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I Elemente der Mathematik

The AM-GM inequality from different viewpoints

Darko Veljan

Darko Veljan is professor (now retired) of mathematics at the University of Zagreb,
where he received his B.Sc. and M.Sc. He obtained his Ph.D. at Cornell University. He
is the author of several university textbooks. His interests include topology, geometry,
combinatorics, mathematical education and history of mathematics.

1 Introduction
The famous Russian mathematician Andrei N. Kolmogorov (1903-1987) once said:

"Every serious proof in mathematics eventually boils down to proving an inequality".

One of the most common and useful basic "folklore" inequalities is the arithmetic
mean-geometric mean inequality, for short the AM-GM inequality: A > G, where A

_ 1
£ X?=i xils the arithmetic mean (average, commonly denoted by x) and G (]"[?= l */) "

the geometric mean of real numbers x\, X2,..., xn > 0. Equality occurs if and only if
x\ • • • xn. The rth power mean Mr(x) of a vector x (x\,...,xn) e R'| (all
Xi > 0) is defined by

Die Ungleichung vom arithmetischen und geometrischen Mittel gehört zu den

grundlegendsten Abschätzungen in der Mathematik. Für zwei Variablen war sie bereits Euklid
bekannt, ein Beweis für beliebig viele Variablen findet sich erstmals 1729 in einer
Arbeit des schottischen Mathematikers Colin Maclaurin. Auch Cauchy widmet sich

in seinem Werk Analyse algébrique von 1821 dieser Ungleichung. So sind im Laufe
der Geschichte zahlreiche algebraische, geometrische, topologische und kombinatorische

Beweise zusammengekommen, welche oftmals anschauliche geometrische oder
auch physikalische Interpretationen zulassen. Die Anwendungen und Verallgemeinerungen

sind unübersehbar und allgegenwärtig im mathematischen Tagesgeschäft. Der
Autor der vorliegenden Arbeit gibt einen Überblick, der bis hin zum
arithmetischgeometrischen Mittel reicht und die Betrachtung neuer gemischter Mittel anregt.

for all r e R U {=too}.
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Mi is the arithmetic mean A, Mo(= limr_».o Mr) is the geometric mean G, while M_i is

the harmonic mean, M2 the quadratic mean, M_oo min{jc/), Mœ{= limr_+oo Mr)
max{jc/} etc.

The weighted version is given by

Mr(x) I
\i=1

where
n

w (w1,..., wrt), toi,..., >0 and ^ w,- 1.

1=1

There are two important inequalities for (weighted) power means. The first is the increasing

property {or monotonicity): p < q =$ Mp{x) < MCj{x) and the second is the product

property: Mr(x)Mr(y) < Mr(xy) for all r, where xy (jtjyi,..., xnyn) is the

(component-wise) product of vectors x and y. In the generic case p 0, q 1 the

increasing property is just the AM-GM inequality, while the case r 1 of the product
property is the Chebyshev inequality (from 1860): if x\ < • • • < xn and y\ < • • • < yn
then A(jt)A(y) < A(xy).
The AM-GM inequality for two numbers was probably known to Pythagoras (about 500

B.C.) and for sure to Euclid (about 300 B.C.). The general AM-GM inequality for any
n was probably known to Fermât, Descartes, maybe Galileo and others around 1630, but

definitely to Newton about 1705. The first rigorous proof appeared about 1725 by Mac-
laurin.

Two classical books on inequalities are [1] and [2]. In modern theory, general means are
defined quite abstractly in terms of metric (or topological) space with some natural properties

(see, e.g., [3]). The mean of any list of points (data) in any set of points can be thought
of as the point (or more points) "closest" to the list in a given, prescribed sense. For
example, the Fréchet mean (introduced about 1938) of points x\,... ,xn on a Riemannian
manifold (M, d) is a point p e M (if exists) such that JT d2{p, xi) has minimal value.

2 Standard and less standard proofs
The most common textbook proofs of the AM-GM inequality are by induction or by
Jensen's functional inequality / (^2^*) < 5 (/(*) + /00) which verbally can be phrased
as "the value at the average is not greater than the average of the values". It is just the

convexity of the function /. (In fact, Jensen in his paper from 1906 used concavity of the

function In on positive reals.)

The following induction proof of the AM-GM inequality is well known since 1970; it
is short and instructive. Here it is. For n 1 it is trivial. Suppose it holds for n — 1

and let x\,..., xn > 0 are given. Let A and G be their arithmetic and geometric means,
respectively. We may assume that x\ < X2 < • • • < xn. Then clearly x\ < A < xn. By
induction on n — 1 numbers X2, X3,..., xn-\,x\ + xn — A we have

/X2 + *3 + • * • + xn-\ + (*1 + xn — A)\"
1

I
^

I > X2X3 - - xn-\{x\ +xn- A).
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Fig. 2 In the right triangle ABC, the circumradius is R and the height is

h Jxy\ R>h^^> Jxy

The square on x + y contains four rectangles with
x and y, so for areas we have: (x + y)2 > Axy =>

^>V^-
Fig. 1

Since*i + *2 H \-xn nA, it follows that An~l > *2*3 • • -*n-i(*i +xn - A). From
A—x i >0 and*n — A > 0, we get (A—x\)(xn - A) > 0, hence A{x\ +xn — A) > x\xn.
By multiplying the above inequality by A we obtain

An > *2*3 • "Xn-\[A(x\ +*AZ - A)] > *2*3 * • -*»-l*l*n Gn.

Therefore, A > G. The equality case is clear. A much older induction proof on k where

n 2k was given by Cauchy around 1821.

The case n 2 as we said was known from the ancient times. The algebraic proof is:

(x + yf - 4xy (x - y)2 > 0,

hence *2 + y2 > 2xy. Geometric "visual" proofs are in Figures 1-4.

For n 3 there are also some "quick" algebraic proofs. Here are a few. Consider *3 +
y3 + z3 — 3xyz and express it in terms of the elementary symmetric functions (e\, e2, £3).
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a > b y/xy, since major semi-axes >
minor semi-axes.

H

SO > S H distance to the Earth's
center > distance to the horizon.

We obtain by standard methods

x3 + y3 + Z3 - 3xyz e\ - ?>e\e2 e\(e2 - 3^)
(x + y + z)[(x + y + z)2 - 3(xy + yz + zx)]

0 0 0
{x+y+z)(x +y +z -xy — yz — zx)

^(x + y + z)[{x - y)2 + (y- z)2 + (z - x)2] > 0,

because x, y and z are nonnegative. Hence,x3+y3+z3 > 3xyz. The following polynomial
identity also implies the AM-GM inequality in three variables x, y, z > 0:

(x+y+z)3-21xyz ^[(x+y+lz)(x-y)2+ (y+z+lx)(y-z)2+(z+x+ly)(z-x)2].

In four variables:

(x + y + z + w)4 -44xyzw ^ ^((x2 + y2 + llz2 + IIw2 + 14xy + 58zu;)(x -y)2),
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where £ means the symmetric sum. And in general, as it can be shown, the difference

X?=i x" — n?=i (nxi) is °f form X/</ Pij(xi ~ xj)» where Pij are homogeneous
polynomials with positive coefficients and hence the AM-GM inequality.

In the next "quick" proof the convexity of the exponential function ex exp(x) is used.

We have

+ y + z) -(explnx + explny + explnz) > exp + lny + Inz) tyxyz.

Of course, it works for all «, not only for n 3. A similar "quick" proof is to apply
Jensen's inequality to the function f(x) x\nx. The classical (high-school) proof of
Pölya (from around 1925) used convexity of ex and the fact that ex > x + 1, but this
follows by noticing that the line y x + 1 is the tangent line to the curve y e* at x 0.

Substitute ^ — 1, / 1,..., n and multiply. (Pölya once said that he dreamed this proof
and that was his best dream ever.)

The rearrangement inequality is the following fact on inner products: (x,ya) < (x, y),
for all vectors x (x\,..., xn), y (y\,.. .,yn) R" with x\ < • • • < xn and y\ <
• • • < yn and all permutations o e Sn where (x, y) x\y\ H + xnyn and (x, ya)
x\y0(\) H \~xnya(n)' R is not hard to show that this also implies the AM-GM inequality.
And the rearrangement inequality can also (standardly) be proved by induction on the

number n—i, of fixed points of a. The induction bases is the trivial case i 0.

Newton's classical proof is as follows. Let be the kth elementary symmetric function
of xi,... ,xn > 0 and Ek e*/(^), Eo := 1. Then the Newton inequality says that

Eo, E\,..., En is a log-concave sequence, i.e., Ek-iE^i < E%, for all k 1,..., n
with equality if and only if x\ • • • xn. Now from

* k

< \\Ef
i=1 i=l

i _L 1

it follows that e£+[ < E^+[ or E% > E£+\. Hence (Newton's lemma) E\ > E% > • - >
i

EH and the AM-GM inequality (and its refinements) follows. The above log-concavity
of Ek s is a consequence of the general fact that if a real polynomial P(x) X?=o aixl
has only real zeroes then a^ (and moreover, ß*/(£))> k 0, 1,..., n is a log-concave

sequence. (It seems the first rigorous proof of this fact was given by Sylvester about

1865.) The proof is by using Rolle's theorem (from 1691). Namely, if P(x) has only
real zeroes, then so does Q(x) DkP(x), where D ^ is the derivative. Then

Q[ (x) xn~k Q(x~x) also has only real zeroes and so does R(x) Dn~k~2Qi(x).
But R(x) is a quadratic polynomial, so its discriminant is nonnegative. A little calculation
shows that this is just the claim.

A quick topological argument is as follows. Let M max{xiX2 • • - x,, : x\,... 9xn >
0, 5). M exists since the (continuous) product is defined on a compact set

(simplex). M occurs when all x/'s are mutually equal (and so equal to S/n \= A), because

otherwise if two factors differ and the sum remains the same, the product decreases. Thus
M < Any the AM-GM inequality.
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We end this repertoire of proofs by remarking only that the increasing property for
weighted means Mr (x) is standardly proved by showing that the partial derivative >

£
0. And this follows from Jensen's inequality for the function f(x) xp ,q > p > 0, by
checking that /"(*) > 0. And similarly the product property for Mr(x).

3 Some interpretations, applications and generalizations

Let us first give a geometric interpretation of the AM-GM inequality. Consider an n-
dimensional box (brick, rectangular parallelepiped) B whose side lengths from one corner

are x\9..., xn. Then the AM-GM inequality is equivalent to 2n~l(x\ + • • • + xn) >
n2fl~{ J/x\.. .xn. The left-hand side is the total length of all edges of the box, i.e., it
is the perimeter per(ß) of B. The right-hand side is the perimeter of the cube C with
side length j/x\ .xn and having the same volume .xn as B. So the AM-GM
inequality (vol(ß) vol(C) => per(B) > per(C)) is a kind of isoperimetric inequality:
the cube has the minimal perimeter among all boxes of the given volume. (Is there any
clear-short geometric argument for this?) Another way to think of the AM-GM inequality
(*i-l f xn)n > (nx\)(nx2)... (nxn) is that the cube of edge length (x\ H \-xn) has

greater volume than any box with side lengths nx\,..., nxn at one corner.

There is a whole variety of applications of the AM-GM inequality. Let us recall just a few

simple ones from geometry. Euler noticed in 1765 that the circumradius R is at least as

double as the inradius r of any triangle. Here is a short proof of this fact. Let S be the area

of a triangle with side lengths a, b and c and perimeter 2s. Recall,

abc
S rs \/s(s — a)(s — b)(s — c).

Then R > 2r is equivalent to

abc > 8(5 — a)(s — b)(s — c),

or by putting x s — a, y s — b, z s — c, to

(x + y)(y + z)(z + *) > Sxyz.

But this follows by multiplying three simple AM-GM inequalities > *Jxy etc. Equality

holds only for an equilateral triangle. By using the three variables AM-GM inequality

we get (s — a)(s — b)(s — c) < (|) and hence

1 s2
S [s(s - a)(s - b)(s - c)p < ^=,

the isoperimetric property for triangles with equality again only for an equilateral triangle.
By using the AM-GM inequalities, the hyperbolic version of Euler's inequality (for triangles

with circumcircle) is tanh(R) > 2 tanh(r), and similarly in the spherical case ([4]).

Euler's inequality holds in general for any Euclidean «-dimensional simplex: R > «r,
with equality only for the regular simplex. A slick proof (given by L. Fejés-Toth in 1965),
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that does not make use of the AM-GM inequality is as follows. Let A A(t>o, v\9 ...9vn)
be an «-simplex and R R(A) its circumradius. The centroid c; of the facet opposite to

Vi is given (as a vector) by a H 1- »i-1 + Uj+i H h «n). It is easy to check
that the simplices A and A(co,c\,.. .,cn) are similar with ratio «. Hence the distance
d (et, Cj) £d(pi,Vj) for all z, y. This similarity implies /?(A) nR(A(co, c\9..., cn)).
A ball of radius less than that of the inscribed ball can not meet every facet of A. Therefore

/?(A(co,ci,...,c„)) > r. Hence, R nR(A(co, c\,..., cn)) >nr.
The 2-variable Cauchy-Schwarz inequality (a2 + b2)(c2 + d2) > (ac + bd)2 by expanding
both sides reduces to a2d2 + b2c2 > 2abcd and this is again the 2-variable AM-GM
inequality (it can also be deduced from Fermat's two square theorem {a2 -\-b2){c2 + d2)

(ac + bd)2 + (ad — bc)2). But the general Cauchy-Schwarz inequality | (x, y) \ < ||jc|| ||y||
simply follows from two geometric facts:

(.x9y) ll^ll \\y\\cosZ(x9y) and |cosZ(x,y)| < 1

for all angles Z(jc, y). Or algebraically from Lagrange's identity

IWI2ll;y||2 (*9y)2 + ^(xiyj -xjyd2
i<j

(it could also be called the Pythagoras-Fermat-Lagrange identity, see more on this topic
in [5]). Or analytically, by nonnegativity of the quadratic function f(t) ^!i=\(xit+yi)2.
A notorious application of the AM-GM inequality is in proving the general isoperimetric
inequality: if V is the volume and S the surface area of a convex body K ç R"(S
vo\n-i(dK), V voln(K)) then Sn > nnconVn~l with equality if and only if K is an

«-ball (here con tch^2/ T{n/2 + 1) is the volume of the unit «-ball; T is the gamma
function, T(a:) /0°° tx~le~ldt). A standard proof (by approximation) reduces it to the

Brunn-Minkowski inequality

[vol(X + Y)]{/n > [vol(X)]1/w + [vol(T)]1/n

for all nonempty compact X, Y ç R'1, and which for boxes with edges x\9...9xn and

yi> • • • » Yn at one of the corners reduces to

fife+»)"">n*,1/"+fb/".
i=l i=l i=l

and this is by the AM-GM inequality equivalent to

T=i \Xi+yi r=! ^Xi+y'J n Xi+yi niziXi+yi

(It is a special case of the Aleksandrov-Fenchel inequality for mixed volumes.) For «-
simplices A, the isoperimetric ratio S( A)n/ V( A)/,_1 attains the minimum if and only if A
is a regular simplex. There are also various discrete analogues of isoperimetric inequalities.
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Here is a nice application in algebra. In 1967 Motzkin first found a real polynomial /
f(X, Y) X4Y2 + X2Y4 + 1 - 3X2Y2 which is nonnegative (by using the AM-GM
inequality), and yet it can not be a sum of squares of real polynomials. Indeed, suppose

/ X f°r some fi e R[X, Y],i 1,..., n. Clearly, each /• has degree < 3, and so

each fi is a linear combination of 1, X, Y, X2, XT, Y2, X3, X2Y, XY2, T3. But X3 does

not appear in some //, because otherwise X6 would appear in / with a positive coefficient.

Similarly, Y3 and then also X2 and Y2 and X and Y do not appear. Hence, each /; is of
the form

fi at + biXY + aX2Y + dtXY2.

But then J] bf —3, a contradiction. However, every nonnegative real polynomial is a

sum of squares of rational functions as Artin showed in 1927 (answering affirmatively to
the 17th Hilbert problem from 1900). Similar examples exist in more variables and their
positivity follows from the AM-GM inequality.

Now some generalizations of AM-GM. For any vector a (a\,..., an) e R", define the

[û]-mean of x\,..., xn > 0 by

For example, if a (1,0,..., 0), [a] is the arithmetic mean of x\,..., xn and if a

(n' • • • ' n)' ^en geometric mean. In general, [a]l^ai+"+a") is the Muirhead

mean ofx\,..., xn.

Muirhead's inequality (from 1916) says that [a] < [b] for all x\,... ,xn > 0 if and

only if there is a doubly stochastic n x n matrix P such that a Pb. An n x n real
matrix is doubly stochastic if all numbers are nonnegative and the sum of every row and

every column is equal to 1. In fact, a doubly stochastic matrix is a weighted average of
permutation matrices (in any row and any column only one unit, the rest are zeroes); this
is the Birkhojf-von Neumann theorem. Assuming a\ > • • • > an and b\ > • • • > bn, then

[a] < [b] is equivalent to the fact that b majorizes a, i.e.,

a\ <b\, a\ + «2 < b\ + ^2, • • • H \-an b\ -\ h bn.

The AM-GM is a special case of Muirhead's inequality (and in fact, they are equivalent).

Also Holder's inequality seems more general, but it is also equivalent to the AM-GM
inequality. And there are many other important inequalities equivalent to the AM-GM
inequality.
The generalized f-mean for a continuous injective function / : I —> R on an interval
I ç R+ is defined by

/ y fMf(xi,...,xn) := /(•*<)

If / R+ and f(x) xr then the /-mean is the rth power mean M,-(jc). Additional
assumptions on / yield generalizations of the power mean increasing property (and in
particular of the AM-GM inequality).

>
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Direct applications of the AM-GM are also in numerical analysis, in optimization theory,
financial mathematics, probability theory and statistics, information theory, mathematical

physics, and many other areas.

4 Combinatorial proof
Back to our main AM-GM topic, we give now a combinatorial proof. Let x\9..., xn be

positive integers and nA X/=i xi- The AM-GM inequality is equivalent to

(nA)n > (nx\)(nx2)... (nxn).

Let X\9...9Xn and Y be finite disjoint sets, \Xi\ nxi, i 1,..., n and \Y\ nA.
Let us find an injection /: J~[?=i > f" f x F x • • • x f. In case of two sets S

and T with |5| a < b |7| and to T, we can define an injection /: S x T ^
(SU [to]) x (r\{fo}) by f(s,t) (s,t) if t ^ to and /(Mo) (to,g(s))9 where

g : S ->• T \ [to] is any injection (which exists because a < b — 1; / /0)g This is
in fact a combinatorial proof of the inequality ab < (a + i)(b — 1). In general, if all xi
are equal we have equality; otherwise there exist i and j such that Xi < A and xj > A.
Choose an element z\ G Xj, add it to Xi, and define a new partition of X Unk={Xk by

X - U£=141} where x[l) Xk,k ± i,j and X,U) X, U {zij.x}0 Xj \ {zi}.

Let fzugl : Xi x Xj (X, U {zi}) x (X, \ {z,}) and /, : nLi Xk -> WLi **1}.
the corresponding injection. (Recall the number of injections of N ^ X where n

|N| < |X| x, is x- := x(x — l)(x — 2)... (x — n + 1).) Again, if all |X^J are equal

we are done, otherwise form a new partition of X Unk=lX^ and define an injection

f2> FGUi 41} - EGUi 42) and continue this in the same way until we reach equality,

i.e., there exists me N such that |X^| \Y\ for all 1 < k < n, and a bijection
h : nLi %[n^ Yn. Then / := h o fm o • • • o f\ : [j/Li ^ is an injection. This

proves the AM-GM inequality for all nonnegative integers.

If jci,..., xn > 0 are any real numbers then by the above combinatorial reasons we know
all 2n AM-GM inequalities for all combinations of |_ J and f ] (lower and upper integer

parts, or "floors" and "ceilings") applied to all x\,..., xn and then by convexity and

continuity arguments it holds for them, too. The following is the moral of the above proof.
When a partition of a finite set in n blocks has equal sized blocks, then the number of ways
to pick just one point from each block is the largest.

5 Physical interpretation
Now a bit of physics (inspired by [6]). Consider n bodies or solids (e.g., boxes or bricks)
with the same heat capacity C > 0. Suppose the i th box has the temperature x,• > 0,

i 1,..., n. Imagine now that we put all the bricks together. Then the temperatures tend

to distribute so that they are equally distributed at the end of the experiment. This is a

consequence of the first law of thermodynamics (the law of conservation of energy):
temperatures tend to differ as little as possible until they eventually become equally distributed
(with the same probability everywhere when the equilibrium is achieved).
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At the end of the experiment the total entropy of the system did not decrease. This is a

consequence of the second law of thermodynamics: the total entropy of a physical system
increases (rather, does not decrease) until the system reaches its limit (the popular phrase
is "the entropy of the universe tends to a maximum"). The entropy S measures the number
of ways the thermodynamic system may be rearranged, i.e., it measures unpredictability
of a system, or it is a "measure of disorder". By the "heating formula" (Boltzmann) the

entropy change is given by AS C \n(T/To). Here To is the initial temperature, and T
the final temperature. The starting temperatures To are x\, X2,..., xn, and the boxes (of
the same heat capacity C > 0) will in a continuous manner by the end of the experiment
have temperature equal to the mean value A A(x\,..., xn). The total entropy did not
decrease, so ^ AS X?=i C In ^ > 0, and this implies the AM-GM inequality.

6 The arithmetic-geometric mixed mean and final remarks

The arithmetic mean M\ A and the geometric mean Mo G of two numbers x, y > 0

give rise to the new mixed (or composite) arithmetic-geometric mean (AGM for short),
denoted by Mot\(x,y) GA(x,y). It is defined as the common limit of the bounded

decreasing sequence (jcn)n>o and the bounded increasing sequence (y,,)/z>0 given by *0
x, yo y and xn+\ \{xn + yn) M\(xn,yn), yn+1 Jxnyn Mo(xn,yn). The

convergence is rather fast since |.*n+i — y^+i | < \ \xn — yn |. As Gauss noted in 1818 (and
independently Abel in 1827), the value

71

Mo,\(*,;y)
21(x,y)

where
'7r/2

I (x, y) f*' j /-^ + y
Jo JTx cos (p)2 + (y sine?)2 V 2 /As cos (p)2 + (y sin^)2

and the AGM can not be expressed any simpler than in terms of complete elliptic integrals.
The basic Pythagorean inequality G(x,y) < GA(x,y) < A(x, y) (or Mo < Mo,\ < M\)
is a natural refinement of the AM-GM inequality in two variables. (What is an eloquent
meaning of GA(x, y) on Figures 2-4?)

Interesting recent research on AGM are papers [7] and [8]. Let us mention only that the
mixed mean MPyq MPiq(x,y) for parameters p < q can also be defined in a similar

manner as Mo, 1 and then recursively general means with more parameters and more
variables. Inequality like Mp < Mp>q < Mq generalizes the Pythagorean inequality and

refines the power mean increasing property. More generally, we can consider a mixed

(/, g)-mean for functions / and g and moreover multi-functional mixed means of more
variables.

Another type of "mixed-means" was introduced in [9], where it is proved that

M\ Mq(xi,X2), M0(xu ,,x„))
< Mq(M[(xi), M\(xi,x2),..., Mi(xi,. ..,xn)).

(Needless to say, Mq < M\, the ordinary AM-GM, is used in the proof.)
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In conclusion, we might say that many facets of the AM-GM inequality in elementary algebra,

analysis, topology, geometry, combinatorics, physics, modern mixed mean theory etc.

exemplarily show that fundamental principles are profound, unifying and amalgamated
throughout mathematics and suggest further research and applications.
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