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1 Introduction

The nth-order linear scalar-valued difference equation

x(k)=aixtk—1)+ax(k —2)+ -+ +apx(k — n),

1
ne€Zso, a€C, x()eC )

is a staple of introductory dynamical systems courses. A solution of Equation (1) is any
complex-valued sequence x = (x(1), x(2), x(3), . ..) such that x (k) obeys the above rela-
tionship for all k € Z:>,,+1. (The first n terms of the sequence are unrestricted and together
constitute the initial condition of the solution; x is called the continuation of the initial
condition as a solution of Equation (1).)

In the study of Equation (1), it is usual to assume that the highest-indexed coefficient a,, is
nonzero. Since, however, we shall later be explicitly considering instances of Equation (1)
where this is not the case, we do not make the usual assumption that a,, # 0 here.

Given Equation (1) — that is, given a choice of n and the coefficients a; — the fundamental
question we ask is how solutions can behave as k — oo. One particular sub-question is

Bei einer skalaren Differenzengleichung der Ordnung » ist man, dhnlich wie bei ei-
ner Differentialgleichung, interessiert am Verhalten von Losungen. Von besonderem
Interesse sind dabei periodische Losungen. Ublicherweise verwandelt man dazu die
gegebene Gleichung in ein System von Differenzengleichungen 1. Ordnung. Hat die
zugehorige Koeffizientenmatrix eine Einheitswurzel als Eigenwert, so liegt eine peri-
odische Losung vor. Sogar bei kleinem n ist die entsprechende Rechnung aber recht
aufwindig. Der Autor der vorliegenden Arbeit prisentiert nun bei Gleichungen mit
rationalen Koeffizienten einen alternativen Weg fiir das Auffinden periodischer Losun-
gen, der sogar von Hand leicht zu bewiltigen ist.
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whether there are nontrivial r-periodic solutions: solutions x such that x(k + r) = x(k)
for all k € Z- o, where r is a positive integer.

If x is a periodic solution, we say that r € Z.¢ is the minimal period of x if x is not a
j-periodic solution for any j € {1, ...,r — 1}. If x has period r but not minimal period r,
then the minimal period of x is some divisor of r; therefore finding all r-periodic solutions
is the same as finding all j-periodic solutions, where j runs over the divisors of r. Observe
that the zero sequence is always a 1-periodic solution for Equation (1).

We usually recast Equation (1) as a matrix equation

Xk+1)=AX(k), k€ Zsy, 2)
where
a a a3 an-1 ay x(n+k)
1 0 0 0 0 x(n—1+4+k
A= 0 1 0 0 0 and X (k) = . 3
0 0 0 1 0 x(1+k)
‘With the above notation, .
X(k+j)=A'X(k) "

for any j € Z=>¢. The theory of the linear difference equation (2) (with A a generaln x n
matrix) is highly developed; see, for example, [3].

Suppose that the point ¥ € C" is an initial condition for a solution x = (x1, x2,...) of
Equation (1). With the above notation, this means that

Y=(Y1,...,Yn)T =(-xns---’xl)T

(note the reversal in the orders of the indices) and that Aky = (s ivis X 1+k)T. If x is
r-periodic, we call Y an r-periodic point for Equation (2) (and for Equation (1)).

If Y is a nonzero r-periodic point for Equation (2), then
Y=A"Y

(here and for the rest of the paper, the matrix A is as in (3)); it follows that 1 is an eigenvalue
of A" with corresponding eigenvector Y. Thus A has at least one eigenvalue that is an rth
root of unity; moreover, Y is in the span of all of the eigenvectors corresponding to such
eigenvalues. Accordingly, in introductory dynamical systems courses we learn to look for
r-periodic solutions of Equation (1) by checking whether any eigenvalues of A are rth
roots of unity, and finding the corresponding eigenspaces. As readers who have done this
know, carrying out such computations by hand can be laborious, even when n is quite
small. ’

In this paper we present a different approach to finding the periodic solutions of Equation
(1) when the coefficients a; are all rational. If n is small and we are looking for solutions
of a particular period r, the method is gratifyingly easy to carry out by hand: it amounts
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to checking a small list of potential eigenvectors rather than potential eigenvalues, and
the list depends only on n and r. Indeed, our work shows that the structure of the set of
periodic solutions of Equation (1) is — in the rational coefficient case — considerably more
rigid than one might first suppose.

We close this section by giving three propositions that follow from our main theorem
(Theorem 4.4) and illustrate its flavor. We prove these propositions in Section 4.

Proposition 1.1. Suppose that a, b, ¢ are rational. The third-order equation
x(k)y=ax(k—1)+bx(k—2)+cx(k—3)

has nontrivial periodic solutions if and only if at least one of the following holds:
e (1,1, DT € C3 is a 1-periodic point;
e (1,—1, )T e C3 is a 2-periodic point;
e (0,1, —1)T e C is a 3-periodic point;
e (0,1,0)7 € C3 is a 4-periodic point;
e (0,1, DT e C3 is a 6-periodic point.

Proposition 1.2. Suppose that Equation (1) has rational coefficients, and that n is prime
and greater than two. Then Equation (1) has a periodic solution of minimal period n if
and only if

(O, 1, =1, Ly s s (=T eC”

is an n-periodic point for Equation (1).

Proposition 1.3. Suppose that Equation (1) has rational coefficients, and that r is prime.
Then ifr > n + 1, Equation (1) has no solution of minimal period r.

Observe that nothing like these results is true without some restriction on the coefficients.
For example, given any n and r, we can construct examples of Equation (1) with order n
and solutions of minimal period r: we can take { to be a primitive rth root of unity and
take as our equation

x(k) = "x(k —n);

in this case (1,7, ..., "2, "1, ¢", ¢"*1, ) is a solution with minimal period 7.

2 Algebraic preliminaries

Given the field F C C, we shall write F[x] for the ring of polynomials in x with coeffi-
cients in F, equipped with the usual operations of polynomial addition and multiplication.
A polynomial p(x) € F[x] is called monic if the coefficient of its highest-degree term
is 1. A polynomial p(x) € F[x] of positive degree is called irreducible if it cannot be
expressed as the product of two polynomials of positive degree. We say that p(x) divides
f&x)if f(x) = p(x)g(x) for some polynomial g(x). Observe that, if p(x) and f(x) are
both monic and p(x) divides f(x), then either p(x) = f(x) or the degree of p(x) is
strictly smaller than the degree of f(x).
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We shall use the following two elementary facts about the ring F[x] (see, for example, [4],
Chapters 16 and 17).
¢ Division algorithm: given polynomials p(x), a(x) € F[x] with a(x) # 0, there are
unique polynomials b(x), r(x) € F[x] such that
i) p(x) =b(x)a(x) + r(x), and
ii) either degr(x) < dega(x) orr(x) = 0.
e Euclid’s Lemma: Suppose that p(x) € F[x]is irreducible. If p(x) divides a(x)b(x),
then p(x) divides either a(x) or b(x).
Suppose now that V is an N-dimensional vector space over the field F,andlety : V — V
be a fixed linear transformation. Given the polynomial

d
glx) =Y cx' € Flx],
—

we define the linear transformation g(y) : V — V by
d .
gw) = cy'.
i=0

We shall need the following well-known fact.

Lemma 2.1. Let y be as above, and suppose that f(x) and g(x) belong to F[x]. Then if
h(x) = f(x) + g(x) and k(x) = f(x)g(x), we have

h(y) = f(w) +g(y) and k(y)= f(w)og(y).

Proof. The lemma can be regarded as a consequence of the standard result that the “scalar
multiplication”
Flx] x V5 (g(x),v) = g(y)o

makes V into a module over the ring F[x]. To see the lemma more directly, we reason as
follows.

Write L(V') for the set of linear transformations on V. The set £(V) is a ring under the
operations of addition and composition. The map s : F — L(V) given by s(a) = al
(where [ is the identity transformation) is a ring homomorphism. According to the so-
called substitution principle (see, for example, Proposition 10.3.4 in [1]), there is a unique
ring homomorphism 5 : F[x] — L(V) that agrees with s on constant polynomials (i.e.,
sends the polynomial ax? to aI) and that sends x to y. The image of g(x) under ¥ is just
g(y), and the statements in the lemma together amount to the assertion that § is a ring
homomorphism. O

Since the polynomials f(x)g(x) and g(x) f (x) are equal, an important consequence of the
second part of the above lemma is that the linear transformations f () and g () commute
with one another.
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Given a vector space V and subspaces Wi,..., W, of V, recall that we say that V is
the direct sum of the subspaces W; if every v € V has a unique expression of the form
wp + -+ + wy, where w; € W;. Note that, in this case, any two of the subspaces W;
intersect only in the zero vector, and that dimV = > ; dim W;.

Given the linear transformation y : V. — V, we say that the subspace W C V is y-
invariant if y (W) C W.

The minimal polynomial of v is the unique monic polynomial g (x) of lowest degree such
that g(w)v = 0 for all v € V. The existence of the minimal polynomial is standard; see,
for example, Chapter 7 of [6].

The following is the main theorem underpinning our results.

Proposition 2.2. Let N € Z-. Let V be an N-dimensional vector space over the field F,
and let w : V — V be a linear transformation. Let q(x) be the minimal polynomial of .
Suppose that q(x) is of degree N and factors in F[x] as

q(x) = p1(x)- - pm(x),
where the pi(x) are all monic and irredﬁcible, and are all distinct. Then there are m
subspaces Wy, ..., Wy, such that the following hold.
(i) Each subspace W; is nontrivial and w-invariant, and W; = {v € V : p;(y)v = 0}.
(ii) V is the direct sum of the subspaces W1, ..., Wy,.

(iii) Given any nonzero v € W;, the set
{ U, l/fl), L. l/jdegpl(x)_lv }

is a basis for W;.

(iv) Given any nonzerov € W; and B(x) € Fl[x], if B(w)v = 0 then p;(x) divides B(x).

(v) Any w-invariant subspace of 'V is the direct sum of some subset of the W;.

(vi) Given any nonempty subset S € {1,...,m} and P(x) = [[;cs Pi(x), any y-
invariant subspace of the kernel of P(y) is the direct sum of some subset of the
Wi, where i € S.

Observe that point (v) is actually a special case of (vi) with P (x) equal to g (x), the minimal
polynomial of y; but we will prove the two cases separately below.

Remark 2.3. It is part (v) of Proposition 2.2 that is especially important for us, and it
is not true without our restrictions on the linear transformation . Consider the identity
transformation 7 on FV, where N > 1: the minimal polynomial of I is g(x) = x — 1,
and so degq(x) < N. While FY is certainly expressible as the direct sum of a collection
of lower-dimensional identity-invariant subspaces (for example, the subspaces spanned by
each standard basis vector) it is not the case that every identity-invariant subspace —i.e.,
every subspace — is the direct sum of a subset of those subspaces.

Proof of Proposition 2.2. Points (i) and (ii) are part of a standard decomposition theorem
for modules over principal ideal domains (see, for example, Theorem 7.8 in [6]).
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For (iii), choose a nonzero v € W;, and consider the vectors

0 =0, ol = wo, v? = t//zv,

Since p;(w)v = 0, the set {v°,01,02,...,vde Pi(x) } is linearly dependent. Let s <

deg p;(x) be the largest positive integer such that

(0% 0!, 0%,...,0° 1}
is linearly independent. There are unique scalars ap, . .., as—1 € F such that
0’ —as_10° — .. —ap? =0.
Let us write
a(x) =x" —a;_1x* "' — - —ap;

we have a(y)v = 0. By the division algorithm we can write
pi(x) = b(x)a(x) + r(x), where degr(x) < dega(x) =sorr(x)=0.

Applying Lemma 2.1, we have

0= pi(y)o =b(y)a(y)v) +r(y)o =r(y)v. -
If r(x) # O, then r(yw)o = 0 is a nontrivial linear combination of the vectors {v?,
ol, v2, ..., v98r™Y}; since degr(x) < s and {000, 0%, ...,05 1 }is linearly inde-

pendent, we obtain a contradiction. We conclude that r(x) = 0, and that a(x) divides
pi(x). By assumption p;(x) is irreducible; therefore a(x) = p;(x) and s = deg p;(x).
It follows that the vectors described in part (iii) form a linearly independent set, and that
dim W; > deg pi(x). Since degg(x) = >, deg pi(x) = N = dim V, we must actually
have dim W; = deg p;(x) for all i, and so the set of vectors described in part (iii) is a basis
for W;. This proves part (iii).

Suppose that o € W; is nonzero and that B(y)v = 0. Again by the division algorithm we
can write

B(x) =b(x)pi(x) +r(x), where degr(x) <degp;(x)orr(x)=0.

Similarly as in the last part we use Lemma 2.1 to conclude that r(y)v = 0. If r(x) #
0, this implies that the set {v°, 0!, 0%, ..., vdc8" ™)} is not linearly independent. Since
degr(x) < deg p;i(x), this implies that the set {v°, 0!, ..., 098Pi™)=1} i5 not linearly
independent either, contradicting (iii); we must have that r(x) = 0, and that p;(x) divides
B(x). This completes the proof of part (iv).

We now prove part (v). If m = 1, then part (iii) implies that the only -invariant subspaces
are the trivial subspace and W = V, since (09,01, ..., 0d8 P"(x)—l} is a basis for W = V
for any nonzero v € V. Suppose now that m > 1. Choose and fix a nonzero v; € W; for
each i, and write vij = t//jl),', Jj €10,...,deg pi(x) — 1}. Our work so far shows that the
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J

vectors v; constitute a basis for V. Suppose that W is a y-invariant subspace. Given any

v € W, we can express v uniquely as a linear combination of the basis vectors v{ -

b= a(l)v(l) + .- -i—aijvij 4. +aiegpm(x)_lvgfgp”1(x)_l, aij eF.
: )
Suppose that, in the above sum, a; # 0. Define

Ri(x) = p1(x)p2(x) - - - pic1(®) pi+1(x) - - - pm(x).

We now make the following observations.
e Since W is y-invariant, R; (y)v € W.
e Lemma 2.1 and part (i) show that R; (y)w = 0 for any w € W, where £ # i.
e The invariance of W; implies that R; (y)w € W; for any w € W;.

e By repeated application of Euclid’s Lemma we see that p; (x) does not divide R;(x);
(the contrapositive of) part (iv) now implies that R;(y)w 7 0 for any nonzero
w e W;.
By the above observations and the linearity of R;(w), we conclude that R;(yw)v is an
element of W N W; and is nonzero. Again since W is y-invariant, it follows from part (iii)
that W contains a basis for W;, and hence contains all of W;.

We have shown that W either contains W; or, in the notation above, that aij = 0 for all
v € Wandall 1 < j <deg p;(x)— 1; otherwise put, W either contains W; or is contained
in the direct sum of the subspaces W, ¢ # i. We conclude that W is the direct sum of the
subspaces W; it contains.

Finally, we prove part (vi). Suppose that W is a y-invariant subspace of ker P(y). We
know from part (v) that W is a direct sum of some subset of the W;. Suppose that u; €
W N W; \ {0}. Then by part (iv) we have that p;(x)|P(x), and repeated application of
Euclid’s lemma now yields that i € S. This completes the proof. g

We shall also need the following linear algebra lemma.

Lemma 2.4. Suppose that F € C is a field, and that M is an N X N matrix with entries
in F. Let A € F be an eigenvalue of M. Write E for the corresponding eigenspace in
CN, and write E for the corresponding eigenspace in FN. Then E and E have the same
dimension, and any basis for E is also a basis for E.

Proof. If B is any n x m matrix with entries in F, the rank and nullity of B are the same
whether we regard B as an element of Mat,, x,, (F) or as an element of Mat,, »,, (C) (see, for
example, Theorem 6.4.35 and the subsequent discussion in [5], or Problem 7.2.1 in [2]).

We write I for the identity matrix. The dimension of E is the nullity of M — AI where
M — A1 is viewed as an element of Maty«x (C); the dimension of E is the nullity of
M — I where M — A1 is viewed as an element of Matyxy (F). By the observation of
the last paragraph, E and E have the same dimension; call it D. It is therefore enough to
prove that a basis of E is linearly independent when viewed as a subset of CV; but again,
the matrix whose columns are the members of a basis of E has the same rank whether
regarded as an element of Maty « p (F) or as an element of Maty x p (C). O
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3 The space Per,(A)
We define the shift operator S, : C* — C" by

Sn(x1,x2a 5% ,xn)T = (xn; X1yenns xl’i—l)T'
We also write  for the identity transformation.

Lemma 3.1. Let F C C be a field. The minimal polynomial of S, in F" is x" — 1.

Proof. Itis clear that (S — I)v = 0 for all v € F". On the other hand, if

n—1
g) =D bix’
i=0

is any nonzero polynomial in F[x] of degree less than n and e, is the nth standard basis
vector in F", we see that

g(Su)en = (01,2, ..., bu—1,b0)" #0,
and so g(x) is not the minimal polynomial of S,,. O

We henceforth write Q, (x) = x" — 1.

Given d € Z-o, we write ®4(x) for the so-called dth cyclotomic polynomigl. We write
¢ : Z~o — Z~g for the Euler totient function, defined as follows: ¢(1) = 1; and ford > 1,
¢ (d) is the number of positive integers that are both less than d and relatively prime to d.
The following proposition is standard (see, for example, [4], Chapters 17 and 33):

Proposition 3.2. For eachn € Z-,

0n(x) = [ [ Patx).

dln

Each cyclotomic polynomial ®4(x) is monic, has integer coefficients, is of degree ¢(d),
and is irreducible in Q[x]. The cyclotomic polynomials ®4(x) are all distinct. O

Given d € Z-, let us choose and fix a nonzero vector u[d] € Q¢ such that
Q4 (Sa)uld] = 0.

For example, since ®3(x) = x24+x+1we require u[3] to be a three-dimensional rational
vector such that
®3(S3)ul3] = (87 + S3 + Du[31=0;

we may take u[3] = (0, 1, —1)7. Similarly, since ®4(x) = x% + 1 we require u[4] to be a
four-dimensional rational vector such that

D4(S4)ul4] = (8% + Dul4] = 0;
we may take u[4] = (0, 1,0, —1)7.
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Given u[d], let us define o [d] to be the set
old] = (uld], Squld], ..., SV uld]} € Q%

Proposition 2.2, applied to the vector space Q¢ and the linear transformation S; : Q¢ —
Q4, shows that o [d] is a linearly independent subset of Q¢ (since ®4(x) is an irreducible
factor in Q[x] of the minimal polynomial Q4(x) of Sy).

Given d € Z-o and n € Z-q, we define the linear transformation r(;’ : C4 = C" as
follows. If d > n, r[’i’v is the truncation of v to its first n entries:

71, ...,04)" = (1,...,00)".

Ifd =n, tjo =v.1fn > d, then tjv is the vector obtained by extending the entries of v
d-periodically:

rc’}(vl,...,vd)r = (1,...,0d,...,00)7, vj =v;if|i — j| =d.
We shall need the following simple observation.
N

Lemma 3.3. Given N,n,d € Z.gwith N > n, 15 0ot; = (7 O

Lemma 3.4. Let w € Q%, where d|n. For any polynomial f(x) € Q[x] we have
71 (f(Sa)w) = f(Sn)(rgw).

Proof. By linearity, it is enough to prove the lemma for f(x) = x?, p € Z>o. The p =0
case is obvious, since in this case f(S,) = I. For the p = 1 case, we compute (recalling
that d divides n)

T T
11 Sqw = 1) (wa, w1, ..., wWg-1) = (W, W1, ..., WI—1, W4, ..., Wd—1)
(this is n/d concatenated copies of Sgw), and
S n _— S T [ T
nfdw - n(wh LN wda wl, 5wd) - (U)d, wl,- ..,H)d_], U)d, & u ey wd—l)

(this is also n/d concatenated copies of Syw). Assume the formula holds for p < P. Then
applying the formula for p = P and p = 1 in turn we get

P+1 P P P P+l_n, .
8T i = 185 Sath = 8 1 8ai = 85 Snti o= 85 )i

the desired result follows by induction. O

We now return to Equation (2). Recall that we are writing A € Mat,, ., (C) for the matrix
associated with Equation (2) — its form is given in (3).

Let us write Per(A) C C” for the set of periodic points of Equation (2), and Per,(A) < C"
for the set of periodic points of Equation (2) with (not necessarily minimal!) period r. The
following lemma is clear.
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Lemma 3.5. The sets Per(A) and Per, (A) are linear subspaces of C" and are A-invariant:
Av € Per(A) if v € Per(A), and Av € Per,(A) if v € Per,(A). O

We are interested in describing a basis for the subspace Per,(A) € C" in the case that A
has rational entries. The subspace Per,(A) is precisely the eigenspace in C" of A" corre-
sponding to the eigenvalue 1.

Now consider Equation (2) in the setting of the vector space Q" (rather than C"). Write
Per@(A) for the subspace of r-periodic points of Equation (2), viewed as an equation in
Q". Per(r@ (A) is precisely the eigenspace in Q" of A” corresponding to the eigenvalue 1. By
Lemma 2.4, Per;g (A) and Per, (A) have the same dimension, and any basis of Per9 (A) <
Q" serves as a basis of Per,(A) € C". We will now use the work of Section 2 to describe
a basis of Per9 (A) in the case that r|n. This description undergirds our main theorems.

The crucial observation is the following. If v € Perg(A), then the entries of v are r-
periodic in the sense that v = v; if [k — j| = r. If we moreover have r|n, then the first
entry of Av will be equal to the nth entry of » —and so Av = S, 0. Since Av € Perg(A) by

Lemma 3.5, we conclude that Per?(A) is Sy-invariant. Furthermore, applying the above
observation r times yields A"v = S v = v. We have established the following lemma.

Lemma 3.6. Given r|n, the subspace Per9 (A) is Sy-invariant. Furthermore, PerQ(A) is
contained in the kernel of S}, — I = Q,(Sp). O

We now apply Proposition 2.2 to describe the S,-invariant subspaces of Q" (of which
Per;Q (A) is one when r|n, as we have just observed). Let us assume that n has m distinct
positive divisors 1 = d; < .-+ < d = n. Proposition 3.2 and Proposition 2.2 now
yield the following. The space Q" is equal to the direct sum of m nontrivial S, -invariant
subspaces

V].: v ey Vm’
where V; has dimension ¢(d;). Any vector v in V; satisfies @4, (S,)v = 0. Conversely, if
v € Q" is nonzero and satisfies ®y, (S,)v = 0, then {v, Spo, ..., ,(f(di)_lv} is a basis for
Vi. Any S, -invariant subspace of Q" is the direct sum of some subset of the subspaces V;.
Finally, given r|n, any S,-invariant subspace that also lies in the kernel of

Sp—1=0:(S)=[]®;(5)
Jjlr
is a direct sum of some subset of the subspaces V; for which j|r.

What this means is that, if we can find a nonzero vector v; € V; foreveryi € {1, ..., m},

then any S, -invariant subspace (in particular, any of the subspaces Per@(A), where r|n) is
determined, completely, by which of the vectors v; lie in that subspace. More particularly,

since Per;(.2 (A) is in the kernel of

Sy —1=0:8) =[] @S,

jlr

Per;(‘P (A) is determined, completely, by which of the vectors v with j|r lie in Perp(A).
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Lemma 3.7. In the notation established above, we can take as a basis for V; the set
t5.0ldi],
where o [d;] is as described above.

Proof. For notational simplicity, we shall write d; as d and V; as V.
By Lemma 3.4 we have that

Dy (Sp)rjuld] = 15 Pa(Sa)uld] = 0;
thus rc’;u[d ] € V. Thus by part (iii) of Proposition 2.2 the vectors

Sithuld] = ¢ Shuld], j€{0,...,pd) —1)

form a basis for V — but this is just the set 7o [d]. |

Lemma 3.7 and part (iv) of Proposition 2.2 show that, given any r|n, Per;(.;D (A) (and hence
Per; (A)) has a basis of the form

U{ tg.0ldi] @ dilr and tjuld;] € Perl(A) ).

Given Equation (1), then, we can determine a basis for Per, (A) simply by checking which
vectors TcI;; uld;] lie in Per, (A), as d; runs across the divisors of . Otherwise put, if we
write
D ={d; € Z>o : d;|r and 7u[d;] € Per,(A)}
then the disjoint union
U wioldil
dieD
is a basis for Per, (A). Observe that Per, (A) has dimension > 4D ¢ (di). (Note carefully
that r itself does not necessarily belong to D.)
Suppose that, in the notation above, 7 is the least common multiple of the divisors d; € D.
Then 7|r, and for each v € Per@A we have that Q7 (S,)v = 0 (since @y, (x)| Q7 (x) for all
d; € D). This means that each v € Per;QA actually lies in Per(F@A and hence in PerzA. If

r < r, then, we conclude that no member of Per, A has minimal period r. Contrapositively,
if there is a point in Per, A with minimal period r, we must have thatr = lem{d; : d; € D}.

Summing up the discussion of this section we obtain the following proposition.
Proposition 3.8. Suppose that Equation (1) has rational coefficients, and that r|n. Then
the following hold. If Equation (1) has a nontrivial solution of period r, then Per,.(A) has
a basis of the form

U =ioldi,

d;eD
where
D ={d; € Z~qo : di|r and r(}’iu[d,'] € Per,(A)}.
Per, (A) has dimension 3, .p $(d;).
If Equation (1) has a nontrivial solution of minimal period r, then moreover we have that
r is the least common multiple of the members of D. t
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4 The main theorem

Given N > n, we define the N-dimensional extension (1)y of Equation (1) to be the
N-dimensional equation obtained simply by adding an appropriate number of zero coeffi-
cients:

x(k)=aix(k—1)+ax(k—2)+ --+anx(k — N),

Qn+l = A2 = -+ =ay = 0.

We shall write Ay for the coefficient matrix corresponding to (1)y.

Following the notation used above, we write Per,(Ay) for the subspace of r-periodic
points of Equation (1). ,

Since ap4+1 = -+ = ay = 0, the (n 4+ 1)st through Nth entries of an initial condition for
Equation (1), are irrelevant in the sense that they have no effect on the initial condition’s
continuation; loosely speaking, the initial condition » € CV continues as a solution of
Equation (1)y in the same way as does 7yv € C" as a solution of Equation (1). More
specifically we have the following lemma, whose proof we omit.

Lemma 4.1. Given any N > n, a sequence is a periodic solution of Equation (1) of
(minimal) period r if and only if it is a periodic solution of Equation (1)y of (minimal)
period r.

If the continuation of v € CV as a solution of Equation (1)y has (minimal) period r, then
the continuation of tyv € C" as a solution of Equation (1) has (minimal) period r also.

If the continuation of w € C" as a solution of Equation (1) has (minimal) period r, then
there is a unique vectorv € CV such that TV = w and the continuation of v as a solution
of Equation (1)y has (minimal) period r also. t

We now consider Equations (1) and (1) together, where N > n. We shall make frequent
use of Lemma 4.1, and of the discussion preceding it.

Lemma 4.2. Suppose that N > n and that B € CV is a basis of Per,(Ay). Then the set
Ty B is a basis of Per, (A), and Per, (An) and Per, (A) have the same dimension.

Proof. That 7y, B lies in Per,(A) is clear from Lemma 4.1. We now show that 7, B actually
spans Per, (A) and is a linearly independent set.

Suppose that w € Per,(A). Then by Lemma 4.1 there is a unique vector v € Per,(Ay)
such that v = w. Since v is a linear combination of members of B and ty; is merely
a truncation operator, w is a linear combination of members of ri’\’,B. Thus r;\’,B spans
Per, (A), and dim Per, (A) < dimPer, (Ay).

Write B = {v1, ..., vx}. If we imagine that >_; a; tyvi = 0 where the g; are not all zero,
then v = > ; a;v; € Per,.(Ay) is equal to zero in its first n entries. Since the continuation
of v as a solution of Equation (1) is the same as the continuation of 70 as a solution of
Equation (1), the continuation of v as a solution of Equation (1) is eventually zero. Since
v € Per,(Ay), though, we must have that v is identically zero — contradicting the linear
independence of B. We conclude that 7y B is a linearly independent set in C”, and that
dimPer,(Ay) < dimPer,(A). O
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The above lemma yields in particular that

Lemma 4.3. The dimension of Per,(Ay) is no greater than n. a

We are now ready to state our main theorem.

Theorem 4.4. Suppose that Equation (1) has rational coefficients. If Equation (1) has a
nontrivial solution of period r, then Per,(A) has a basis of the form

U ioldil,
dieD

where
D={d; € Z-o : dilr and ‘L’Zu[di] € Per,(A)}.
Per,(A) has dimension Y, .p ¢ (d;).

If Equation (1) has a nontrivial solution of minimal period r, then moreover we have that
r is the least common multiple of the members of D.

Proof. Choose any N > n with r|N, and consider the extended equation (1). Then by
Lemma 4.1, Equation (1) has a nontrivial solution of period r|N as well; and if Equation
(1) has a nontrivial solution of minimal period r, then Equation (1) does as well. Since
11’\’, té" V= r;v foranyo € C? (Lemma 3.3), the description of the basis of Per, (A) and its

dimension follows from Proposition 3.8 (applied to Equation (1)) and Lemma 4.2. [

Now suppose that Equation (1) has rational coefficients and a solution of minimal period
r. The dimension of Pery(A) is no greater than n but is also equal to 3", ., ¢(d;), where
D is some set of positive integers whose least common multiple is . Thus r cannot be
the least common multiple of any set of divisors d; for which Zd,-eD ¢(d;) > n. Since
¢(d) — oo asd — oo, we see that, given n, there are only finitely many possibilities for
r. In particular, given Equation (1), the following choice of N is well defined:

N =lem(n, { g : Equation (1) has a solution of minimal period q }).

Note that, with this choice of N, Per(A) = Pery (A). Applying Theorem 4.4 with N in the
place of r, then, and using the fact that o [d] has ¢ (d) elements, we obtain as a corollary
the following description of the basis of the whole space Per(A) of periodic solutions.

Corollary 4.5. Suppose that Equation (1) has rational coefficients. If Per(A) is nontrivial
it has as basis
|t zjoldl : $(d) < nand tjuld] € Per(A) }. O

Again since ¢(d) — oo asd — 00, this corollary gives us a finite list of potential periodic
points of Equation (1) to check to describe all periodic points of Equation (1) (in the case
that the coefficients are all rational).

Remark 4.6. Note that, in the above corollary, if we write D for the set of all d such that
tjuld] € Per(A), we must actually have > ;.p #(d) < n. In the other direction, given
n and a collection of D of distinct natural numbers such that ZdeD ¢(d) < n, it can
be shown that there is some instance of Equation (1) with rational coefficients such that
Per(A) has precisely | J,p 770 [d] as a basis.
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We conclude by proving the propositions stated in Section 1.

Proof of Proposition 1.1. The only numbers d with ¢ (d) < 3 are 1, 2, 3, 4, and 6. Thus if
Equation (1) has rational coefficients and n = 3 we need only check whether rgu[d] are
periodic points for d = 1, 2, 3,4, 6. The rest of the proof follows from the observations
that the following vectors are valid choices of u[d]:

ulll= (D75 wl21= A, -DT; uB31=0,1,-1)7; u[4]=(0,1,0,-1)7;
ul6] = (0,1,1,0, -1, =1)7. O

Proof of Proposition 1.2. If n is prime and Equation (1) has rational coefficients, the only
way for Equation (1) to have a solution of minimal period n is for 7,u[n] = u[n] to be a
periodic point of Equation (1). If n is prime and greater than 2, we have

O,(x)=x""T4Hx"24...x+1.

Write

v=1(0,1,-1,1,-1,..., (=D"MT.
Any entry of ®,(S,)v will consist of a zero added to (n — 1)/2 “I”sand (n — 1) /2 “—1"’s.
Thus we see that v is a valid choice for u[n], and the proposition follows. O

Proof of Proposition 1.3. If r is prime the only way for Equation (1) to have a solution of
minimal period r is for z/'u[r] to be a periodic point of Equation (1). In this case we must
have ¢(r) < n.Butifr > n+ 1, then¢p(r) =r — 1 > n. O

Remark 4.7. The feature of the rational field (Q that we rely on in this paper is that the
cyclotomic polynomials are irreducible over Q. Results analogous to those presented here

should hold for equations with coefficients in other subfields of C, at least for particular
values of n, depending on how x" — 1 factors over that subfield.
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