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1 The inequality

The second degree inequality which establishes a fundamental relation between the semi-
perimeter s on the one side, and the circumradius R and the inradius r of a triangle ABC
on the other side is

16Rr — 5r> < s> <4R? +4Rr + 3r2. (1)

This double inequality, known as Gerretsen’s inequality [6], is invaluable in the theory
of triangle inequalities. The standard way of proving it is to calculate the squares of the
distances from the incenter to the centroid and the orthocenter. It resembles the derivation
of the Euler inequality R > 2r from the Euler formula O = R(R — 2r) for the distance
from the incenter / to the circumcenter O, [4]. Let G and H denote the centroid and the
orthocenter of a triangle. Then

9GI? = s* — 16Rr + 5r2,
and
HI?> = 4R* + 4Rr + 3r% — 2.

In der Dreiecksgeometrie gehoren die Ungleichungen von Gerretsen zu den wichtig-
sten quadratischen Ungleichungen: Sie beschrinken den halben Umfang bei gegebe-
nem Um- und Inkreisradius von oben und von unten. Der iibliche Beweis beruht auf
dem Ausrechnen von Abstinden zwischen ausgezeichneten Punkten des Dreiecks. In
der vorliegenden Arbeit liefert der Autor einen weiteren, elementaren Beweis, indem er
neben der bekannten Schurschen Ungleichung eine einfache, allgemeingiiltige Unglei-
chung fiir drei reelle Zahlen ins Spiel bringt. Dariiber hinaus zeigt er, wie man einige
bekannte Ungleichungen aus den Ungleichungen von Gerretsen folgern kann.
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Since squares must be non-negative, the inequalities immediately follow. For the derivation
of H1I? see [8, p. 200]. Once H I? is determined, one can consider the triangle O H I and
its Cevian G . Using Euler’s formula 012 = R(R - 2r), OH? =9R? — (a2 + b2+ cz),
the ratio OG : GH = 1 : 2 on the Euler line, and invoking Stewart’s theorem, G2 is
easily computed. Another way of proving the Gerretsen inequalities is by deducing them
from the so-called fundamental inequality, [1],

2R? + 10Rr —r?2 —2(R —2r)V'R2 — 2Rr
< 52 <2R*+ 10Rr —r?> + 2(R — 2r)V'R? — 2Rr,

whose proof is rather artificial and involved. Indeed,

2R 4+ 10Rr — r* — 2(R — 2r)VR% — 2Rr
= 16Rr — 5r2 + (R — 2 — my > 16Rr — 512,
and
2R? + 10Rr — r? +2(R — 2r)V'R? — 2Rr
= 4R? + 4Rr +3r% - (R —2r — \/RZ_—Z_Rr)z < 4R+ 4Rr + 312,
We give a proof of the LHS inequality of (1) based on the well-known Schur inequality.

For the RHS inequality of (1) we use a simple inequality for three real numbers and the
same trigonometric identity used in the standard proof.

2 Lemmas

Lemma 1 (Schur’s inequality). For three positive numbers x, y and z and all a > 0 it
holds

Xx=y)x=2)+y'(y—x)y—-2)+2%z—x)z-y) 20,
with equality if and only if x = y = z.

For an easy proof see [11, p. 83].

Let
Ti:=x+y+z, Th:=xy+yz+zx, T3:=xyz.

For a = 1 the Schur inequality can be rewritten as
T} —4T\T2 + 973 > 0.
Lemma 2. For three real numbers a, b and c it holds

(—a’+ b2+ D)@ -2+ )@+ =) < (—a+b+c)(a—b+c)*a+b—c)>.
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Proof. Leta < b < ¢ and assume that a® + b% — ¢ > 0, since the other cases are trivial.
Then by multiplying the three inequalities

(—a2+ P2 +AD@* -+ < (—a+b+c)a—b+c),
@ - +AH@+* - <(@a—b+c)a+b-c)?,
(=a° + b* + cz)(a2 +B - il—ast b4 c)z(a +b - c)z,
and taking the square root, we get the desired inequality. For the first inequality, we have
(—a+b+ c)z(a —b+c) —(—a*+b*+ (,‘2)(a2 —-b* + c?)
_ (cz —a- b)2)2 B (C4 —(@?- bz)z)
= (@—b)[@@—b)? =2 + (a+b)?]
=2(a — b)*(@®> + b*> — c?) > 0,
and similarly for the others. 0

Lemma 3. For the product of the cosines of the angles in a triangle it holds

52 — (2R +r)?
4R? '

cos AcosBcosC =

Proof. One proofis given in the excellent book [9, p. 56] where it is shown that the cosines
are roots of the polynomial

4R’} —4RR+r)x* + (> +r* —4R)x + QR +r)* —=s* = 0.

By Vieta’s formula follows the claim. A more direct proof follows from the trigonometric
identity

cos Acos BcosC = %(sinzf‘&-*-sinZB+sin2 C)-1, (2)
the Law of Sines, sin A = a/(2R), and the algebraic identity for the sum of the squares of
the sides

a? +b% + c? =2(s* — 4Rr — r?). (3)
The trigonometric identity (2) is equivalent to
cos® A + cos® B + cos®> C +2cos Acos Beos C = 1.

The last one is true, since

cos> A + cos® B + cos® C — 1
1+cos2A 1+4cos2B
=72 T
= cos(A + B) [cos(A — B) + cos(A + B)]
= —2cosAcos BcosC.

+cos*(A+ B) — 1

For the algebraic identity see [9, p. 52]. O
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3 The proof

Every inequality for three positive x, y, z > 0, with the substitution
a=y+z, b=z4+x, c=x+y,

can be translated to an inequality for the sides of a triangle a, b, ¢, and vice versa. Then
by invoking Heron’s formula for the area A = /s(s —a)(s —b)(s —¢), A = rs =
abc/(4R) and the identity (x + y)(y +2)(z+x) = (x +y + 2)(xy + xz + zx) — xyz, we
get for the elements of the triangle in terms of 71, T3, T3

T N —-T
s =Ty, r2=—i, Rr=—lu.
Ti 4T,
Thus
TW'Th — T T
2 2 2) 1142 3 3
— 16R S5r¢e=Tf — 16— +5—
by r 4 Jr i ATy + T
T3 — 4T\ T + 9T
_ 4 1i2 + 320’

T,

by the Schur inequality. That is the LHS of Gerretsen’s inequality (1).

For the proof of the RHS we take a, b and ¢ in Lemma 2 to be the sides of a triangle. By
the Law of Cosines, —a” +b? +¢? = 2bc cos A and similarly for the other multiples. Then
Lemma 2 gives

8a’b%c? cos A cos B cos C < 64(s — a)*(s — b)%(s — ¢)?
ol
= 64A4/s2 = 4a*b’c*—.
R2
Now we apply Lemma 3 to the expression for cosines and obtain
s2— QR +r)? <2,

which is the RHS of Gerretsen’s inequality (1).

4 Equivalent forms

In this section we will give a few interesting equivalent forms of Gerretsen’s inequality.
It is remarkable that though not explicitly, the inequality has appeared almost a century
before Gerretsen’s publication. In 1870 M. Colins [3] gave the following inequality for the
sides a, b, c of a triangle

2a+b+c)@®+b2+c%) =3+ b + 3 + 3abe).
It is equivalent to the LHS of (1) by (3) and the identity, see [9, p. 52]

@ + b + ¢ =25(% — 6Rr — 3r7).
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By (3) it follows that

24Rr — 12r? < a® + b2 + 2 < 8R? + 412,
is an equivalent inequality to (1), and so is

4r(SR—r) < ab+bc +ca < 4(R+r)%,

since
1
ab+ bc+ca = 5 [(a+b+c)2 — (a2+b2+cz):| = s> +4Rr +r?. (4)
The RHS of the last inequality can be rewritten in trigonometric form using the Law of
Sines and the well-known identity

R+r
coSA +cosB +cosC = R

Then it becomes
sin A sin B + sin B sin C + sin Csin A < (cos A + cos B + cos C)?.
Another equivalent trigonometric form of the inequality is
cosAcosBcosC < (1 —cos A)(1 —cos B)(1 —cos C),

which comes as a byproduct from the derivation of H I in [8].

5 Ono’s, Blundon’s and Hadwiger-Finsler inequality
In 1914 T. Ono conjectured [10] that for all triangles
27(—a® + b + ) (@® - b7 + PP (a” + b7 - )’ < (44)°,
The conjecture was subsequently shown to be false in general, with the simple counterex-

amplea =2,b=3,c=4and A = 3/15 /4. However, it is true for acute triangles. The
inequality from Lemma 2 can be rewritten as

(—a? + b% + D) (@® — b + A (@® + b2 — H) < L 4a).
§
Combining this with the well-known inequality s > 34/3r, we get

3v/3(=a? + b + ) (a* — b* + A)(@® + b* - %) < (4A)%.

But for an acute triangle all the terms in the last inequality are positive and it can be
squared, giving the Ono inequality.
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Blundon’s inequality is the following linear inequality, [1]
s <2R + (3«/5— dr.
It is a consequence of Gerretsen’s inequality, since by the Euler inequality
5?2 < 4R? + 4Rr + 3r?
- (2R +(3V3 - 4)r)2 — r(12+/3 = 20)(R — 2r)
< (2R + (33 - 4)r)2 .

We remark that an inequality of type s < AR + ur holds for all triangles only if it has the
form
s K2R+ 3V3 —dr +a(R - 2r) + Br,

for some a, f > 0. In this sense Blundon’s inequality is the best possible linear inequality.
Similarly, s > 34/3r is the best possible linear inequality of type s > AR + ur, see [2].

To conclude this note, we show that the celebrated Hadwiger—Finsler inequality [5], [7]
43A+ Q <a*+b* +c* <4V3A + 30, (5)

with Q := (a—b)>+(b—c)*+ (c —a)?, can also be deduced from Gerretsen’s inequalities.
It holds +/3s < 4R + r, since by the RHS of (1) and Euler’s inequality
352 <3(4R% 4+ 4Rr +3r?)

= (4R +r)? — (4R +4r)(R —2r)

< @R +1r)%
Hence by (4)

@ +02 4+ = [@=b)?+ - + (- )
= 4(ab + bc + ca) — (a + b + ¢)?
=4r(4R +r) = 4V3A,

proving the LHS of (5). Similarly by the LHS of (1) and s > 3+/3r

a2+b2+c2—3{(a—b)2+(b—c)2+(c—a)2]
= 16(ab + bc + ca) — 5(a + b + ¢)?
— 4(4r> + 16Rr — §%)
< 36r2 < 44/3A,

which is the RHS of (5).
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