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1 Introduction

Having a permutation ¢ € Sy, ¢ : [n] — [n] where [n] := {1,2,...,n}, it is said that
k € [n] is a fixed point if it is mapped to itself, o (k) = k. Permutations without fixed
points are of particular interest and are usually called derangements. We let D, denote the

number of derangements of the set [n], D, = |S(0)|

SO .—(geS:0(k)£kk=1,...,n).

Derangements are usually introduced in the context of the inclusion-exclusion principle

Die Subfakultit In = n! 377, ('kl!)k i [”"‘“IJ gibt die Anzahl der Derangements,

d.h. der fixpunktfreien Permutationen von n unterscheidbaren Objekten an. Die An-
zahl der Permutationen dieser Objekte mit genau r Fixpunkten wird als Rencontres-
Zahl bezeichnet. Es gibt eine Vielzahl interessanter kombinatorischer Identitéiten, bei
denen die Subfakultit und Rencontres-Zahlen eine Rolle spielen. Am bekanntesten
ist vermutlich das Inklusions-Exklusionsprinzip. In der vorliegenden Arbeit betrachten
die Autoren gewichtete Summen von Subfakultiten. Diese lassen sich zwar auch alge-
braisch beweisen, hier werden jedoch elegante kombmatonsche Abzihlargumente fiir
die Herleitung beniitzt.
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[3, 5, 10], since this principle is used to provide an interpretation of D,, as a subfactorial,

noo ok
Dnznlz( 1). (1)
k=0

k!

The numbers Dy, D1, D3, ..., D,, ... form the recursive sequence (Dy),>0 defined by
the recurrence formula

D, = (n—1)(Dy—1 + Dy—2) (2)

and initial terms Do = 1, D1 = 0 [7]. There is a counting argument to prove this. Let the
number k be mapped by ¢ to the number j, j = 1,...,k — 1,k + 1,...,n. Note that
there are (n — 1) such permutations ¢. Now, we separate the set of permutations ¢ into
two disjoint sets A and B, such that

A={o €S :0(j) £k, ak) = j}
B:={o eSS :6(j)=k,ak) = j}
This means that
Dy = (n— 1)(IA] + |B).

The set A counts D,_ elements while the set B counts D,,_» elements. The fact that the
number k in this reasoning is chosen without loss of generality, completes the proof of (2).

There is another recurrence for the sequence (Dy)n>0,

D, =nD,_1 + (—1)". 3)
Namely, set 6, = D, — nD,_; forevery n > 1. Then §; = —1, and formula (2) implies
that one has for every n > 2
On=Dp—nDy_1=m—1)Dy_3 — Dy = =01,

hence one gets immediately d, = (—1)", which proves (3).

When we iteratively apply recurrence (3) to the derangement number on the r.h.s. of this
relation we get

nDy—1+ (=1)" = n[(r = )Dy—z + (=1)" ] + (=1)"
which finally results with
nin— D@ —=2)---3(=D%+n@m - D@ —2)-4(—1)> + -+ (=1)". 4)

on the r.h.s. of (3), which completes the proof of (1).
A few identities for the sequence (Dy,),>0 are known [4, 6, 8]. In [4] Deutsche and Elizalde

give a nice identity
n
n
D, = ;(k = 1)(k) Dyt (5)

Recently, Bhatnagar presents families of identities for some sequences including the
shifted derangement numbers [1], deriving it using an Euler identity [2]. In what follows
we demonstrate a combinatorial proof for that derangement identity, with weighted sum.
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2 A pair of weighted sums for derangements

We define the rencontres number Dy (r) as the number of permutations o € S, having
exactly r fixed points. Thus, D,(0) = D,. For a given r € N, we define the sequence
Do(r), D1(r), ..., Dy(r), ..., denoted by (D, (r))n>r-

Applying an analogue counting argument that we used when proving relation (2), one can
represent rencontres numbers by the derangement numbers,

Dy(r) = (’:) Dy—y. (6)

On the other hand, relation (6) follows immediately from the fact that fixed points here are
r-combinations over the set of n elements.

A few other notable properties of the rencontres numbers are also known. It follows from
(3) that D, — D, (1) = (—1)" for every n > 1. According to the definition of rencontres
numbers, the sum of the nth row in the array of numbers (D, (r)),>, is equal to n!,

nl =" Dy(k). (7)
k=0

Moreover, identity (6) shows that D, can be interpreted as a weighted sum of rencontres
numbers in the nth row of the array, by means of relation (5),

Dy = Y (k= 1)Dy(k). (8)
k=2

The number D, /(n — 1) is also a weighted sum of previous consecutive derangement
numbers. For example, 24 + 12D, +4D3 + D4 = ng. In general we have

! D
m+ > D= ©)

as follows from Theorem 1.

Theorem 1. Forn € N and the sequence of derangement numbers (Dy),>0 we have

Dy Dn+2

1 — = . 10
T ; k' (m+1)! (10)
Proof. Within a derangement o, the number &k, k = 1,...,n can be mapped to any j,

j=1,...,k—=1,k+1,...,n Welet A, denote the set of derangements with ¢ (k) = j,
where j # k,
Api={o € SO :6k) = j}.

Obviously, cardinality of the set .4, is independent of j, j # k. More precisely,

Dy,

Anl = ;
] = —
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Furthermore, we separate the set .4, into two disjoint sets of derangements, sets B, and C,,,

={0'€v4n:0'(j)=k}
={o €A, :0(j) #k}.

Obviously, the set 3, counts D,_, elements. For derangements in C,, there are now (n —2)
equivalent ways to map j (excluding j and k), as Figure 1 illustrates. Thus, we have

ICnl = (n = 2)| An—1l,
which gives the recurrence relation
|An| = Dp—2 + (n — 2)|Ay-1l. (11)

After repeating usage of (11) we get identity (9) which completes the proof. O

,2,...,k,..., j,...,1

s % &

1.2 cs05 K w0ug Jiomes

Figure 1 In case of derangements in the set C;, there are (n—2)
equivalent ways to map j.

In order to prove Theorem 1 algebraically, we apply recurrence (2) to get

Dyy2 _ (n 4+ 1)(Dny1 4+ Dy) _ Dy n &

n+1! (n+ 1)! T n!
_ n(Dn + Dn—I) & _ D, 4 Dy_1 &
n! n! m=1D!" m-1!
D D 2, Dy
1+T+ +H = 1+;F.

Theorem 2. Forn € N and the sequence of derangement numbers (Dy),>0 we have

DD
1+Z( k) = DD (12)

Proof. By applying recurrence (2) we have

(n+2)(Dpy2 + Dpy1)

an (—1)¥Diy3 _ 2(D2+D1)  3(D3 + Do)

- g 5 = Fles Y0

= k+2 2 3 Frab(=1) n+2
= (D2+ D1) — (D3 + D2) + - -+ + (=1)"(Dp42 + Dnt1)
= (=1)"Dp42

which completes the proof. O
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Once having Theorem 1, substitution of (6) in identity (10) gives the generalization (13).

n

Z Dy (r) _ Dyyr42(r)

= - . (13)
o ) D)
The identity (14) follows by substitution of (6) in (12),
zn: (—=1)*Digri3(r) _ (=1)"Dnyrin (r). (14)

o (k+2)(k+ir‘+3) - (n+r+2)

r

Note that the terms in identity (14) are always integers, which can be seen as a consequence
of recurrence relation (2).
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