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1 Introduction
The nth-order linear scalar-valued difference equation

x(k) a\x(k — 1) + a2x(k — 2) + • • • + anx(k — n),
11 £ Z>0, Q-i (E C, x(*) £ C

is a staple of introductory dynamical systems courses. A solution of Equation (1) is any
complex-valued sequence x (x(l), x(2), x(3),...) such that x(k) obeys the above
relationship for all k e Z>n+i. (The first n terms of the sequence are unrestricted and together
constitute the initial condition of the solution; x is called the continuation of the initial
condition as a solution of Equation (1).)

In the study of Equation (1), it is usual to assume that the highest-indexed coefficient an is

nonzero. Since, however, we shall later be explicitly considering instances of Equation (1)
where this is not the case, we do not make the usual assumption that an ^ 0 here.

Given Equation (1) - that is, given a choice of n and the coefficients a, - the fundamental
question we ask is how solutions can behave as k —> oo. One particular sub-question is

Bei einer skalaren Differenzengleichung der Ordnung n ist man, ähnlich wie bei
einer Differentialgleichung, interessiert am Verhalten von Lösungen. Von besonderem
Interesse sind dabei periodische Lösungen. Üblicherweise verwandelt man dazu die
gegebene Gleichung in ein System von Differenzengleichungen 1. Ordnung. Hat die
zugehörige Koeffizientenmatrix eine Einheitswurzel als Eigenwert, so liegt eine
periodische Lösung vor. Sogar bei kleinem n ist die entsprechende Rechnung aber recht
aufwändig. Der Autor der vorliegenden Arbeit präsentiert nun bei Gleichungen mit
rationalen Koeffizienten einen alternativen Weg für das Auffinden periodischer Lösungen,

der sogar von Hand leicht zu bewältigen ist.
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whether there are nontrivial r-periodic solutions: solutions x such that x(k + r) x(k)
for all k e Z>o, where r is a positive integer.

If x is a periodic solution, we say that r e Z>o is the minimal period of x if x is not a

./-periodic solution for any j e {1,..., r — 1}. If x has period r but not minimal period r,
then the minimal period ofx is some divisor of r ; therefore finding all r-periodic solutions
is the same as finding all /-periodic solutions, where j runs over the divisors of r. Observe
that the zero sequence is always a 1-periodic solution for Equation (1).

We usually recast Equation (1) as a matrix equation

X(k + 1) AX(k), k e Z>0, (2)

where

/ a\ ai 03 ' an—l Cln \ j x(n + k)
1 0 0 • 0 0 x{n — 1 + k)

A 0 1 0 • 0 0 and X (k)

\ 0 0 0 1 0 y X{1 +k)

With the above notation,
X(k + j) A>X{k)

for any j e Z>q. The theory of the linear difference equation (2) (with A a general n x n

matrix) is highly developed; see, for example, [3].

Suppose that the point Y e C" is an initial condition for a solution x (x\,X2,...) of
Equation (1). With the above notation, this means that

Y (Yi,...,Ynf (xn,...,xi)T

(note the reversal in the orders of the indices) and that AkY (xn+k,.. x\+k)T. If x is

r-periodic, we call Y an r-periodic point for Equation (2) (and for Equation (1)).

If Y is a nonzero r-periodic point for Equation (2), then

Y ArY

(here and for the rest of the paper, the matrix A is as in (3)); it follows that 1 is an eigenvalue
of Ar with corresponding eigenvector Y. Thus A has at least one eigenvalue that is an rth
root of unity; moreover, Y is in the span of all of the eigenvectors corresponding to such

eigenvalues. Accordingly, in introductory dynamical systems courses we learn to look for
r-periodic solutions of Equation (1) by checking whether any eigenvalues of A are rth
roots of unity, and finding the corresponding eigenspaces. As readers who have done this
know, carrying out such computations by hand can be laborious, even when n is quite
small.

In this paper we present a different approach to finding the periodic solutions of Equation
(1) when the coefficients a,- are all rational. If n is small and we are looking for solutions
of a particular period r, the method is gratifyingly easy to carry out by hand: it amounts
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to checking a small list of potential eigenvectors rather than potential eigenvalues, and
the list depends only on n and r. Indeed, our work shows that the structure of the set of
periodic solutions of Equation (1) is - in the rational coefficient case - considerably more
rigid than one might first suppose.

We close this section by giving three propositions that follow from our main theorem
(Theorem 4.4) and illustrate its flavor. We prove these propositions in Section 4.

Proposition 1.1. Suppose that a, b, c are rational. The third-order equation

x(k) ax(h — 1) + bx(k — 2) + cx{k — 3)

has nontrivial periodic solutions ifand only ifat least one of the following holds:

• (1,1, l)r e C3 is a 1-periodicpoint;

• (1, —1, 1 )1 e C3 is a2-periodic point;

• (0,1, — l)r C3 is a 3-periodic point;

• (0,1,0)T e C3 is a 4-periodic point;

• (0, 1, l)r e C3 is a 6-periodicpoint.

Proposition 1.2. Suppose that Equation (1) has rational coefficients, and that n is prime
and greater than two. Then Equation (1) has a periodic solution of minimal period n if
and only if

(0,1,-1,1 (-l)")7eC"
is an n-periodic pointfor Equation (1).

Proposition 1.3. Suppose that Equation (1) has rational coefficients, and that r is prime.
Then ifr > n + 1, Equation (1) has no solution ofminimal period r.

Observe that nothing like these results is true without some restriction on the coefficients.
For example, given any n and r, we can construct examples of Equation (1) with order n
and solutions of minimal period r: we can take Ç to be a primitive rth root of unity and

take as our equation
x(k) Ç'lx(k — n);

in this case (1, Ç,..., Çn~2, Çn~l,Çn, Çn+l,...) is a solution with minimal period r.

2 Algebraic preliminaries
Given the field F ç C, we shall write F [x ] for the ring of polynomials in x with coefficients

in F, equipped with the usual operations of polynomial addition and multiplication.
A polynomial p{x) e F[x] is called monic if the coefficient of its highest-degree term
is 1. A polynomial p(x) e F[x] of positive degree is called irreducible if it cannot be

expressed as the product of two polynomials of positive degree. We say that p(x) divides

f{x) if f(x) — p(x)g(x) for some polynomial g(x). Observe that, if p(x) and f(x) are
both monic and p(x) divides fix), then either p(x) f(x) or the degree of p(x) is

strictly smaller than the degree of fix).
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We shall use the following two elementary facts about the ring F[x] (see, for example, [4],
Chapters 16 and 17).

• Division algorithm: given polynomials p{x), a(x) e F\x\ with a(x) ^ 0, there are

unique polynomials b(x), r(x) e F[x~\ such that

i) p(x) b(x)a(x) + r{x), and

ii) either degr(x) < dega(x) orr(x) 0.

• Euclid's Lemma: Suppose that p{x) e F[x\ is irreducible. If p(x) divides a(x)b(x),
then p(x) divides either a{x) or b(x).

Suppose now that V is an A-dimensional vector space over the field F, and let y/ : V -»• V
be a fixed linear transformation. Given the polynomial

d

s(x) ]c'x'6 F^'
i=0

we define the linear transformation g(yy) : V —> V by

d

SW)
i=0

We shall need the following well-known fact.

Lemma 2.1. Let y/ be as above, and suppose that f (x) and g(x) belong to F\x\. Then if
h(x) f{x) + g(x) andk(x) — /(x)g(x), we have

Kv) f(v) +g(v) and k{yj) f(y/) o g (y/).

Proof. The lemma can be regarded as a consequence of the standard result that the "scalar

multiplication"
F[x] x V 3 (g(x), v) g(y/)ü

makes V into a module over the ring F[x~\. To see the lemma more directly, we reason as

follows.

Write C{V) for the set of linear transformations on V. The set C(V) is a ring under the

operations of addition and composition. The map s : F —>• C{V) given by s{a) — al
(where I is the identity transformation) is a ring homomorphism. According to the so-
called substitution principle (see, for example, Proposition 10.3.4 in [1]), there is a unique
ring homomorphism s : F[v] -> £(V) that agrees with s on constant polynomials (i.e.,
sends the polynomial ax° to al) and that sends x to i//. The image of g(x) under s is just
giy/), and the statements in the lemma together amount to the assertion that s is a ring
homomorphism.

Since the polynomials f(x)g(x) and g(x) f(x) are equal, an important consequence of the
second part of the above lemma is that the linear transformations /(///) and giy/) commute
with one another.
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Given a vector space V and subspaces W\,..., Wm of V, recall that we say that V is

the direct sum of the subspaces Wi if every u e V has a unique expression of the form
u>] + + wm, where W{ e Wj Note that, in this case, any two of the subspaces Wi
intersect only in the zero vector, and that dim V dim Wi.

Given the linear transformation yj : V -» V, we say that the subspace W ç V is ip-
invariant if y/(W) ç W.

The minimal polynomial of y/ is the unique monic polynomial q(x) of lowest degree such

that q(y>)v 0 for all u e V. The existence of the minimal polynomial is standard; see,

for example, Chapter 7 of [6].

The following is the main theorem underpinning our results.

Proposition 2.2. Let N £ Z>o. Let V be an N-dimensional vector space over the field F,
and let y/ : V —> V be a linear transformation. Let q(x) be the minimal polynomial of i//.

Suppose that q(x) is ofdegree N andfactors in F[x] as

q(x) Pi(x) pm(x),

where the pi(x) are all monic and irreducible, and are all distinct. Then there are m

subspaces Wi,..., Wm such that the following hold.

(i) Each subspace Wi is nontrivial and y>-invariant, and Wi — {v e V : Pi(y/)v 0}.

(ii) V is the direct sum of the subspaces Wi,..., W,„.

(iii) Given any nonzero v £ Wi, the set

{u, y/v, }

is a basis for Wi.

(iv) Given any nonzero u £ Wi and B(x) e F\x\, ifB(y/)v 0 then Pi(x) divides B{x).

(v) Any yt-invariant subspace ofV is the direct sum of some subset of the Wi.

(vi) Given any nonempty subset S Ç {l,...,m] and P{x) [~|;g5 pi (x), any yj-
invariant subspace of the kernel of P(y/) is the direct sum of some subset of the

Wi, where i £ S.

Observe that point (v) is actually a special case of (vi) with P (x) equal to q (x), the minimal
polynomial of yj\ but we will prove the two cases separately below.

Remark 2.3. It is part (v) of Proposition 2.2 that is especially important for us, and it
is not true without our restrictions on the linear transformation yj. Consider the identity
transformation I on FN, where N > 1: the minimal polynomial of / is q(x) — x — 1,

and so degq(x) < N. While FN is certainly expressible as the direct sum of a collection
of lower-dimensional identity-invariant subspaces (for example, the subspaces spanned by
each standard basis vector) it is not the case that every identity-invariant subspace - i.e.,

every subspace - is the direct sum of a subset of those subspaces.

ProofofProposition 2.2. Points (i) and (ii) are part of a standard decomposition theorem
for modules over principal ideal domains (see, for example, Theorem 7.8 in [6]).
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For (iii), choose a nonzero u e Wj, and consider the vectors

v° v, v1 y/v, v2 — y2v,

Since pt(y)v 0, the set {o°,vl ,v2,... ,DdegPi^ } is linearly dependent. Let s <
deg pi (x) be the largest positive integer such that

{v0,v\v2,...,vs-1 }

is linearly independent. There are unique scalars ao,..., as~\ e F such that

vs — as_ir/-1 — • • • — ciov0 — 0.

Let us write

a(x) — xs — as-ixs~l — — ao;

we have a(y/)v 0. By the division algorithm we can write

Pi(x) — b{x)a(x) + r(x), where degr(x) < degzz(x) sor r(x) 0.

Applying Lemma 2.1, we have

0 Pi(w)v — b(y/)(a(y/)v) + r(y/)v r(y/)u.

If r(x) ^ 0, then r(y/)v 0 is a nontrivial linear combination of the vectors {u°,
v1, v2, ..vdesr(-x)}; since degr(x) < s and {u°, ul,v2,..u5-1 } is linearly
independent, we obtain a contradiction. We conclude that r(x) 0, and that a(x) divides

Piix). By assumption pi{x) is irreducible; therefore a(x) pi(x) and s deg Pi(x).
It follows that the vectors described in part (iii) form a linearly independent set, and that
dimW, > degp,-(x). Since degq(x) degp,(x) N dimF, we must actually
have dim Wi deg p,- (x) for all i, and so the set of vectors described in part (iii) is a basis

for Wi. This proves part (iii).

Suppose that v e Wj is nonzero and that B(y/)v 0. Again by the division algorithm we
can write

B{x) b(x)pi(x) + r(x), where degr(x) < degp,(x) or r(x) 0.

Similarly as in the last part we use Lemma 2.1 to conclude that r(y/)u 0. If r(x) ^
0, this implies that the set {u°, vl,v2,..., udegr^' } is not linearly independent. Since

degr(x) < degp;(x), this implies that the set {u°, vl,..vdegPi^~1} is not linearly
independent either, contradicting (iii); we must have that r (x) 0, and that p; (x) divides
B(x). This completes the proof of part (iv).

We now prove part (v). Ifm — 1, then part (iii) implies that the only ^/-invariant subspaces
are the trivial subspace and W\ V, since {u°, v1,..., udegp,^J~1) is a basis for W\ V
for any nonzero v e V. Suppose now that m > 1. Choose and fix a nonzero u,- e Wi for
each i, and write vj — y/^Vi, j e {0,..., deg pi(x) — 1). Our work so far shows that the
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vectors vj constitute a basis for V. Suppose that W is a (//-invariant subspace. Given any

v eW, we can express v uniquely as a linear combination of the basis vectors vj :

V + • • + ajvj + • + aj e F.

Suppose that, in the above sum, aj ^ 0. Define

Ri(x) - pi(x)p2(x) pi-i(x)pi+i(x) pm(x).

We now make the following observations.

• Since W is ((/-invariant, Ri(tj/)v e W.

• Lemma 2.1 and part (i) show that Ri(y/)w — 0 for any to e We, where £ i.

• The invariance of W, implies that Ri(i//)w e Wj for any w e W{.

• By repeated application of Euclid's Lemma we see that pt(x) does not divide Rj (x);
(the contrapositive of) part (iv) now implies that Rj(y/)w 0 for any nonzero
to e Wi.

By the above observations and the linearity of Ri(y/), we conclude that Ri(y/)v is an
element of W (T Wi and is nonzero. Again since W is (//-invariant, it follows from part (iii)
that W contains a basis for Wi, and hence contains all of Wj.

We have shown that W either contains Wi or, in the notation above, that aj 0 for all
o e W and all 1 < j < deg Pi(x) — 1; otherwise put, W either contains Wj or is contained
in the direct sum of the subspaces We, £ i. We conclude that W is the direct sum of the

subspaces Wj it contains.

Finally, we prove part (vi). Suppose that W is a ((/-invariant subspace of kcr P(>//). We

know from part (v) that W is a direct sum of some subset of the Wj. Suppose that Uj e
IT n Wj \ {0}. Then by part (iv) we have that pi(x)\R(x), and repeated application of
Euclid's lemma now yields that i e S. This completes the proof.

We shall also need the following linear algebra lemma.

Lemma 2.4. Suppose that FÇC is a field, and that M is an N x N matrix with entries
in F. Let X e F be an eigenvalue of M. Write E for the corresponding eigenspace in
C'v, and write E for the corresponding eigenspace in FN. Then E and E have the same
dimension, and any basisfor E is also a basis for E.

Proof. If B is any n x m matrix with entries in F, the rank and nullity of B are the same
whether we regard B as an element of Mat,, xm (F) or as an element of Mat„xm(C) (see, for
example, Theorem 6.4.35 and the subsequent discussion in [5], or Problem 7.2.1 in [2]).
We write I for the identity matrix. The dimension of E is the nullity of M — XI where

M — XI is viewed as an element of MatArx/v(C); the dimension of E is the nullity of
M — XI where M — XI is viewed as an element of Mat,vx/v(T). By the observation of
the last paragraph, E and E have the same dimension; call it D. It is therefore enough to

prove that a basis of E is linearly independent when viewed as a subset of CN; but again,
the matrix whose columns are the members of a basis of E has the same rank whether
regarded as an element of MatA/XD(^) or as an element of Mat/vxD (Q-
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3 The space Perr (A)
We define the shift operator Sn : C" —> C" by

Sn(x 1,X2, .,Xn)T (xn,X 1, ,Xn-l)T.

We also write I for the identity transformation.

Lemma 3.1. Let F ç C be a field. The minimal polynomial of Sn in F" is x" — 1.

Proof. It is clear that (S% — I)u — 0 for all v e F". On the other hand, if
n—1

g{x) ^_biXl
i=0

is any nonzero polynomial in F\x \ of degree less than n and en is the nth standard basis

vector in F", we see that

g(Sn)en - {b\, b2,..., bn-1, bo)T f 0,

and so g(x) is not the minimal polynomial of Sn.

We henceforth write Q„ (x) xn — 1.

Given d e Z>o, we write <l\/(x) for the so-called (Ith cyclotomic polynomial. We write
<t> : Z>o Z>o for the Euler totient function, defined as follows: <p{\) — l;andforJ > 1,

f(d) is the number of positive integers that are both less than d and relatively prime to d.
The following proposition is standard (see, for example, [4], Chapters 17 and 33):

Proposition 3.2. For each n e Z>o,

Qn(x) ]~J

d\n

Each cyclotomic polynomial is monic, has integer coefficients, is of degree fid),
and is irreducible in Q[jc]. The cyclotomic polynomials <I>f/(x) are all distinct.

Given d e Z>o, let us choose and fix a nonzero vector u[d\ e Qd such that

®d(Sd)u[d] 0.

For example, since d>3(x) x2 +x + 1 we require n[3] to be a three-dimensional rational
vector such that

®3(S3)m[3] (S32 + S3 + 7)H[3] 0;

we may take u[3] (0,1, — l)r. Similarly, since ®4(x) x2 + 1 we require m[4] to be a

four-dimensional rational vector such that

04(S4)«[4] (S2 + I)u[4] 0;

we may take m[4] (0, 1, 0, — l)r.
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Given u[d], let us define a\d] to be the set

a[d} { u[d], Sdu[d],..., S^d)~lu[d\ } c Qrf.

Proposition 2.2, applied to the vector space Qd and the linear transformation Sd : <Qd ->
Qd, shows that a[d] is a linearly independent subset of Q'1 (since <ï>d(x) is an irreducible
factor in Q[x) of the minimal polynomial Qd(x) of Sd).

Given d e Z>o and n e Z>o, we define the linear transformation r'J : Cd —> C" as

follows. If d > n, z'jU is the truncation of v to its first n entries:

rd(vi,...,vd)T (vi ,...,vn)T.

If d n, z/jv v. If n > d, then z'Jv is the vector obtained by extending the entries of v
^-periodically:

z'J(ui,...,vd)T (vi,...,ud,...,vn)T, Vj =Vi if I i - j I =d.

We shall need the following simple observation.

Lemma 3.3. Given N, n, d e Z>o with N > n, zß o z% z'J.

Lemma 3.4. Let w e Qd, where d\n. For any polynomial f (x) e Q[x] we have

zd(f(Sd)w) f{Sn){z'^w).

Proof By linearity, it is enough to prove the lemma for fix) — xp, p e Z>o- The p — 0

case is obvious, since in this case f(Sn) — I For the p 1 case, we compute (recalling
that d divides n)

ZdSdW - Zj (wd, Wl, Wrf-l)7" (wd, u)i,, Wd-l, wd,..., Wd-\)T

(this is n/d concatenated copies of Sdw), and

SnZjW Sn(wu Wd, Wl, wd)T (wd,Wl,...,Wd-l,Wd,..., Wd-l)T

(this is also n/d concatenated copies of Sdw). Assume the formula holds for p < P. Then

applying the formula for p — P and p 1 in turn we get

Tdsd+lw Tdsdsdw sn tdSdw 5,fSnz/jw S^z'jw;

the desired result follows by induction.

We now return to Equation (2). Recall that we are writing A e Mat„x/i(C) for the matrix
associated with Equation (2) - its form is given in (3).

Let us write Per(A) ç C" for the set of periodic points of Equation (2), and Peiy(A) ç C'!

for the set of periodic points of Equation (2) with (not necessarily minimal!) period r. The

following lemma is clear.
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Lemma 3.5. The sets Per(A) and Peiy (A) are linear subspaces ofCn and are A-invariant:
Ad e Per(A) ifv e Per(A), and Ad e Per,-(A) ifv e Perr(A).

We are interested in describing a basis for the subspace Peiy (A) ç C" in the case that A
has rational entries. The subspace Perr(A) is precisely the eigenspace in C" of Ar
corresponding to the eigenvalue 1.

Now consider Equation (2) in the setting of the vector space Q" (rather than C"). Write
Perp(A) for the subspace of r-periodic points of Equation (2), viewed as an equation in

Q". Per® (A) is precisely the eigenspace in Q" of Ar corresponding to the eigenvalue 1. By
Lemma 2.4, Per^(A) and Per,-(A) have the same dimension, and any basis of Peq?(A) ç
Q" serves as a basis of Per,-(A) c C". We will now use the work of Section 2 to describe

a basis of PerP(A) in the case that r\n. This description undergirds our main theorems.

The crucial observation is the following. If d e Per^(A), then the entries of v are r-
periodic in the sense that Vk Vj if |/c — j| r. If we moreover have r\n, then the first

entry of Ad will be equal to the nth entry of u - and so Ao Snv. Since Ad e Per^(A) by
Lemma 3.5, we conclude that PerJ? (A) is Sn-invariant. Furthermore, applying the above
observation r times yields A'u — Srnv v. We have established the following lemma.

Lemma 3.6. Given r\n, the subspace Perp(A) is S„-invariant. Furthermore, Per^(A) is

contained in the kernel of S£ — I Qr(Sn).

We now apply Proposition 2.2 to describe the Sn-invariant subspaces of Q" (of which
Per^(A) is one when r\n, as we have just observed). Let us assume that n has m distinct
positive divisors 1 — d\ <••< dm — n. Proposition 3.2 and Proposition 2.2 now
yield the following. The space Q" is equal to the direct sum of m nontrivial S,,-invariant
subspaces

where Vj has dimension <f>{d,). Any vector u in V,- satisfies fib/, (Sn)u 0. Conversely, if
b e Q" is nonzero and satisfies <b</;(S„)D 0, then {u, Snv,..., is a basis for
Vi. Any S,,-invariant subspace of Q" is the direct sum of some subset of the subspaces V,-.

Finally, given r\n, any Sn-invariant subspace that also lies in the kernel of

Srn-I= ßrÄ) nO;(5„)
j\r

is a direct sum of some subset of the subspaces Vj for which j\r.
What this means is that, if we can find a nonzero vector o; e V,- for every i e {1,..., m],
then any Sn-invariant subspace (in particular, any of the subspaces Perp(A), where r\n) is

determined, completely, by which of the vectors Vj lie in that subspace. More particularly,
since PerP(A) is in the kernel of

Srn -I Qr(S„) =Y[®j (S,,),

j\r

PerP(A) is determined, completely, by which of the vectors Oj with j\r lie in Perp(A).
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Lemma 3.7. In the notation established above, we can take as a basis for Vi the set

fyldi],
where a [df\ is as described above.

Proof. For notational simplicity, we shall write dj as d and Vi as V.

By Lemma 3.4 we have that

®d(Sn)T%u[d] r'f(l>d(Sd)u[d] 0;

thus Tju[d] e V. Thus by part (iii) of Proposition 2.2 the vectors

SJn z%u[d] z%SJdu[d], j e {0,..., f{d) - 1}

form a basis for V - but this is just the set zdcr[d].

Lemma 3.7 and part (iv) of Proposition 2.2 show that, given any r\n, PerP(A) (and hence

Perr(A)) has a basis of the form

(J{ zd.a[di] : di\r and e Per®(A)}.

Given Equation (1), then, we can determine a basis for Perr(A) simply by checking which
vectors zd.u[di] lie in Per,-(A), as di runs across the divisors of r. Otherwise put, if we
write

V {dt eZ>o : r/; |r and zdj u[dj\ e Perr(A)}
then the disjoint union

U *1°
dieV

is a basis for Perr(A). Observe that Per,. (A) has dimension Xrf,eZ> 4>(di)- (Note carefully
that r itself does not necessarily belong to V.)
Suppose that, in the notation above, r is the least common multiple of the divisors di e V.
Then r\r, and for each v e Per^A we have that Qf(Sn)u =0 (since 'b^. (x)|Q,-(x) for all

di e V). This means that each v e Per®A actually lies in Per®A and hence in Per,-A. If
r < r, then, we conclude that no member of Perr A has minimal period r. Contrapositively,
if there is a point in Perr A with minimal period r, we must have that r lcm{<f,- : di e V}.
Summing up the discussion of this section we obtain the following proposition.

Proposition 3.8. Suppose that Equation (1) has rational coefficients, and that r\n. Then
the following hold. IfEquation (1) has a nontrivial solution ofperiod r, then Per,. (A) has

a basis of the form
U xdia^

di<=V

where

V {di e Z>o : di Ir and z'j. u[dj] e Per,.(A)}.

Per,-(A) has dimension Xd,eX> ^W')-
IfEquation (1) has a nontrivial solution ofminimal period r, then moreover we have that
r is the least common multiple of the members ofD.
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4 The main theorem

Given N > n, we define the N-dimensional extension (l)N of Equation (1) to be the
iV-dimensional equation obtained simply by adding an appropriate number of zero coefficients:

x(k) a\x(k — 1) + a^xik — 2) -| h a^xik — N),

an+1 an+2 • • • ün 0.

We shall write An for the coefficient matrix corresponding to (l)w.
Following the notation used above, we write Perr(Ayv) for the subspace of r-periodic
points of Equation (l)jy.
Since an+\ — — on — 0, the (n + l)st through Nth entries of an initial condition for
Equation (l)w are irrelevant in the sense that they have no effect on the initial condition's
continuation; loosely speaking, the initial condition v e CN continues as a solution of
Equation (l)w in the same way as does z'f/; e C" as a solution of Equation (1). More
specifically we have the following lemma, whose proof we omit.

Lemma 4.1. Given any N > n, a sequence is a periodic solution of Equation (1) of
(minimal) period r if and only if it is a periodic solution of Equation (1);V of (minimal)
period r.

If the continuation ofv C,v as a solution ofEquation (l),v has (minimal) period r, then
the continuation of zfv G C" as a solution of Equation (1) has (minimal) period r also.

If the continuation of w e C" as a solution of Equation (1) has (minimal) period r, then
there is a unique vector v G CN such that zfv w and the continuation ofv as a solution

ofEquation (1 )N has (minimal) period r also.

We now consider Equations (1) and (l)w together, where N > n. We shall make frequent
use of Lemma 4.1, and of the discussion preceding it.

Lemma 4.2. Suppose that N > n and that B ç C'v is a basis o/"Per,-(A,v). Then the set

z'f B is a basis ofPerr(A), and Per,. (A,v) and Per,-(A) have the same dimension.

Proof. That z'f B lies in Per,- (A) is clear from Lemma 4.1. We now show that z'f B actually
spans Per,-(A) and is a linearly independent set.

Suppose that w e Per, (A). Then by Lemma 4.1 there is a unique vector u e Per,(A,v)
such that z^D — w. Since u is a linear combination of members of B and z'f is merely
a truncation operator, w is a linear combination of members of z'fB. Thus z'fB spans
Per, (A), and dim Perr(A) < dim Per, (An).
Write B — {«i,..., Vk}. If we imagine that a/ z'fvj 0 where the a,- are not all zero,
then v a,u,- Per, (A,v) is equal to zero in its first n entries. Since the continuation
of v as a solution of Equation (1)^ is the same as the continuation of zfv as a solution of
Equation (1), the continuation of v as a solution of Equation (l)/v is eventually zero. Since

u e Per,. (A,v), though, we must have that u is identically zero - contradicting the linear

independence of B. We conclude that z'fB is a linearly independent set in C", and that

dimPerr(A/v) < dimPerr(A).
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The above lemma yields in particular that

Lemma 4.3. The dimension ofPer,. (Am) is no greater than n.

We are now ready to state our main theorem.

Theorem 4.4. Suppose that Equation (1) has rational coefficients. IfEquation (1) has a
nontrivial solution ofperiod r, then Per,-(A) has a basis of the form

U
dieV

where

V {di G Z>o : dfr and r'J.u[di] G Perr(A)}.

Perr(A) has dimension Xd,-s2? 4>(di).

IfEquation (1) has a nontrivial solution ofminimal period r, then moreover we have that

r is the least common multiple of the members ofT>.

Proof. Choose any N > n with r\N, and consider the extended equation 1 )A,. Then by
Lemma 4.1, Equation 1 N has a nontrivial solution of period r\N as well; and if Equation
(1) has a nontrivial solution of minimal period r, then Equation 1 )N does as well. Since

rfu for any v e Cd (Lemma 3.3), the description of the basis of Perr(A) and its
dimension follows from Proposition 3.8 (applied to Equation (l)jy) and Lemma 4.2.

Now suppose that Equation (1) has rational coefficients and a solution of minimal period
r. The dimension of Perr(A) is no greater than n but is also equal to Xrf-eD 4* (<:/, where
V is some set of positive integers whose least common multiple is r. Thus r cannot be

the least common multiple of any set of divisors di for which Xy, g_V 4>(di) > n. Since
cp(d) -> oo as d -»• oo, we see that, given n, there are only finitely many possibilities for
r. In particular, given Equation (1), the following choice of N is well defined:

N lcm(n, { q : Equation (1) has a solution of minimal period q }).

Note that, with this choice of N, Per(A) Pepy (A). Applying Theorem 4.4 with N in the

place of r, then, and using the fact that a [d] has <fi(d) elements, we obtain as a corollary
the following description of the basis of the whole space Per(A) of periodic solutions.

Corollary 4.5. Suppose that Equation (1) has rational coefficients. //'Per(A) is nontrivial
it has as basis

(J{ rfa[d] : <p{d) < n and z%u[d] G Per(A)}.

Again since </> (d) -> oo as d —»• oo, this corollary gives us a finite list of potential periodic
points of Equation (1) to check to describe all periodic points of Equation (1) (in the case
that the coefficients are all rational).

Remark 4.6. Note that, in the above corollary, if we write V for the set of all d such that

z'Ju[d] G Per(A), we must actually have XrfeZ>^(*0 — n- 'n the other direction, given
n and a collection of V of distinct natural numbers such that XrfeO 0(d) < n, it can
be shown that there is some instance of Equation (1) with rational coefficients such that
Per(A) has precisely Ujex> rdaM as a basis.
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We conclude by proving the propositions stated in Section 1.

ProofofProposition 1.1. The only numbers d with fid) < 3 are 1, 2, 3, 4, and 6. Thus if
Equation (1) has rational coefficients and n — 3 we need only check whether z^u[d] are

periodic points for d 1,2, 3,4, 6. The rest of the proof follows from the observations
that the following vectors are valid choices of u[d]:

«[l] (l)r; n[2] (l,-l)r; u[3] (0, 1,-l)r; »[4] (0,1,0,-l)r;
k[6] (0, 1,1,0, —1, —l)r.

ProofofProposition 1.2. If n is prime and Equation (1) has rational coefficients, the only
way for Equation (1) to have a solution of minimal period n is for r"u[n\ u[n\ to be a

periodic point of Equation (1). If n is prime and greater than 2, we have

®„(x) x"_1 + x"-2 + • • • X + 1.

Write
« (0,1,-1,1,—1,...,(—l)")r.

Any entry of On(S„)u will consist of a zero added to (n — l)/2 "l"s and (n — l)/2 l"s.
Thus we see that v is a valid choice for u[n], and the proposition follows.

ProofofProposition 1.3. If r is prime the only way for Equation (1) to have a solution of
minimal period r is for r "u[r] to be a periodic point of Equation (1). In this case we must
have <f>{r) < n. But if r > n + 1, then tp(r) — r — 1 > n.

Remark 4.7. The feature of the rational field Q that we rely on in this paper is that the

cyclotomic polynomials are irreducible over Q. Results analogous to those presented here

should hold for equations with coefficients in other subfields of C, at least for particular
values of n, depending on how x" — 1 factors over that subfield.
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