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| Elemente der Mathematik

Tetraeder mit inhaltsgleichen Seitenflichen

Konrad Voss

Konrad Voss studierte Mathematik zunichst in Berlin und anschliessend an der ETH
Ziirich, wo er 1956 bei Heinz Hopf promovierte. Bereits 1960 wihlte ihn der Bun-
desrat zum Assistenzprofessor fiir Mathematik, insbesondere Geometrie, an der ETH
Ziirich. Nach nur drei Jahren wurde Konrad Voss zum ordentlichen Professor befor-
dert. Er wirkte an der ETH bis zu seiner Emeritierung 1995 in Lehre und Forschung,
und auch einige Jahre als Vorsteher der Abteilung fiir Mathematik und Physik. Er be-
treute mit unermiidlichem Einsatz die Geometrievorlesungen der Ingenieur-Studien-
giinge, ein weites Spektrum an Spezialvorlesungen tiber Differentialgeometrie sowie
eine grosse Zahl von Doktorandinnen und Doktoranden. Er tat dies in der ihm eige-
nen engagierten und hilfsbereiten Art, die das Wohlergehen des Menschen nie aus den
Augen verlor. Er war nicht nur als hervorragender Wissenschaftler, sondern auch als
langjéhriger Kollege allseits sehr geschiitzt. Er verstarb am 30. Mirz 2017 in seinem
89. Lebensjahr.

Ein Tetraeder im Euklidischen Raum R? wird durch seine vier Eckpunkte festgelegt, das
sind vier beliebige Punkte, die nicht in einer Ebene liegen. Je zwei Ecken bestimmen ei-
ne der sechs Kanten; je drei Ecken legen eine der vier Seitenflichen fest. Beim reguldren
Tetraeder sind alle sechs Kanten gleich lang; die Seitenflichen sind also gleichseitige Drei-

ecke.

Im Folgenden wird die Frage untersucht, bei welchen Tetraedern alle vier Seitenflichen
den gleichen Fldcheninhalt haben, und wie sich gegebenenfalls solche Tetraeder geome-
trisch und analytisch beschreiben lassen. Tetraeder, die sich durch Translation, Drehung
oder Spiegelung ineinander iiberfiihren lassen, werden als dquivalent betrachtet.

Konrad Voss forschte nicht nur in seinem Spezialgebiet, der Differentialgeometrie, sehr
erfolgreich, sondern seine iiberaus pridzise mathematische Intuition fiihrte ihn auch
noch bis ins hohe Alter zu iiberraschenden Resultaten und originellen Beispielen im
Bereich der klassischen Geometrie. In der vorliegenden Arbeit, die er bis kurz vor sei-
nem Tod bearbeitete, geht es um die folgende Frage: Ein Dreieck mit drei gleich langen
Seiten ist bis auf Kongruenz eindeutig bestimmt, eben ein gleichseitiges Dreieck. Aber
wie sieht es eine Dimension hoher aus? Gibt es ausser dem regulédren Tetraecder noch
weitere Tetraeder mit vier Seitenflichen gleichen Flécheninhalts? Und wenn ja, wel-
che geometrischen Eigenschaften haben solche Tetraeder? Konrad Voss gibt in dieser
Arbeit Antworten in unnachahmlich elegantem Stil. ~
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1 Bezeichnungen und Formeln
Im Text werden die folgenden Notationen verwendet:

Punkte oder Vektorenin R3: X = (x1, x2, x3). Dabei sind x; € R die Koordinaten in einem
rechtwinkligen ,rechtshiindigen” Koordinatensystem mit Ursprung O = (0, 0, 0).

Skalarprodukt: (A, B) = a1b) + axbz + azbs.
Vektorprodukt: A x B = (ng,, P31, PIZ) mit p;; = a;b; —a;b;.
Fiir vier Vektoren A, B, C, D gilt die Lagrangesche Identitcit
(A x B,C x D) = (A, C)(B, D) — (A, D){B, C). (1)
Insbesondere gilt
(A x B, Ax B) = (A, A)(B, B) — (4, B)". 1)

(1) ist dquivalent mit
(AxB)yxC=(A,C)B—(B,C)A. (2)

Dreireihige Determinante: det(A, B,C) = (A x B, C) = (A, B x C). :
Liinge eines Vektors: |A| = /(A A).
Einheitsvektor E: |E| = 1.

Winkel zwischen zwei Vektoren A, B (im Bogenmass): <<(A,B) =y, 0<y <.
Zusammenhang mit dem Skalarprodukt via Cosinussatz |A — B 12 = |A|2+|B|?2=2(A, B):
(A, B) = |A||B| cos y . Damit schreibt sich (1’) in der Form |A x B| = |A||B|siny.

Das ist (falls y # O und y # x) der Flacheninhalt des von den Vektoren A, B aufge-
spannten Parallelogramms.

Orthogonalitiit von Vektoren: A L B falls (A, B) = 0.

Fiir linear unabhéngige Vektoren A und B gilt A x B 1 A sowie A x B 1L B und
det(A, B, A x B) > 0, d.h. das Vektortripel A, B, A x B ist ,rechtshindig”.

Aus |E| = 1 folgt: (E, A) ist die Linge (mit Vorzeichen) der Orthogonalprojektion der
Strecke O A auf die Gerade OE.

A
0 > A
E
D e >
(E, A)

Liinge der Strecke AB:  |B — A|.
Flicheninhalt des Dreiecks OAB: [ = %lA x B|.
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C

A

Volumen des Tetraeders OABC: v = %‘det(A, B, C)\.

Tetraeder ABC D: Drei Paare gegeniiberliegender Kanten AB, CD; AC, BD; AD, BC.
Schwerpunkt. P = %(A + B)und Q = %—(C + D) sind die Mittelpunkte der ge-
geniiberliegenden Kanten AB und CD. § = %(A + B 4+ C + D) ist der Mittelpunkt der

Strecke P Q. Die Verbindungsgeraden der Mittelpunkte gegeniiberliegender Kanten gehen
also durch den Schwerpunkt S des Tetraeders.

Umkugel: Die vier Ecken eines Tetraeders liegen auf einer (eindeutig bestimmten) Ku-
gelflache.

Inkugel:  Es gibt eine (eindeutig bestimmte) Kugelflache mit Zentrum im Innern des
Tetraeders, welche alle vier Seitenfldchen beriihrt.

Normalvektoren der Seitenfliichen des Tetraeders A1 A2A3A4: i, j, k,l sei eine Permu-
tation der Zahlen 1, 2, 3, 4. Mit E; bezeichnen wir einen der beiden Einheitsvektoren or-
thogonal zur Seitenfliche A;ArA;,d.h. E; L Aj —Ajund L Ag — A;. Wir nennen E; den
dusseren oder den inneren Normalvektor, je nachdem ob (E i Ap — Al) < 0 oder > 0 ist.

Winkel an einer Tetraederkante: Die Seitenflichen A j Ay A; und A; A A; mit den dusseren
(oder den inneren) Normalvektoren E; und E; haben die Kante AxA; gemeinsam. Dann
erhilt man:
Aus (Ei, Ej) = cos 0 folgt: 3)
K = m — 0 ist der Winkel zwischen den Seitenfléichen an der Kante Ay A;.
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fi sei der Flicheninhalt des Dreiecks A j Ax A;. Dann erfiillen die dusseren (und ebenso die
inneren) Normalvektoren die folgende grundlegende Relation

HE1+ LEx2+ f3E3 4+ faEq4 =0. @)

Eine analoge Gleichung gilt sogar fiir alle konvexen Polytope im Euklidischen R" (n > 2).
Fiir den Tetraeder O A B C folgt (4) aus der Identitiit

AXB4+BxC+CxA+(C—A)x(B—A)=0.

2 Notwendige Bedingungen

Lemma 1. Bei jedem Tetraeder mit inhaltsgleichen Seitenflichen sind die Winkel an ge-
geniiberliegenden Kanten gleich.

Beweis. Nach (4) sind Tetraeder mit inhaltsgleichen Seitenflichen durch die Eigenschaft
Ei1+Ey+E3+E4=0 5

charakterisiert. Es sei .
cij = (Ei, Ej) firallei # j.

Mit einer Indexpermutationi, j, k, ! schreiben wir (5) in der Form E; + E; = —(Er + Ej).
Wegen (E; + Ej, E; + E ) = 2 + 2¢;; folgt daraus

Cij = Cil
und damit wegen (3) die Gleichheit der beiden Winkel. O

Entscheidend ist nun das folgende duale

Lemma 2. Bei jedem Tetraeder mit inhaltsgleichen Seitenflichen sind gegeniiberliegende
Kanten gleich lang. Fiir solche Tetraeder O ABC gilt also

|Al=|B—=C|, |Bl=|C—A| |Cl=]|A-B]. (6)

Dazu beweisen wir

Lemma 3. In einem Tetraeder mit inhaltsgleichen Seitenfliichen sei ¢ die Linge einer
Kante und x der Winkel zwischen den anstossenden Seitenfliichen. Dann gilt

. ; 3v
sink =Ac mit L=—

2f2°

Dabei bezeichnet v das Volumen des Tetraeders und f den Flicheninhalt der Seiten-
fldchen.

Da der Faktor 4 fiir alle Kanten den gleichen Wert hat, folgt Lemma 2 aus Lemma 1 und
Lemma 3.
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Beweis von Lemma 3. Durch eine geeignete Translation und Nummerierung der Ecken
konnen wir zum Tetraeder O A1 A2 A3 libergehen, und zwar so, dass O A3 die betrachtete
Kante ist und det(A 1, A2, A3) > 0.1, j, k sei eine der drei zyklischen Permutationen
1,2,30der2,3,1o0der3,1,2.

Ag
Aj
0
A;
Dann ist 1
E,’ = ﬁ(Aj X Ak) (7)

der innere Normalvektor der Seitenfliche O A ; Ax. Umgekehrt folgt aus (7)
1
E;xEj= E(Aj X Ak) X (Ak X A,‘).
Mit A = Aj, B = Ay, C = Ag x A; ergibt sich (A, C) = det(A;, A, A;) = 6v und
(B, C) = 0, also nach Formel (2)

3v
EIXEJZIIA](, /1:2—]“2 (8)

Mit <t(E1, E2) = 6 und |A3| = c erhilt man fiir den Winkel x an der Kante O A3:

sinx:sin(n—é)zsin5=|E1XE2|=/1C. O

Auf Grund der Gleichung (6) von Lemma 2 folgt

Theorem 1. O ABC sei ein Tetraeder mit inhaltsgleichen Seitenfliichen. Es sei
|Al=a, [B|=b, |Cl=c und <(B,C)=a, <(C,A)=p, <(A,B)=y

an der Ecke O. Dann sind alle vier Seitenfliichen Dreiecke mit Seitenlingen a, b, c; die
Seitenfliichen sind also nicht nur inhaltsgleich, sondern sogar kongruent. Ausserdem gilt
a+p+y=nm.

a, B,y sind nimlich zugleich die Winkel im Dreieck ABC.
Wir nennen einen Tetraeder gleichseitig, wenn die vier Seitenflichen kongruent sind. Alle
Tetraeder mit inhaltsgleichen Seitenflichen sind also gleichseitig.

Theorem 2. Der Tetraeder O ABC ist dann und nur dann gleichseitig, wenn gegeniiber-
liegende Kanten gleich lang sind.
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A

Einerseits folgt nimlich aus der Kongruenz gegeniiberliegender Kanten die Kongruenz
der Seitenflachen; andererseits enthilt Lemma 2 die Aussage, dass die Kongruenz der Sei-
tenflichen in jedem Fall die Kongruenz gegeniiberliegender Kanten nach sich zieht. Dies
kann auch leicht direkt eingesehen werden (drei Fille: a, b, ¢ drei verschiedene Zahlen
odera =b #codera = b = ¢).

Die Frage ist, ob fiir die Kantenlidngen a, b, ¢ beliebige Werte mdglich sind. Eine notwen-
dige Bedingung ist die folgende: )

Lemma 4. In jedem gleichseitigen Tetraeder sind die Winkel in den Seitenfliichen kleiner
als 5; die Seitenfiiichen sind also spitzwinklige Dreiecke.

Beweis. OA1A2A3 sei der betrachtete Tetraeder. Die Gleichung (5) ist gleichbedeutend
mit der Aussage, dass E1 + E» + E3 ein Vektor der Linge 1 ist, also (E1 +Er+E3, E1+
Er+ E3)=1=3+2(ci2+ c13+ c3), d.h.

cp+ciz+e=—1 mit —1<¢; <l 9)
Nach (8), (1) und (9) ergibt sich

A2(A1, A2) = (E2 x E3, E3 x E1) = c23¢13 — c12 = 23013 + €23 + €13 + 1
— (623 —+ 1)(613 —+ 1) > 0. (]

3 Konstruktion der allgemeinen Losung

a, b, ¢ seien reelle Zahlen mit
O<a<b<c und a®>+0b*> (10)

Aus (10) folgt @ + b > c¢. Wie lésst sich daraus ein gleichseitiger Tetraeder mit den
Kantenlidngen a, b, ¢ konstruieren?

P QR sei ein Dreieck in einer ,horizontalen Ebene mit Seitenldngen |Q — R| = 2a,
|R—P| = 2b,|P— Q| = 2c. Fiir die Winkel a, #, y anden Ecken P, Q, R gilt wegen (10)

0<a§ﬁ5y<%. (10')
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An Stelle von a, b, ¢ kann man auch ¢ und die Winkel «, f vorgeben mit
O<a<fB, a+28<r, a+ﬂ>%. (107)

A, B, C seien die Mittelpunkte der Strecken QR, RP, P Q. Durch die Strecken AB, BC,
C A wird das Dreieck P QR in vier Dreiecke mit Seitenléingen a, b, ¢ zerlegt.

H sei der Hohenschnittpunkt von P QR. Wegen (10”) liegt H im Innern des Vierecks
ARBC. Wir bringen den Punkt P durch Drehung um die Achse BC in den Punkt D
vertikal iiber H. Dann gilt (da B und C bei der Drehung fest bleiben) |D —B| = |P—B| =
bund |D—-C|=|P-C|=c.

Analog drehen wir Q um die Achse AC und erhalten den Punkt D’ vertikal iiber H. Dann
ist D' = D, denn im rechtwinkligen Dreieck HDC ist |D — H|* = ¢ — |H — C|* =
|D’ — H|?. Somitist |[D — A| =|Q — A| = a.

ABCD ist der gesuchte gleichseitige Tetraeder.

4 Bestimmung der Eckpunkte
Lemma 5. Zu jedem Tetraeder O ABC gibt es eindeutig bestimmte Vektoren U, V, W so,

dass
A= V+W,
B=U + W, (11)
cC=U+YV.

Beweis. Aus (11) folgt
1 1 1 ;
U=§(—A+B+C), V=§(A—B+C), W=§(A+B—C). (119

Die Vektoren U, V, W sind also eindeutig bestimmt. Umgekehrt folgt (11) aus (11). [
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Gemiss (11) ldsst sich jeder Tetraeder T = O A BC aus drei linear unabhiingigen Vektoren
U, V, W erzeugen. Wir nennen das von U, V, W aufgespannte Parallelepiped P das er-
zeugende Parallelepiped von T . P wird von sechs Parallelogrammen begrenzt; die Kanten
von T sind Diagonalen dieser Parallelogramme.

Theorem 3. Die folgenden Eigenschaften sind dquivalent:

a. Der Tetraeder T = O ABC ist gleichseitig.

b. Die Vektoren U, V, W sind paarweise orthogonal, d.h. das erzeugende Parallelepi-
ped P von T ist ein Quader, die Seitenfliichen von P sind Rechtecke.

c. Die drei Verbindungsgeraden der Mittelpunkte gegeniiberliegender Kanten von T
sind paarweise orthogonal.
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Beweis. Nach Theorem 2 ist 7 dann und nur dann gleichseitig, wenn die Gleichungen (6)
erfiillt sind, also gilt nach Lemma 5 z.B.

AP = |V + W2 = V24 W24+ 2(V, W)
=|C=B =|V-W|=|VP+|W?=2V,W) < (V,W)=0

und analog fiir U, W und U, V. Also sind (a) und (b) dquivalent.

Nach (11) ist U Differenzvektor der Kantenmitten %—A und %(B + C); die Verbindungs-
gerade dieser Punkte ist also parallel zur Geraden OU. Entsprechendes gilt fiir V und W.
Also sind (b) und (c) dquivalent. O

Nach Theorem 3 kénnen wir U, V, W auf die Form bringen
U=2x,0,0), V= (Q, 2y,0), W=(0,0,2z) mit x,y,z>0.
Damit erhalten wir
Theorem 4. Die Formeln
A=(0,2y,2z), B=(2x,0,22), C=(2x,2y,0) (12)
mit positiven x, y, z liefern alle gleichseitigen Tetraeder T = OABC.

T hat den Schwerpunkt S = (x, y, z). Die Translation X — X S fiihrt S in O und O in
— S tiber.

Theorem 4’. Die Formeln

=(—x, ¥, 2),
Ay =( x,—-y, z2),
12/
3 ( X, Y, _Z) ( )
4 ( X, =Y, _Z)

mit positiven x, v, z liefern alle gleichseitigen Tetraeder T' = A1A2A3A4; dabei gilt
Al +Ars+ A3+ A2=0 und |Aj|l=r=x2+y2+2z2 firallei. (13)

5 Symmetrieeigenschaften gleichseitiger Tetraeder

Die acht Punkte (£x, £y, £z) sind Ecken eines Quaders Q mit Kanten parallel zu den
Koordinatenachsen, Kantenldngen 2x, 2y, 2z und Seitenflichen orthogonal zu den Koor-
dinatenachsen. Die Tetraederecken (12') sind diejenigen Ecken von Q, bei denen eine
ungerade Anzahl Koordinaten negativ ist; die tibrigen Ecken —A; von Q liefern den an O
gespiegelten Tetraeder. Die Mittelpunkte der Tetraederkanten sind die Punkte (+x, 0, 0),
(0, £y, 0), (0,0, £z) auf den Koordinatenachsen.

®1, @2, p3 seien die Drehungen um die Koordinatenachsen mit Winkel 7, d.h. — anders
ausgedriickt — die Spiegelungen an den Koordinatenachsen.
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Theorem 5. T sei der Tetraeder mit Ecken (12"). Dann werden die Ecken von T bei den
Drehungen @; permutiert; T wird also auf sich abgebildet. Jede Ecke von T ldsst sich
in jede andere Ecke, jede Seitenfliiche in jede andere Seitenfliiche und jede Kante in die
gegentiberliegende Kante iiberfiihren.

Beweis. i, j, k sei eine Permutation von 1, 2, 3. Bei A; ist die ite Koordinate negativ, die
beiden anderen Koordinaten sind positiv. Bei ¢ bleibt die kte Koordinate eines Punktes
ungeindert, wihrend die beiden anderen Koordinaten mit —1 multipliziert werden. ¢
bewirkt also die folgende Eckenpermutation:

@k - Ai <—>Aj, Ak<—>A4.
Dabei geht A; A Ay iiberin A;AjAqund A; Ak ih die gegeniiberliegende Kante A ; Ag. O

Theorem 6. Ein Tetraeder ist dann und nur dann gleichseitig, wenn der Schwerpunkt mit
dem Zentrum der Umkugel zusammenfillt.

Beweis. Nach Theorem 4’, Formel (13) hat jeder gleichseitige Tetraeder die genannte Ei-
genschaft.

Umgekehrt sei T ein Tetraeder, bei dem O Schwerpunkt und Zentrum der Umkugel ist,
fiir den also (13) gilt mit einer Zahl r fiir alle i. Durch die gleiche Uberlegung wie beim
Beweis von Lemma 1 folgt dann zunichst

lAi+Aj|2=2r2+2(Ai,Aj)= ‘Ak-i-Al 2

2

also (A;, Aj) = (Ax, Ar), und damit

A — Aj|P =272 —2(Ai, Aj) = |Ak — Al
T ist also gleichseitig. g

Die gleichseitigen Tetraeder lassen sich folgendermassen zu Paaren zusammenfassen:

Dualitéitssatz. T = T (x, y, z) sei der Tetraeder mit Ecken (12") und T* = T(%, %, %)
r und r* seien die zugehorigen Umkugelradien, p und p* die Radien der Inkugeln, E;

beziehungsweise E} die inneren Normalvektoren und A} die Ecken von T*. Dann gilt:
1 1 1

1
* . _ . *
Ei=r—*'AI-, p=F, E*—;Al, P —;‘

Beweis. Fiir die Skalarprodukte erhilt man
(AT, Aj)=—1 firallei #j, (A}, A;)=3.

Daher ist fiir drei verschiedene Indizes (A;‘, Aj — Ak) = 0. Folglich ist A orthogonal
zur Seitenfliche A;AzA;. Da (A}‘, A — Aj) = 4 ist, hat AT die Richtung des inne-
ren Normalvektors E;. Aus Symmetriegriinden hat O von allen Seitenflichen den Ab-
stand p = (—E;, Aj) = . Wegen (I'*)* = T gelten die entsprechenden Formeln fiir
E% und p*. O
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Gleichseitige Tetraeder sind in der mathematischen Literatur immer wieder untersucht
worden. Interessierte Leserinnen und Leser seien an dieser Stelle auf das Literaturver-
zeichnis verwiesen.

Aufgaben

1. Man zeige, dass bei gleichseitigen Tetraedern bei mindestens zwei Paaren gegen-
tiberliegender Kanten die Winkel zwischen den Seitenflichen kleiner als 90° sind.

2. Die Seitenflichen eines gleichseitigen Tetraeders seien gleichschenklige Dreiecke
mit Seitenléingen @ = b < ¢ und Winkeln a = f < y. Fiir welche Werte von y ist
der Winkel an der lingeren Kante grosser, gleich oder kleiner als 90°?

3. Man untersuche, fiir welche Tetraeder sich die vier Héhen in einem Punkt schneiden.

Dank

Wir bedanken uns bei Daniel Perez fiir die Erstellung der Figuren und der I&TEX-Version
dieser Arbeit.
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