m=l '

Proof. The identity follows by differentiating termwise the classical formula,

i 00 i
cot(z) - + jr ~2

z z — m
m=l

2 The Lobachevsky formula

Now, we present the Lobachevsky formula.

Theorem 2.1. Let f(x) be a continuous function which satisfies fix + n) fix), and

f(jt — x) fix), 0 < x < oo. If the the following integrals exist in the sense of the

improper Riemann integrals, then we have the following Lobachevsky identity

f00 sin2* f°° sinx f/ —y—f(x)dx / f(x)dx
Jo * Jo x Jo

2

f(x)dx.

Proof. Take

-f(x)dx;

then we can write I as
00 p(u+l) 2 sinx

I I /(x)dx,
0=0'"f x

where o 2p — 1 or ü 2p. By changing x ,«7r + t orx ,«7r — t we get

r(2/<+l)f sjnx rf sjnf
/ /OO (-1)A / —f(t)dt

J * Jo /iTT+t
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and
r(2v) I sin* ?§ sin?
/ /to - (-1)^ / ~f(t)dt;

J(2/t-l)| * JO [in — t

so we get

/= / -7-/(0^ + ]^/ (-1)^/(0 (7-7 ^ ;—-—)sin?d?.
JO * ^JO \f + JÜ7T t — flit

H 1

Consequently we can write / in the form

/ /f sin; /i + (-Î- + -1-)) /«A.
JO \* \t + /r7T t - jun J J

Hence
/"§

1 / /(?)d?
JO

iL
and the proof of the identity /0°° ^-f(x)dx — f02 f(x)dx is complete. Now we prove
the second part of the identity. Taking

f°° sin2x
„J / —t~f(x)dx,

Jo X

we can write J as

^2, r(t,+1)f sin2x
J 2_, —— f(x)dx,

where v 2/x — 1 or n 2,«. By changing x /un + t ox x jun: — we get
»

H2/t+i)| sjn2x /§ sin2?
/ —= / 7—jr^2f^dtJ2n% X1 Jo {/UTX+ty

and
A2/0 § sjn2 /'I sin2?
/ ——/to / 7
J(2/<-l)f JO {.urt-ty

so we get

/"f sin2? fJ 1 1 \ 2

too ~m"' + ^Jo

Consequently we can write J in form

J [ sin2? j
-i- + (7 *—72 + 7 —7? M f(f)dt.
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Hence from Lemma 1.2, we get

-I2

f(t)dt

and the proof is complete.

3 Extension of the Lobachevsky formula
Now we give a general method for calculating the following Dirichlet integral:

no° sin2" x
x2n -f(x)dx,

where f(n +x) fix), and f(n: - x) fix), 0 < x < oo. Here we have assumed that

/ is continuous and S1"2„'Y f(x)dx is defined in the sense of the improper Riemann

integral. We start with n 2. As we did in the previous section, take

Jo

By a direct computation

sin x
—j-f(x)dx.

— (—)dx2 \sin2x/ sin (x) sin (x)

Next, differentiating twice termwise the right-hand side of the identity of Lemma 1.2, we
get the identity

1

— V I 1 1 \
a4 \(a — mi)4 (a + mir)4)sin4 a 3 sin2 a

From the previous method which we explained in Section 2, we can write I as

/ [2 sin41 —L- -
2

f(t)dt.
Jo \sin r 3 sin t)

Hence
[h 2 [7- 21= / f(t)dt — — / sin-tf(t)dt.

Jo 3 Jo

So we proved the following theorem:

Theorem 3.1. Let f satisfy fix + n) f(x), and fin — x) fix), 0 < x < oo. If the

integral

I
00 sin4x

fix)dx

is defined in the sense of the improper Riemann integral, then we have the equality

f°° sin4x 2 f 2 7/ —j— fix)dx / f(t)dt - - sin tfit)dt.
Jo x4 Jo 3 Jo
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In particular, if we take /(x) — 1 in the previous theorem, we obtain:

Remark 3.2. We have

I
oo 4sin i tz

-dx —.x4 3

We have also the following remark from the Lobachevsky formula:

Remark 3.3. If f(x) satisfies the condition /(x + n) /(x), and f(n — x) /(x),
0 < x < oo, take

f sin x [°°/ f(x)dx / si
Jo X Jo

sin2" x f(x)dx.
sinx

If we set sin2" x/(x) g(x), we get g(x + 7r) g(x), g(x — x) g(x), now if we take

/(x) 1, then

f°° sin2"+1 x H 2„ (2n - 1)!! it
sin~ xdx

I"00 sin + x f 2

/ ax / sir
Jo * Jo (2n)!! 2

Now, by the following important remark, we can calculate the Lobachevsky formula for
any n > 3. Let f(z) satisfy the conditions of the beginning of Section 3.

Remark 3.4. In fact, the Dirichlet integral

I
00 sin2"z

f(z)dz
z2„

has the form (for n > 3)

r — n — n —

«1 / /(z)<Jz+«2 / cot2"~2(z) sin2"_2(z)/(z)cfzd [ cot2(z) sin2(z)/(z)dz,
Jo Jo Jo

where the constants a,- can be computed by the use of the following formulas (and the help
of the engine Wolfram Alpha for instance): For every positive integer n, one can compute

dn 1 \ d" „ 2 s V- M dn~k
^

dk

it- liÄij=5?a+cot «=§y'(*)' - *=0

by the Leibnitz rule and then apply the closed formula

dm 'n

— (cotz) (2i)m (cot(z) - 0 X
J=i

(cotz)

(i cot(z) - 1)

of Lemma 2.1. of [8], where {£} are the Stirling numbers of the second kind. Now by
applying the identity

d" 1 \ ^ (—!)"(« +'" / 1 \ y,
zn \sin2 z/dzn \sin2z/ (z + kn)n+2

k=—oo
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we can find a closed formula for such a Dirichlet integral for any n. For example, when
9 0 11 ono f\A.

n 3 we have a\ jj, ai jg, ß3 yj and for n 4, a\ 4«2 %, «3
1824 „ _ 2880
7j w4 — 7| •

Remark 3.5. We have the following formulas:

f°° sin6 z 1 Itt
«X —*

r00 sin8 z 15Itt
2)

Jo ~630

f°° sin10z 15619tt
3)

7o z10
Z ~~

72576
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