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Density property of certain sets and their applications
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Mathematics in Bangalore. His areas of interest reach from partial differential equations
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1 Introduction

It is well known that the set A [m + nq : m,n e Z) is a dense set in R if q is irrational.
Here we provide a proof using the Engel expansion. Let p, q e R+ \ {1} be fixed. In [1],
the authors proved that a set of the form {±pmqn : m9n Z) is a dense subset of R iff
is an irrational number. Here we give a different proof. The authors in [1] also proved that,

if is an irrational number and / is a continuous function on R \ {0}, then f£x f(t)dt
and f£x f(t)dt are constant functions of x if and only if f(t) j, where c is a real
number. We extend this result to the class of integrable functions. In this paper we also
obtain an equivalent characterization of irrational numbers. Using this characterization we

Friedrich Engel hat 1913 vorgeschlagen, eine reelle Zahl q > 0 durch eine unendliche
Reihe der Form

°o

«=z—1—
nZ1 PlP2'"Pn

darzustellen, wobei pn eine nicht fallende Folge natürlicher Zahlen ist. Diese Engel-
Entwicklung ist eindeutig und stellt genau dann eine rationale Zahl q dar, wenn die

Folge der pn ab einem bestimmten Index konstant ist. (Das entsprechende geometrische

Endstück der Reihe lässt sich dann auch als Stammbruch schreiben und man erhält
eine Ägyptische Darstellung von q.) Da zum Beispiel die Eulersche Zahl die Engel-
Entwicklung e X!£o T\ besitzt, kann man daraus sofort auf die Irrationalität von e

schliessen. In der vorliegenden Arbeit wird diese Methode in Verbindung gebracht mit
der Dichtheit gewisser Mengen in R und einem Problem der Masstheorie.
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show for certain types of numbers that they are irrational: For example we show that e and

ql/n (q is a prime number and 2 < n e N) are irrational numbers. See [4, 5, 6] for similar
results.

2 Series representation of irrational numbers and density properties
For the sake of completeness we give below a proof of the Engel expansion.

Theorem 2.1. For any irrational number 0 < q < 1, there exist natural numbers pi >
2, i 1,2,... with pi < pi+\ such that

00
1

1 1 P\P2-"Pi
(2.1)

Proof. Since 0 < q < 1, there exists a natural number p\ > 2 such that {p\ — \)q < 1 <

p\q < 2. Now set ao q, po 2 and define a\ p\q — 1, hence 0 < a\ <1. Choose

an integer p2 such that

(pi - l)«i < 1 < P2«l < 2.

Define a2 P2«i — 1. The above inequality (p\ — l)q < 1 < p\q implies p\q — 1 <

piq — (p\ — l)q which yields oc i < «o- Moreover the above inequalities give (p\ — l)«o <
P20.\. This implies p\ — 1 < p2, since a\ < ao- Hence p\ < /?2 as /?i and p2 are integers.

By induction, we construct pn N and an satisfying the properties

(Pn+l - 1 )a„ < 1 < Pn+\an < 2,

o-n pnan-\ - 1 and (2.2)

Pn < Pn+l-

To see (2.2), let us assume we are given /?/, 1 < i < k + 1 and a,-, 1 < i < k, satisfying

{Pi+\ ~ l)a/ < 1 < Pi+ia/ < 2

ai pi et/—i - 1 and pi > pi-\.
Then we construct pk+2 and ak+1 as follows: Take a/c+1 Pk+Wk. — 1- Choose pk+2
such that (pk+2 — 1)«*+1 < 1 < Pk+2(*k+\ < 2. As for the previous analysis, the above

inequalities give a^+i < ak and pk+1 — 1 < Pk+2- This implies pk+\ < pk+2» which

proves the statement (2.2).

Equation (2.2) yields:

1 2
— < an-1 < —
Pn Pn

an—i
1

Pn Pn
1

Pn—\O-n—2 ~
Pn

1 1

ön-2

1

Pn

<

(2.3)

Pn-1 pn-\Pn

1

Pn-\Pn
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Continuing in this way by induction we get:

1-z
1=1 PlP2-'Pi

1

P\P2"-Pn

Passing to the limit as n tends to infinity in equation (2.3), we get the expression (2.1).

The Engel Expansion in Theorem 2.1 is unique. In fact, the expansion of q is an ascending
variant of continued fractions, q can be written in the following way:

1 +
1 +

1 + P3

q
P2

PI

For example the canonical values pt, i 1,2,..., for q \[l — 1 are

(pu P2, P3,. • •) (3, 5,5, 16,18,78, 102, 120,144,...)

and the canonical values for q are

(pu P2, P3, - • 0 (5, 6,13, 16,16, 38,48, 58, 104,...).

Theorem 2.2. Define A [m + nq : m,n e Z}, q ei Then the following statements

are equivalent.

1. q is an irrational number.

2. There exist zn A, n e N such that zn tends to zero as n tends to infinity.

3. A is dense in R.

Proof. 1 => 2: Let q be an irrational number. Without loss of generality we can assume
0 < q < 1. Then by the above theorem,

oo
1

i=1 P\P2'"Pi

q -z
1

i=l P\P2"'Pi PIP2-- Pn+\
(2.4)

P\P2 ...pn(q-±—l—)
V f^PiP2-'PiJ Pn+1

Also note that pt < pt+\ holds infinitely often, since otherwise q would be rational. So

pn+\ tends to infinity as n tends to infinity. Let sn -/V
VST"«

P\P2 ' ' ' Pn
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rn P\P2 - - Pn> Then rn and sn are integers. Moreover we have that zn rn + qsn G A
tends to zero as n -> oo.

2 => 3: Without loss of generality, we assume that all zn are positive. Let a, b G R and

a < b. Since — (b — a) tends to infinity, there exists No such that —a < t < —b, for
Zn ZNq ZNq

some integer t. This implies a < tZN0 < b. Since tZN0 G A, A is dense in R.

3 ==>• 1: Let A be dense in R. We have to show that q is irrational. Assume the opposite,
i.e., that q is a rational number of the form q mo, no G Z and «o / 0. Clearly

noA c Z, so the distance between two elements of A is at least T-. Hence A is not
dense.

Corollary 2.3. Suppose p,q e R+\{1}. ThenE [±pmqn : m,n G Z} is a dense subset

of R iff I^ is an irrational number.

Proof Consider the set B [m In p + n In q : m, n Z}:

{m In p + n In q : m, n G Z} In q
In p _m b n : m, n G Z
In g

By Theorem 2.2, {m + n : m, n G Z} is a dense subset of R iff is an irrational

number. Hence B is a dense subset of R.

Now we will show that B is dense in R iff B is dense in R. Let y > 0. There exists a

sequence mt In p + nt In q which converges to In y as t tends to oo. Now by the mean
value theorem

\pmtqn' —y\ I exp(m/ In p+nt lng)—exp(lny)| exp(c(r))|[(m? In p+nt ln^)-lny]|,
where c{t) is a point lying between (mt In p + nt In q) and lny. Since c{t) is bounded,
pmtq"t converges to y. So {pmqn : m,n G Z} is a dense subset of [0, oo). Hence B is dense

in R. Similarly one can show the converse. This completes the proof of Corollary 2.3.

3 Applications
Example 3.1. Ifq is a prime number, then for any natural number n > 2, q^n is an
irrational number.

Proof. Choose m G N such that m < q{^n < m + 1 and hence 0 < ql^n — m < 1. Now
consider the set

n-1

\ciql,n : ci G ;

i=0

i / k
For any k G N, Zk (q /n — m) G A and tends to zero as k tends to infinity. So

for a, b g R, there exist te Z and no e N such that < t < —. This implies
Zn0 ZnQ

« < tZrio < b. As tZn0 6 A, A is dense in R.

If ql/n would be rational, then <7 7. Clearly snA C Z. So the distance between any two

numbers of A would be at least 7^, which is a contradiction. Hence q^n is an irrational
number.
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Example 3.2. Any number q of the form (2.1), with pi < pi+\ for infinitely many i, is an
irrational number. In particular e is an irrational number.

Proof If q is of the form (2.1) and pi < pi+\ for infinitely many j, then, by (2.4),

Zn P\P2 • • • Pn(q ~ y I tends to zero.
V J^P\P2-'PiJ

So there are elements zn A {m + nq : m9n 6 Z) which tend to zero as n tends to

infinity. So by Theorem 2.2 the result follows.

Example 3.3. Let ^ (p,q R+ \ {1}) be an irrational number and f be a locally

integrable function onR \ {0}. Then ffx f(t)dt and f£x f(t)dt are constantfunctions of
x ifand only if f(t) f, c e R.

Proof The sufficient part of the theorem is trivial. We prove the necessary part: Define the

measure p on the multipicative group R+ as follows: Let E be any Borel measurable set

of R+. Define p (E) JE f(y)dy, then we claim that p is a Haar measure on R.

p([a,b])= f f(y)dy
Ja

rpb

=> /i([pa, pb])= fiy)dy (3.1)
J pa

- f f(y)dy + I" f(y)dy + f"" f(y)dy.
J pa Ja Jb

Now fpa f(y)dy + f£b f(y)dy 0, since ffx f{y)dy is constant. This implies

l>b

p([pa, pb] I f(y)dy p([a,b].

By approximation, we get p(pE) p(E) and hence p{pmE) p{E) for me Z.

Following the same analysis as before we get, p(pmqnE) p(E). By Corollary 2.3, the

set {pmqn : m,n e Z} is a dense subset of M+. This implies p(aE) p(E) for any
a e M+ and Borel measurable set E. This proves that p is a Haar measure.

Note that p(E) JE jdt is a Haar measure on the multiplicative topological group R+.
Applying Theorem 11.9 from [2, Chapter 9], p cp, for some cel. This in turn gives

/(*) i1 on R+.

Similarly, considering the same Haar measure concept on R+ as before with f(t) replaced
by /(—/)> we can discover /(—0 > 0. Now c\ — C2, since f(t)dt
f\P f(!)dt. Hence /(/) j, c e R.
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