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I Elemente der Mathematik

Tetraeder mit inhaltsgleichen Seitenflächen

Konrad Voss

Konrad Voss studierte Mathematik zunächst in Berlin und anschliessend an der ETH
Zürich, wo er 1956 bei Heinz Hopf promovierte. Bereits 1960 wählte ihn der
Bundesrat zum Assistenzprofessor für Mathematik, insbesondere Geometrie, an der ETH
Zürich. Nach nur drei Jahren wurde Konrad Voss zum ordentlichen Professor befördert.

Er wirkte an der ETH bis zu seiner Emeritierung 1995 in Lehre und Forschung,
und auch einige Jahre als Vorsteher der Abteilung für Mathematik und Physik. Er
betreute mit unermüdlichem Einsatz die Geometrievorlesungen der Ingenieur-Studiengänge,

ein weites Spektrum an SpezialVorlesungen über Differentialgeometrie sowie
eine grosse Zahl von Doktorandinnen und Doktoranden. Er tat dies in der ihm eigenen

engagierten und hilfsbereiten Art, die das Wohlergehen des Menschen nie aus den

Augen verlor. Er war nicht nur als hervorragender Wissenschaftler, sondern auch als

langjähriger Kollege allseits sehr geschätzt. Er verstarb am 30. März 2017 in seinem
89. Lebensjahr.

Ein Tetraeder im Euklidischen Raum R3 wird durch seine vier Eckpunkte festgelegt, das

sind vier beliebige Punkte, die nicht in einer Ebene liegen. Je zwei Ecken bestimmen eine

der sechs Kanten; je drei Ecken legen eine der vier Seitenflächen fest. Beim regulären
Tetraeder sind alle sechs Kanten gleich lang; die Seitenflächen sind also gleichseitige Dreiecke.

Im Folgenden wird die Frage untersucht, bei welchen Tetraedern alle vier Seitenflächen
den gleichen Flächeninhalt haben, und wie sich gegebenenfalls solche Tetraeder geometrisch

und analytisch beschreiben lassen. Tetraeder, die sich durch Translation, Drehung
oder Spiegelung ineinander überführen lassen, werden als äquivalent betrachtet.

Konrad Voss forschte nicht nur in seinem Spezialgebiet, der Differentialgeometrie, sehr

erfolgreich, sondern seine überaus präzise mathematische Intuition führte ihn auch
noch bis ins hohe Alter zu überraschenden Resultaten und originellen Beispielen im
Bereich der klassischen Geometrie. In der vorliegenden Arbeit, die er bis kurz vor
seinem Tod bearbeitete, geht es um die folgende Frage: Ein Dreieck mit drei gleich langen
Seiten ist bis auf Kongruenz eindeutig bestimmt, eben ein gleichseitiges Dreieck. Aber
wie sieht es eine Dimension höher aus? Gibt es ausser dem regulären Tetraeder noch
weitere Tetraeder mit vier Seitenflächen gleichen Flächeninhalts? Und wenn ja, welche

geometrischen Eigenschaften haben solche Tetraeder? Konrad Voss gibt in dieser
Arbeit Antworten in unnachahmlich elegantem Stil.
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1 Bezeichnungen und Formeln

Im Text werden die folgenden Notationen verwendet:

Punkte oder Vektorenm R3: X (jci, xj, .*3). Dabei sind*; e M die Koordinaten in einem

rechtwinkligen rechtshändigen" Koordinatensystem mit Ursprung O (0,0,0).

Skalarprodukt: (A, B) a\b\ + 02^2 + «3^3-

Vektorprodukt: A x B (p23, P3\, p12) mit Pij ciibj — ajb
Für vier Vektoren A, B,C, D gilt die Lagrangesche Identität

(A x B,C xD) (A, C)(B, D) - (A,D)(B,C). (1)

Insbesondere gilt
{A x B, A x B) — (A, A){B, B) — (A, B)2. (1')

(1) ist äquivalent mit

(A x B) x C {A,C)B - (B,C)A. (2)

Dreireihige Determinante'. det(A, B, C) (A x B, C) (A, B x C).

Länge eines Vektors: | A| */(A, A).

Einheitsvektor E: \ E\ 1.

Winkel zwischen zwei Vektoren A, B (im Bogenmass): <(A, B) y, 0 <y<n.
Zusammenhang mit dem Skalarprodukt via Cosinussatz |A — B\2 | A|2 + |5|2—2(A, B):
(A, B) |A||B| cosy Damit schreibt sich (1') in der Form |A x B \ |A||ß| sin y.
Das ist (falls j / 0 und j / n) der Flächeninhalt des von den Vektoren A, B

aufgespannten Parallelogramms.

Orthogonalität von Vektoren: A _L B falls (A, B) =0.
Für linear unabhängige Vektoren A und B gilt A x B ± A sowie A x B L B und

det(A, B, A x B) > 0, d.h. das Vektortripel A, B, A x B ist „rechtshändig".

Aus \E\ 1 folgt: (E, A) ist die Länge (mit Vorzeichen) der Orthogonalprojektion der
Strecke OA aufdie Gerade OE.

(E,A)

Länge der Strecke AB: \B — A |.

Flächeninhalt des Dreiecks O AB: f j | A x B|.
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c

A

Volumen des Tetraeders OABC: v — g |det(A, B,C)|.
Tetraeder AB CD: Drei Paare gegenüberliegender Kanten AB, C D\ AC, B D\ AD, BC.

Schwerpunkt: P j(A + B) und Q ^(C + D) sind die Mittelpunkte der

gegenüberliegenden Kanten AB und CD. S ^(A + B + C + D) ist der Mittelpunkt der
Strecke P Q. Die Verbindungsgeraden der Mittelpunkte gegenüberliegender Kanten gehen
also durch den Schwerpunkt S des Tetraeders.

Vmkugel: Die vier Ecken eines Tetraeders liegen auf einer (eindeutig bestimmten)
Kugelfläche.

Inkugel: Es gibt eine (eindeutig bestimmte) Kugelfläche mit Zentrum im Innern des

Tetraeders, welche alle vier Seitenflächen berührt.

Normalvektoren der Seitenflächen des Tetraeders Ai A2A3 A4: i, j, k, l sei eine Permutation

der Zahlen 1, 2, 3,4. Mit E; bezeichnen wir einen der beiden Einheitsvektoren
orthogonal zur Seitenfläche Aj Ak A/, d.h. Ei J_ Aj — A/ und ± A^ — A/. Wir nennen £,• den

äusseren oder den inneren Normalvektor, je nachdem ob [Ei, A; — A/} < 0 oder > 0 ist.

Winkel an einer Tetraederkante: Die Seitenflächen AjA^Ai und A, A^A; mit den äusseren

(oder den inneren) Normalvektoren E, und Ej haben die Kante A^A/ gemeinsam. Dann
erhält man:

Aus [E{, Ej) cosôfolgt: (3)

k n — S ist der Winkel zwischen den Seitenflächen an der Kante AiAi.
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fi sei der Flächeninhalt des Dreiecks AjA^Ai. Dann erfüllen die äusseren (und ebenso die
inneren) Normalvektoren die folgende grundlegende Relation

f\E\ + f2E2 + foEi + f4E4 0. (4)

Eine analoge Gleichung gilt sogar für alle konvexen Polytope im Euklidischen R" (n > 2).
Für den Tetraeder O ABC folgt (4) aus der Identität

Axß + fixC + CxA + (C-/l)x(S-A)=0,

2 Notwendige Bedingungen

Lemma 1. Bei jedem Tetraeder mit inhaltsgleichen Seitenflächen sind die Winkel an
gegenüberliegenden Kanten gleich.

Beweis. Nach (4) sind Tetraeder mit inhaltsgleichen Seitenflächen durch die Eigenschaft

E\ + £*2 + E3 + E4 — 0 (5)

charakterisiert. Es sei

dj [Ei, Ej) für alle i ^ j.
Mit einer Indexpermutation i, j, k, l schreiben wir (5) in der Form E, + Ej —(Ef: + Ei).
Wegen [Ei + Ej, Et + Ej) — 2 + 2cij folgt daraus

cij — ckl

und damit wegen (3) die Gleichheit der beiden Winkel.

Entscheidend ist nun das folgende duale

Lemma 2. Bei jedem Tetraeder mit inhaltsgleichen Seitenflächen sind gegenüberliegende
Kanten gleich lang. Für solche Tetraeder O ABC gilt also

\A\ \B-C\, \B\ \C-A\, \C\ |A — B\. (6)

Dazu beweisen wir

Lemma 3. In einem Tetraeder mit inhaltsgleichen Seitenflächen sei c die Länge einer
Kante und k der Winkel zwischen den anstossenden Seitenflächen. Dann gilt

3t>
sin«; X c mit X —r-,2/

Dabei bezeichnet v das Volumen des Tetraeders und f den Flächeninhalt der
Seitenflächen.

Da der Faktor X für alle Kanten den gleichen Wert hat, folgt Lemma 2 aus Lemma 1 und
Lemma 3.
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Beweis von Lemma 3. Durch eine geeignete Translation und Nummerierung der Ecken
können wir zum Tetraeder OA\A2A3 übergehen, und zwar so, dass O A3 die betrachtete
Kante ist und det(Ai, A2, A3) > 0. i, j, k sei eine der drei zyklischen Permutationen
1, 2, 3 oder 2, 3, 1 oder 3, 1,2.

Ak

Ai

Dann ist

El ^j(Aj x Ak) (7)

der innere Normalvektor der Seitenfläche O AjAk- Umgekehrt folgt aus (7)

Ei X Ej (Aj * * (Ak X A;).

Mit A A j, B Ak, C Ak x A; ergibt sich (A, C) det(A;-, Ak, A,-) 6u und

(B, C) 0, also nach Formel (2)

3d
Ei x Ej 2Ayt, 2 —j. (8)

Mit <(£1, E2) r) und | A31 c erhält man für den Winkel k an der Kante O A3:

sin?c — sin(s- — S) sin <5 \ Ei x £2! 2c.

Auf Grund der Gleichung (6) von Lemma 2 folgt

Theorem 1. OABC sei ein Tetraeder mit inhaltsgleichen Seitenflächen. Es sei

\A\—a, \B\=b, |C|=c und <(B,C) a, <{C,A) ß, <(A, B) y

an der Ecke O. Dann sind alle vier Seitenflächen Dreiecke mit Seitenlängen a, b, c; die
Seitenflächen sind also nicht nur inhaltsgleich, sondern sogar kongruent. Ausserdem gilt
a + ß + y — it.

a, ß, y sind nämlich zugleich die Winkel im Dreieck ABC.
Wir nennen einen Tetraeder gleichseitig, wenn die vier Seitenflächen kongruent sind. Alle
Tetraeder mit inhaltsgleichen Seitenflächen sind also gleichseitig.

Theorem 2. Der Tetraeder OABC ist dann und nur dann gleichseitig, wenn gegenüberliegende

Kanten gleich lang sind.



Einerseits folgt nämlich aus der Kongruenz gegenüberliegender Kanten die Kongruenz
der Seitenflächen; andererseits enthält Lemma 2 die Aussage, dass die Kongruenz der
Seitenflächen in jedem Fall die Kongruenz gegenüberliegender Kanten nach sich zieht. Dies
kann auch leicht direkt eingesehen werden (drei Fälle: a, b, c drei verschiedene Zahlen
oder a — b fl=- c oder a b c).

Die Frage ist, ob für die Kantenlängen a, b, c beliebige Werte möglich sind. Eine notwendige

Bedingung ist die folgende:

Lemma 4. In jedem gleichseitigen Tetraeder sind die Winkel in den Seitenflächen kleiner
als die Seitenflächen sind also spitzwinklige Dreiecke.

Beweis. OA1A2A3 sei der betrachtete Tetraeder. Die Gleichung (5) ist gleichbedeutend
mit der Aussage, dass Ei + £2 + £3 ein Vektor der Länge 1 ist, also (£1 + £2 + £3, £1 +
E2 + £3) =1=3 + 2(ci2 + ci3 + C23), d.h.

C12 + ci3 + C23 -1 mit - 1 < Cij <1. (9)

Nach (8), (1) und (9) ergibt sich

A2(Ai, A2) (£2 x £3, £3 x £]) C23C13 — C12 C23C13 + C23 + C13 + 1

(c23 + l)(c!3 + l) > 0.

3 Konstruktion der allgemeinen Lösung

a,b,c seien reelle Zahlen mit

0 < a < b < c und a2 + b2 > c2. (10)

Aus (10) folgt a + b > c. Wie lässt sich daraus ein gleichseitiger Tetraeder mit den

Kantenlängen a, b, c konstruieren?

PQR sei ein Dreieck in einer „horizontalen" Ebene mit Seitenlängen \Q — R\ — 2a,
\R— P\ — 2b, \P — Q\ 2c. Für die Winkel a, ß, y an den Ecken P, Q, R gilt wegen (10)

0 < a < ß < y (10')
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R

An Stelle von a,b,c kann man auch c und die Winkel a, ß vorgeben mit

0 < a < ß, a + 2ß < n, a + ß > —. (10")

A, B, C seien die Mittelpunkte der Strecken QR, RP, PQ. Durch die Strecken AB, BC,
CA wird das Dreieck PQR in vier Dreiecke mit Seitenlängen a,b,c zerlegt.

H sei der Höhenschnittpunkt von PQR. Wegen (10") liegt H im Innern des Vierecks
ARBC. Wir bringen den Punkt P durch Drehung um die Achse BC in den Punkt D
vertikal über H. Dann gilt (da B und C bei der Drehung fest bleiben) | D — B \ | P — B \

b und |ZD — C| \P-C\=c.
Analog drehen wir Q um die Achse AC und erhalten den Punkt D' vertikal über H. Dann
ist D' D, denn im rechtwinkligen Dreieck H DC ist \D — H\2 c2 — \H — C\2

|D' - H |2. Somit ist \D - A\ \Q - A\ a.

AB CD ist der gesuchte gleichseitige Tetraeder.

4 Bestimmung der Eckpunkte
Lemma 5. Zu jedem Tetraeder O ABC gibt es eindeutig bestimmte Vektoren U, V, W so,
dass

A V + W,

B U +W, (11)

c u + v.

Beweis. Aus (11) folgt

U =l-{-A + B + C), V=1-(A-B + C), W =1-(A + B-C). (11')

Die Vektoren U, V, W sind also eindeutig bestimmt. Umgekehrt folgt (11) aus (11').
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Gemäss (11) lässt sich jeder Tetraeder T OABC aus drei linear unabhängigen Vektoren

U, V, W erzeugen. Wir nennen das von U, V, W aufgespannte Parallelepiped V das

erzeugende Parallelepiped von T. V wird von sechs Parallelogrammen begrenzt; die Kanten
von T sind Diagonalen dieser Parallelogramme.

A

Theorem 3. Die folgenden Eigenschaften sind äquivalent:

a. Der Tetraeder T OABC ist gleichseitig.

b. Die Vektoren U, V, W sind paarweise orthogonal, d.h. das erzeugende Parallelepiped

V von T ist ein Quader, die Seitenflächen von V sind Rechtecke.

c. Die drei Verbindungsgeraden der Mittelpunkte gegenüberliegender Kanten von T
sind paarweise orthogonal.
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Beweis. Nach Theorem 2 ist T dann und nur dann gleichseitig, wenn die Gleichungen (6)
erfüllt sind, also gilt nach Lemma 5 z.B.

|A|2 \V + W\2 |V|2 + |W|2 + 2{V, W)

\C - B\2 \V - W\ |V|2 + \W\2-2{V, W) {V,W)=0

und analog für U, W und U, V. Also sind (a) und (b) äquivalent.

Nach (11') ist U Differenzvektor der Kantenmitten j/1 und \(B + C); die Verbindungsgerade

dieser Punkte ist also parallel zur Geraden OU. Entsprechendes gilt für V und W.
Also sind (b) und (c) äquivalent.

Nach Theorem 3 können wir U, V, W auf die Form bringen

U (2x, 0, 0), V (0, 2y, 0), W (0,0,2z) mit x,y,z>0.

Damit erhalten wir

Theorem 4. Die Formeln

A (0,2y, 2z), B (2x,0,2z), C (2x,2y,0) (12)

mit positiven x,y,z liefern alle gleichseitigen Tetraeder T O ABC.

T hat den Schwerpunkt S (x, y, z). Die Translation X i-> X — S führt S in O und O in
—S über.

Theorem 4'. Die Formeln
A i (-x, y, z),

A2 (x,-y,z), (i20
A3 X, y, -z),
A4 (-x, -y, -z)

mit positiven x,y,z liefern alle gleichseitigen Tetraeder T' Ai A2A3 A4; dabei gilt

Ai + A2 + A3 + A4 0 und I Ai I r — -Jx2 + y2 + z2 für alle i. (13)

5 Symmetrieeigenschaften gleichseitiger Tetraeder

Die acht Punkte (±x, ±_y, ±z) sind Ecken eines Quaders Q mit Kanten parallel zu den

Koordinatenachsen, Kantenlängen 2x, 2y, 2z und Seitenflächen orthogonal zu den
Koordinatenachsen. Die Tetraederecken (12') sind diejenigen Ecken von Q, bei denen eine

ungerade Anzahl Koordinaten negativ ist; die übrigen Ecken — A, von Q liefern den an O

gespiegelten Tetraeder. Die Mittelpunkte der Tetraederkanten sind die Punkte (±x, 0,0),
(0, ±y, 0), (0,0, ±z) auf den Koordinatenachsen.

9>1,<P2,<P3 seien die Drehungen um die Koordinatenachsen mit Winkel u, d.h. - anders

ausgedrückt - die Spiegelungen an den Koordinatenachsen.
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Theorem 5. T sei der Tetraeder mit Ecken (12')- Dann werden die Ecken von T bei den

Drehungen cpi permutiert; T wird also auf sich abgebildet. Jede Ecke von T lässt sich
in jede andere Ecke, jede Seitenfläche in jede andere Seitenfläche und jede Kante in die
gegenüberliegende Kante überführen.

Beweis, i, j, k sei eine Permutation von 1, 2, 3. Bei A,- ist die / te Koordinate negativ, die
beiden anderen Koordinaten sind positiv. Bei <pk bleibt die kle Koordinate eines Punktes

ungeändert, während die beiden anderen Koordinaten mit —1 multipliziert werden, tpk

bewirkt also die folgende Eckenpermutation:

<Pk ' A, Aj, Ak -o- A4.

Dabei geht Ai Aj Au über in Ai A j A4 und A/A^ in die gegenüberliegende Kante A; A4.

Theorem 6. Ein Tetraeder ist dann und nur dann gleichseitig, wenn der Schwerpunkt mit
dem Zentrum der Umkugel zusammenfällt.

Beweis. Nach Theorem 4', Formel (13) hat jeder gleichseitige Tetraeder die genannte
Eigenschaft.

Umgekehrt sei T ein Tetraeder, bei dem O Schwerpunkt und Zentrum der Umkugel ist,
für den also (13) gilt mit einer Zahl r für alle i. Durch die gleiche Überlegung wie beim
Beweis von Lemma 1 folgt dann zunächst

IA; + Aj\2 2r2 + 2(A;, Aj) \Ak + A/12,

also [Ai, Aj) [Ak, Ai), und damit

I Ai - Aj |2 2r2 - 2{A/, Aj) \ Ak - A,\2.

T ist also gleichseitig.

Die gleichseitigen Tetraeder lassen sich folgendermassen zu Paaren zusammenfassen:

Dualitätssatz. T T(x, y, z) sei der Tetraeder mit Ecken (12') und T* T(~, j, i).
r und r* seien die zugehörigen Umkugelradien, p und p* die Radien der Inkugeln, Ei
beziehungsweise E* die inneren Normalvektoren und A* die Ecken von T*. Dann gilt:

Ei ±;A*, P \-, Ef -Ai, p* ~.r* r* r r

Beweis. Für die Skalarprodukte erhält man

[A*, Aj) -1 für alle i j, [A% Ai) 3.

Daher ist für drei verschiedene Indizes (A*, Aj — Ak) 0. Folglich ist A* orthogonal
zur Seitenfläche AjAkAi. Da (A*, A, — Aj) 4 ist, hat A* die Richtung des inneren

Normalvektors EAus Symmetriegründen hat O von allen Seitenflächen den
Abstand p [—Ei, A j) p.. Wegen (T*)* T gelten die entsprechenden Formeln für
E* und p*.
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Gleichseitige Tetraeder sind in der mathematischen Literatur immer wieder untersucht
worden. Interessierte Leserinnen und Leser seien an dieser Stelle auf das Literaturverzeichnis

verwiesen.

Aufgaben

1. Man zeige, dass bei gleichseitigen Tetraedern bei mindestens zwei Paaren

gegenüberliegender Kanten die Winkel zwischen den Seitenflächen kleiner als 90° sind.

2. Die Seitenflächen eines gleichseitigen Tetraeders seien gleichschenklige Dreiecke
mit Seitenlängen a b < c und Winkeln a ß < y. Für welche Werte von y ist
der Winkel an der längeren Kante grösser, gleich oder kleiner als 90°?

3. Man untersuche, für welche Tetraeder sich die vier Höhen in einem Punkt schneiden.

Dank

Wir bedanken uns bei Daniel Perez für die Erstellung der Figuren und der MfiX-Version
dieser Arbeit.
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