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1 Introduction

It is well known that the set A = {m 4+ ng : m,n € Z} is a dense set in R if g is irrational.
Here we provide a proof using the Engel expansion. Let p, g € R™ \ {1} be fixed. In [1],
the authors proved that a set of the form {+p™q" : m,n € Z} is a dense subset of R iff ]1%5
is an irrational number. Here we give a different proof. The authors in [1] also proved that,
if 1—2—5— is an irrational number and f is a continuous function on R \ {0}, then fx‘nx f()dt
and ffx f(t)dt are constant functions of x if and only if f(t) = ?, where ¢ is a real

number. We extend this result to the class of integrable functions. In this paper we also
obtain an equivalent characterization of irrational numbers. Using this characterization we

Friedrich Engel hat 1913 vorgeschlagen, eine reelle Zahl ¢ > 0 durch eine unendliche
Reihe der Form

P1p2: - Pn

darzustellen, wobei p, eine nicht fallende Folge natiirlicher Zahlen ist. Diese Engel-
Entwicklung ist eindeutig und stellt genau dann eine rationale Zahl g dar, wenn die
Folge der p, ab einem bestimmten Index konstant ist. (Das entsprechende geometri-
sche Endstiick der Reihe lisst sich dann auch als Stammbruch schreiben und man erhiilt
eine Agyptische Darstellung von ¢.) Da zum Beispiel die Eulersche Zahl die Engel-
Entwicklung e = > 22 % besitzt, kann man daraus sofort auf die Irrationalitiit von e
schliessen. In der vorliegenden Arbeit wird diese Methode in Verbindung gebracht mit
der Dichtheit gewisser Mengen in R und einem Problem der Masstheorie.
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show for certain types of numbers that they are irrational: For example we show that e and
g'/" (gisa prime number and 2 < n € N) are irrational numbers. See [4, 5, 6] for similar
results.

2 Series representation of irrational numbers and density properties
For the sake of completeness we give below a proof of the Engel expansion.

Theorem 2.1. For any irrational number 0 < q < 1, there exist natural numbers p; >
2, i=1,2,... with p; < piy+1 such that

o0

g = Z; (2.1)

i— P1P2" " Pi

Proof. Since 0 < g < 1, there exists a natural number p; > 2 such that (p; — l)g < 1 <
p1q < 2.Nowsetag = ¢q, po = 2 anddefine ¢y = p1qg — 1,hence 0 < a; < 1. Choose
an integer p, such that

(p2— Doy <1 < pray < 2.

Define a2 = paa; — 1. The above inequality (p; — 1)g < 1 < p1q implies p1g — 1 <
p1g9 — (p1—1)g which yields a; < ap. Moreover the above inequalities give (p; — 1)ap <
p2a. This implies p; — 1 < pp, since a1 < ap. Hence p; < ps as p; and p; are integers.

By induction, we construct p, € N and a,, satisfying the properties
(Pn+1— Dan <1 < pppran <2,
an = pnan_—l - ]. and (2.2)
Pn = Pn+l-
To see (2.2), let us assume we are given p;, 1 <i <k+1landa;, 1 <i <k, satisfying
(pf_|_] — l)a,- <1< Pi+10; < 2
a; = pijai—1 — 1 and p; > p;i—.
Then we construct pr42 and oy as follows: Take ary1 = pr+1ax — 1. Choose py42
such that (pr4+2 — Dag+1 < 1 < pryaar+1 < 2. As for the previous analysis, the above

inequalities give ax4+1 < ar and pgy+1 — 1 < pr42. This implies pry1 < pi42, which
proves the statement (2.2).

Equation (2.2) yields:
i} 2
Pn Pn
1 1
= |Op—1 — —| < —
Pn Pnl ] 2.3)
= |Pn—10n—2 — L= —]
Pn Pn
1 1 1
=> an—z - - < .
Pn—1 Pn—1Pn Pn—1Pn
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Continuing in this way by induction we get:

e 1
D3

i=l

1
| < .
pip2--- Pi Pip2::+ Pn

Passing to the limit as n tends to infinity in equation (2.3), we get the expression (2.1). [J

The Engel Expansion in Theorem 2.1 is unique. In fact, the expansion of g is an ascending
variant of continued fractions. g can be written in the following way:

1+
1+ .
q= L2
P1
For example the canonical values p;,i = 1,2,..., forg = V2 —1are

(p1, p2, p3,...) =(3,5,5,16, 18,78, 102, 120, 144, . . )

and the canonical values for g = @ are

(p1, p2, p3,...) =(5,6,13, 16, 16, 38,48, 58, 104, .. ).

Theorem 2.2. Define A = {m + nq : m,n € Z}, g € R. Then the following statements
are equivalent.

1. g is an irrational number.
2. There exist z, € A, n € N such that z,, tends to zero as n tends to infiniry.
3. Ais dense in R.

Proof. 1 = 2: Let q be an irrational number. Without loss of generality we can assume
0 < g < 1. Then by the above theorem,

l=1.D|P2 Pi
n
1 2
=>‘ - |< 2.4
2 ;PIPZ"'PI' P1D2" " Pn+l 24
n
1 2
= |pip2--- P (q— ) < :
‘ ! ,-;plpzmpi Pn+1

Also note that p; < pi4+ holds infinitely often, since otherwise g would be rational. So

n
g 1
Pn+1 tends to infinity as n tends to infinity. Let s, = —( E ———)plpz- “ Pns
_ i=1 P1P2" " Pi
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rn = p1p2--- pn. Then r, and s, are integers. Moreover we have that z, = r, + gs, € A
tends to zero as n — 00.

2 = 3: Without loss of generality, we assume that all z,, are positive. Let a, b € R and

a < b. Since Zl(b — a) tends to infinity, there exists Ny such that 'z'/b_a <t < ﬁb, for
n 0

some integer ¢. This implies a < tzy, < b. Since tzy, € A, A is dense in R.

3 = 1: Let A be dense in R. We have to show that ¢ is irrational. Assume the opposite,
i.e., that g is a rational number of the form g = %)1, mo,ng € Z and ng # 0. Clearly
noA C 7, so the distance between two elements of A is at least % Hence A is not
dense. UJ

Corollary 2.3. Suppose p,q € RY\{1}. Then B = {£p™q" : m,n € Z)} is a dense subset

of Ri P is an irrational number.
Ing

Proof. ConsiderthesetB = {mlnp +n Ing : m,n € Z}:

In
minp+nlng :m,n e Z}=1Ing mln—p+n:m,nEZ .
q

By Theorem 2.2, {mll%f;- +n :m,n € Z} is a dense subset of R iff }%5 is an irrational

number. Hence B is a dense subset of R.

Now we will show that B is dense in R iff B is dense in R. Let y > 0. There exists a
sequence m, In p + n,Ing which converges to Iny as ¢ tends to oo. Now by the mean
value theorem

Ip™ q" —y| = |exp(m; In p+n,Ing)—exp(In y)| = exp(c(?))|[(m; In p+n,;Ing)—Iny]|,

where c(¢) is a point lying between (m; In p + n;Ing) and In y. Since ¢(¢) is bounded,
p™q" convergesto y.So {p"q" : m,n € 7} is adense subset of [0, c0). Hence B is dense
in R. Similarly one can show the converse. This completes the proof of Corollary 2.3. [

3 Applications

Example 3.1. If q is a prime number, then for any natural number n > 2, q
irrational number.

I/n is an

Proof. Choose m € N such thatm < g'/"* < m + 1 and hence 0 < ¢'/" —m < 1. Now

consider the set
e

|
A= [Zc,'qi/” :¢j € ZI.
: i=0

Forany k € N, z; = (¢"/" - m)k € A and tends to zero as k tends to infinity. So

for a,b € R, there exist t € Z and no € N such that zi Z it £ ZL This implies

ngo !10 ’
a <1tzy, <b.Astz,, € A, AisdenseinR.
If ¢!/ would be rational, then ¢ = t. Clearly s" A C Z. So the distance between any two
numbers of A would be at least S%, which is a contradiction. Hence ¢!/” is an irrational

number. O
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Example 3.2. Any number q of the form (2.1), with p; < pj+1 for infinitely many i, is an
irrational number. In particular e is an irrational number.

Proof. If q is of the form (2.1) and p; < p;+ for infinitely many i, then, by (2.4),

n

1
Zn —i p1p2 “ e p" (q bl Z—“‘—) tendS tO Zero.
imy P1P2" " Pi

So there are elements z, € A = {m + nqg : m,n € Z} which tend to zero as n tends to
infinity. So by Theorem 2.2 the result follows. g

Example 3.3. Let 'l%g (p,q € RT\ {1})) be an irrational number and f be a locally

integrable function on R \ {0}. Then fxp * f(t)dt and jqu f(t)dt are constant functions of
xifandonlyif f(t) = 7, c € R

Proof. The sufficient part of the theorem is trivial. We prove the necessary part: Define the
measure « on the multipicative group R as follows: Let E be any Borel measurable set
of R*. Define u(E) = fE f(y)dy, then we claim that x4 is a Haar measure on R.

b
ulla, Bl = / FO)dy

pb
= u([pa, pb]) = fy)dy (3.1)
pa

a b pb
= [ roray+ / s+ [ oy

pa

Now [¢ f(y)dy + fbpb f(y)dy =0, since fxpx f(y)dy is constant. This implies

pa

b
ullpa, pbl = / FO)dy = u(la, bl.

By approximation, we get u(pE) = wp(E) and hence u(p™E) = u(E) form € Z.
Following the same analysis as before we get, u(p™q"E) = u(E). By Corollary 2.3, the
set {p™q" : m,n € Z} is a dense subset of R, This implies x(aE) = u(E) for any
a € R* and Borel measurable set E. This proves that 4 is a Haar measure.

Note that zZ(E) = [, 1dt is a Haar measure on the multiplicative topological group R*.

Applying Theorem 11.9 from [2, Chapter 9], # = cj, for some ¢ € R. This in turn gives

f@) =< onR*,

Similarly, considering the same Haar measure concept on R as before with f(¢) replaced

by f(—t), we can discover f(—t) = Cz—z,t > 0. Now ¢; = —cy, since f__lp f()dt =
[ f(t)dt. Hence f(1) = ¢, c e R. O
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