
Johann Bernoulli and the cycloid : a theorem
for posterity

Autor(en): Henry, Philippe / Wanner, Gerhard

Objekttyp: Article

Zeitschrift: Elemente der Mathematik

Band (Jahr): 72 (2017)

Heft 4

Persistenter Link: https://doi.org/10.5169/seals-730841

PDF erstellt am: 29.04.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-730841


Elem. Math. 72 (2017) 137 - 163

0013-6018/17/040137-27
DOI 10.4171/EM/338

© Swiss Mathematical Society, 2017

I Elemente der Mathematik

Johann Bernoulli and the cycloid: A theorem for posterity
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Er ist seit 1973 Professor an der Universität Genf.

1 Preamble

"Vous sçavez que l'envie est la Suivante de la Gloire'. [You know that Envy is the follower of Glory.]"

(Johann Bernoulli to Johannes Scheuchzer (1684—1738), April 1, 1721)

Johann Bernoulli (1667-1748) became, after Newton's scientific retirement, Leibniz'
death and the premature decease of his brother Jakob (1654-1705), the world's leading
mathematician in the first decades of the 18th century, a period of dramatic advances in
science due to the newly discovered calculus of Newton and Leibniz. He was the "master"
of the young Leonhard Euler (1707-1783) who, in turn, became "the master of us all"
(in Laplace's words2). Fully aware of his value, Gabriel Cramer (1704-1752) edited his

'http ://www.ub.unibas.ch/bernoulli/index.php/Hauptseite
2According to Libri (Journal des Savants, 1846, p. 51

Johann Bernoulli (1667-1748), dessen Geburtstag sich heuer zum 350ten mal jährt,
war mit seinem Bruder Jakob der dritte Entdecker der Differential- und Integralrechnung

und hatte mit seiner Forschungs- und Lehrtätigkeit dieser erst den endgültigen
Durchbruch verschafft. Darüber hinaus wurde er, besonders über seinen Schüler Leonhard

Euler, zu einer der einflussreichsten Persönlichkeiten der Mathematikgeschichte.
Alle vier Bände seiner 1742 zu Lebzeiten erschienenen Opera omnia sind mit einem
Bildchen geschmückt, wo ein "neidischer" Hund gegen ein an einem Baum hängendes

Zykloidenbildchen anbellt. Auch auf Johanns Konterfei, in noblen Gewändern sitzend,
hält er stolz das Bild einer Zykloide "in die Kamera". Dieser Artikel will über sein

Werk dieser Vorliebe für die Zykloide nachgehen.
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collected works [2], whose printing ended in 1743 under the supervision of Marc-Michel
Bousquet (1696-1762) in Lausanne3.

The title page of Bernoulli's Opera Omnia bears a surprising vignette (see Fig. 1, right),
where Johann's rivals are depicted as a dog barking at a mathematical picture, nailed to

a tree out of its reach. This picture represents a cycloid with the words Supra invidiam,
which can be translated by "beyond envy4". Also in his engraved portrait on the left page,
where his self-confidence leaves no doubt, we see him holding a piece of paper again
containing a drawing of a cycloid.

JOHANNIS
BERNOULLI.

M D. MATHZSEOS PR0FES?°*JQ
Mumm J»«« ?«.«>»«». J»«""»-*

.SEN s IS, Petkopolitanjb,
BeROEINENSIS, Socn &C.

OPERA OMNIA,
T A M ANTE A S PA R SIM EDITA,

quam hactcnus incdita.

TOMÜS PRIMUS,
Ouo contimntur ta

Qu* ab A NNO xtfjio ad ANNUM 1713 jirodicnint.

CV« p •
M D C C X L I I. *

Figure 1 Frontispiece and title page of the first volume of Johann Bernoulli's Opera Omnia [2]
(Bousquet, 1742, private collection).

Curiously, the same vignette reappears on the title page of Euler's masterpiece Methodus
inveniendi lineas curvas, published in 1744 again by Bousquet (see Fig. 2, left). Bousquet
had visited Berlin in March 1743 and brought the four volumes of Johann's Opera Omnia
as a gift for the King of Prussia Frédéric II. On this occasion, Euler presented him with the

recently completed manuscript of his Methodus5. Finally, as if this were not enough, Bousquet

again used the same vignette, this time reversed, in his edition of the correspondence
between Leibniz and Johann Bernoulli published in 1745 (see Fig. 2, right).

3 About the history of the publication of this book, see [12] and [11].
4In a letter from June 22, 1718 to Johannes Scheuchzer, Johann Bernoulli declares explicitly that this was his

motto. One can think that it corresponds to his position in all the disputes he had during his life, in particular with
his oldest brother Jakob. These letters can be consulted on the web site of the University of Basel mentioned in
note 1.

5According to Carathéodory in his introduction to volume XXIV of Euler's Opera Omnia.
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Figure 2 Title page of Euler's Methodus and title page of the Leibniz-Bernoulli Correspondence [9]
(Bousquet, 1744 and 1745 respectively, private collection).

In this year 2017 marking the 350th anniversary of Johann Bernoulli's birth, we review
some of his results on the cycloid and discuss the mathematical origin of the cycloid on
the vignette.

2 New proofs of earlier results on the cycloid
"Le P. Mersenne apprit à Descartes la découverte de Roberval. et c'est ici le commencement

des querelles nombreuses que cette Hélène des géomètres causa parmi eux. [Father Mersenne
taught Roberval's discovery to Descartes. and this was the beginning of the many quarrels
that this Helen of geometers caused among them.]"

(Jean Étienne Montucla (1725-1799), [19, D, p. 55])

According to Evangelista Torricelli6 (1608-1647) the cycloid was invented in 1599 by
Galileo Galilei (1564-1642) as the curve generated by a point P of a generating circle
GA which rolls on a straight line DE (see Fig. 3). For several decades, its geometric
properties (areas, tangents, arc length, etc.) remained a challenge to the mathematicians
of the 17th century (Roberval, Descartes, Fermât, Pascal, etc.). One of the first published
great studies of this curve7 is due to Christiaan Huygens (1629-1695) and is contained in

"Torricelli writes in his Opera geometrica (1644) that "this line was named cycloid by our predecessors,
principally by Galileo 45 years ago" [Vocata est à pradecessoribus nostris. Praecipue à Galileo iam supra 45. annum,
huiusmodi linea adb. Cyclois ).J, De dimensione parabola, Appendix de dimensione cycloidis, [24, p. 85].
7ln 1659, John Wallis (1616-1703) publishes his Tractatus Dun, the first of which is devoted to the cycloid.

Huygens writes that Wallis "tasche a toute force de maintenir l'honneur de sa nation" ["Strives with all his might
to maintain the honor of his nation"] [17, III. p. 57],
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his book Horologium oscillatorium [18], printed in 1673. The principal properties of this

curve known to Huygens at that time were these:

Theorem 1. Let DGE be the cycloid generated by the circle G A of radius a (see Fig. 3).
Then, we have

(a) arc(GO) OP;

(b) The area DGE AD is three times the area of the generating circle G A;

(c) The tangent to the cycloid HP at P is parallel to GO;

(d) The perpendicular to the tangent at P is tangent to the cycloid DFE;
(e) The cycloid F QE is the evolute of the cycloid GP E, the cycloid GPE is the involute

of the cycloid F QE;
(f) The arc length GPE is is equal to 4a;

(g) The pair of cycloids in Figure 3, when reversed, constitutes an isochronous pendu¬
lum, namely a pendulum whose period is independent of the amplitude.

Proof. Huygens' proofs fill a large part of his book. We shall see below how Johann
Bernoulli gained more and more insight and elegant proofs for these results. For the
moment, we just indicate Huygens' proof of (a) and (b) from a manuscript written in summer
1658. For the proof of (a), observe that after the circle has rolled from A to B, it has
rotated by the same amount, hence t AB — arc (HP) ang (PCH). By parallelism,
AB OP and arc (HP) arc(GO), hence (a) is true. For the proof of (b), Huygens
decomposes the sickle-shaped region BGMDANKEB (see Fig. 4) with "indivisibles". If
our corresponding thin slices are chosen symmetrically, i.e., such that FH HL, then
their common length EG + NM is always equal to avc(B G)+atc(BM) arc (BD) — an.

G H

Figure 3 Principal properties of the cycloid (a 1).
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Hence all the slices together fill the rectangle AD HQ, whose area is equal to the area of
the circle.

ADCFigure 4 Huygens' proof of the area formula for the cycloid: a modern and an original drawing from 1658 [17,

XIV, p. 348].

Johann's Lectiones mathematicce. To investigate the properties of the cycloid, Johann has

a new tool, the differential and integral calculus, and an eager student whom he met during

his trip to Paris, the very noble Guillaume François Antoine de 1'Hospital, marquis de

Sainte-Mesme et du Montellier, comte d'Antremonts, seigneur d'Oucques et autres lieux
(1661-1704). De l'Hospital was a "good geometer for the common geometry" but knew

"nothing in differential calculus which he barely knows by name8". So Johann introduced
him into this new calculus with much enthusiasm during the years 1691/1692 and continued

their correspondence [6] until de 1'HospitaTs death. The second part of these lectures,

on integral calculus, were later published in Johann's Opera Omnia9.

Computation of slopes. In the Lectio XVII Johann evaluates quickly and in a masterly
manner the differentials for the cycloid: he has already taught the marquis how to use
them to determine the tangent to the cycloid10. From the two shaded similar triangles (see

Fig. 5, left) we have by Thaïes' theorem11

ds a dz a — y
a : z : y — a — ds : —dy : dz =A — —

dy z

Hence, since x z + s, we have

dy
(1)

dx dz. ds

dy dy dy y2ay - y2

y
2a — y

or
dy
dx

2a — y

y
(2)

The formula ^ — _ L proves Theorem 1 (c). For what is for us today the second derivative,

we obtain from tire chain rule

d2y d / dy\
dx2 dy \dx)

dy
dx

1 1

2 2a—y

—y — 2a + y
y2 (-/¥) —a

~C2 (3)

8Letter of Johann Bernoulli to Pierre Réinond de Montmort, May 21, 1718.

9[2, III, pp. 385-558]. There is a German translation [4],
10[5, pp. 21-22],
uFor a precise meaning of what we call "Thaïes' theorem" or "Eucl. VI.2" we refer to, e.g., 121 ].
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Figure 5 Slopes for the cycloid (left) and radius of curvature (right).

Figure 6 Drawings lor the proof of (4) by Johann in [2, III, p. 4381 (left) and by Jakob in [1, I, pp. 577-578]
(right).

Radius of curvature. The treatment of curvature was discovered by both Bernoulli brothers

around 1692 (see Fig. 6, left and right). Johann explained how to obtain the formula for
the radius of curvature in the Lectio XVI [2, III, p. 437] and its application to the cycloid
in the Lectio XVII [2, III, pp. 438-439]:

Theorem 2.

(a) The radius of curvature for a curve y(x) is given by

dv2 \ ^

_
(dx2 + dy2)s/dx2 + dy2

_
+ -jö-Y

^ —dxd2y d2y
dx2
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(b) For the cycloid in Figure 5 (left) the radius ofcurvature at B satisfies

p 2- BM (5)

Proof, (a) We explain the idea and simplify the proof of the two Bernoulli brothers by
using a picture somewhat similar to that of Jakob rather than that of Johann (see Fig. 5,

right). We represent the curve by the polygon BCF based on a grid of abcissa with equal
distances dx. The idea12 is to construct the center of curvature D as the intersection of two
neighboring perpendiculars to the curve, i.e., to SC and CF. If the upper dy is smaller than
the lower dy, we have a negative second difference dry, which creates curvature. If CFIE
is the straight extension of BC, there appear two pairs of similar triangles CBD ~ FHC
(light grey) and CGE ~ FHE (dark grey), hence

p ds dx H F
and

ds H F ds —d2y

Multiplying the two equalities eliminates H F and gives (4) since ds fdx2 + dy2.

(b) For the proof of (5) we have from (2) that

dy2 2a — y 2a
1 + 1 + — • (6)

dx1 y y

By inserting (6) and (3) into (4) we obtain

: 2 • Jlay 2 • Jy2 + Z2 2 • BM

Rectification of curves. The next fundamental result about the cycloid uses the idea of the

paragraph De Rectificatione curvarum ope sua Evolutionist and is explained in the last

couple of lines of the Lectio XIX [2, III, pp. 445-446]:

Theorem 3.

(a) For the arc length of the cycloid (see Fig. 7) we have

£ arc AC 2 AD 2 CG 2u (7)

(b) For the "dimensione spatii curvilinei AGC" we have

V spatium AGC — segm. AD —U. (8)

12It appeared later that Newton used the same idea in his manuscript Methodus Fluxionum, written in 1671 but

published tardily in 1736 [20. pp. 65-66].
12"On the rectification of curves by means of their involute".
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Proof, (a) We extend the tangent CG until L by an unknown length u such that u+v — £

(Fig. 7, right). We consider the quantities u, v, U, V as functions, for example of the angle
tp, which is the same at A and C by Theorem 1 (c). If <p decreases by an infinitely small

quantity dtp (the same quantity at A and C), we obtain a pair of small right-angled triangles
(one of these is GIH on the left picture), which have the same angles and one pair of equal
legs. Hence the second pair of legs is also equal and so du dv "hujus integrale" is u v,
i.e., I — 2m. Johann writes this last conclusion, analytically, as follows: if A F x and a
is the radius of the circle, then

AD F ~ HG1 GI
DF V2ax — x2 HG — ds adx

\J2ax—x

AD

a dx

V2cix

=$ GL — Vlcix AD CG.

(b) Again, since the angles dtp in both dark triangles are equal as are also the legs, we have
d.U. dV, which proves (b) after integration.

The dotted curve described by L, when tp decreases, has v + u 2v as radius of curvature
and thus satisfies Theorem 2 (b) everywhere. Therefore it must again be a cycloid. This

proves Theorem 1 (d), (e), (f) all together.

3 The caustic of the cycloid
"Regula quam dedimus ad determinandas curvas Causticas non solum succedit in geometricis, sed

etiam se ad mechanicas extendit. [The rule we have given for the determination of caustic curves
was successful not only for geometric curves, but extends also to mechanical ones.]"

(Johann Bernoulli, [2, III, p. 472])



Johann Bernoulli and the cycloid: A theorem for posterity 145

A caustic is the envelope of families of light rays which have been reflected in a curve or
surface. Particularly famous is the caustic of a circle (see Fig. 8, left). Publication about
this curve began in 1682 by Ehrenfried Walther von Tschirnhaus (1651-1708) with a couple

of incorrect mathematical statements14. Johann showed in a paper from 1691 "Per
vulgarem Geometriam Cartesianam" that this curve has an equation of degree 6 (and not
of degree 4 as Tschirnhaus had asserted) and gave in Lectio XXVI-XXVIII detailed properties

culminating in the result that it is an epicycloid15.

In case of the cycloid, there is a nice result that Jakob learns from his brother with
"astonishment16":

Theorem 4. The caust ic ofa cycloid is again a cycloid, composed of two branches half
as large as the reflecting one (see Fig. 8, right).

Proof. Consider a curve ABC determined by the coordinates AG x and GB y (see

Fig. 9, left) reflecting a bundle of light rays arriving along GB and focussing in H. Around
March 1692, Johann obtained for the distance BH the formula

dx2 + dy2 1 + ~rC2

(9)

-d.C

and gives a long proof in Lectio XXVI [2, III, pp. 464-466]. In order to simplify the proof,
we draw, inspired by the pictures in Figure 6, a pair of parallel rays moving up from G

at distance dx and their reflections BH (reflected in BC) and CH (reflected in CE; see

Fig. 10, left).
The second mirror CE is rotated by a small angle (in grey) due to —d2y. Because reflected

light rays rotate twice as fast as the mirror, this second ray CH has rotated two grey angles.
We therefore use the angle bisector to divide triangle BHC into two parts and obtain the

similar triangles BHN and DCE. Since in the infinitesimal limit NB ^ '4f (a

consequence of Euch VI.3), we have by Thaïes' Theorem

BH ds

ds/2 —d2y

14For details and their corrections by Huygens we refer to M. Mattmtiller's commentaries in vol. 5 of Werke von
Jacob Bernoulli, pp. 348-349.
15 [2,1, pp. 52-59], [2, III, Demonstratio and Fig. 106, p. 470].
16"(... omnia non sine stupore perlegere potui" [1,1, p. 503].
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CXC11, Universitätsbibliothek, Basel, Mscr. L la 3, f. 238, http : / /www. e-manuscripta. ch).

which, since ds2 dx2 + dy2, is formula (9).

For the cycloid, inserting (6) and (3), this formula simplifies to

BH BG y. (10)

Johann concludes from this that the caustic is again a cycloid17.

We can, however, avoid all these calculations by considering the rolling circle, which creates

the cycloid, together with its diameter BF (see Fig. 10, right). From the equal angles

2 left and right of BM, we see that this diameter coincides with the reflected ray BH.
Neighboring rays appear when the circle rolls on, thereby rotating at every instant around
the base point M, and intersect in that point where the velocity is parallel to FB, i.e., in
the perpendicular projection H oî M onto FB. The equality of triangles MHB and MGB
then proves (10). Furthermore, H lies on the Thaïes circle with center L and radius

rolling at the same horizontal speed, because the angle HLM is twice the angle FKM
(by Euch III.20). Therefore H describes a small cycloid as stated.

17[2, III, pp. 478^180]. Johann communicates this property in a (now lost) letter to his brother, dated March 15,

1692 [8, p. 144], Jakob publishes this result the same year [1,1, pp. 506-507].
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4 The brachystochrone problem
"Tous ceux qui sçavent au moins les Nouvelles des Sciences, ont entendu parler du célébré

Problême de la plus vîte Descente. [All those who at least know the news of Science, have heard about
the famous problem of descent in shortest time.]"

(Bernard Le Bouyer de Fontenelle (1657-1757), [16,1, p. 51])

At the end of an article published in the Acto Eruditorum of June 1696, Johann Bernoulli
suggests the following problem:

"Datis in piano verticali duobus punctis A & B, assignare Mobili M viam AMB, per quam gravitate
sua descendens, & moveri incipiens a puncto A, brevissimo tempore perveniat ad alterum punctum
B. [Given two points A and B in a vertical plane, find the path AMB along which a moving point
M, descending under gravitation and starting to move at A, arrives at the other point B in shortest

time.]" [2,1, p. 161]

He adds that the curve is well known to geometers and fixes a time limit of six months for
submitting a solution. Leibniz decided18 that the limit should be extended until Easter of
the following year, so that others, perhaps not yet experts in the new calculus, might try to
find a solution. In the same spirit, Johann wrote to de l'Hospital on June 30:

"Je voudrais que quelques uns de vos Geometres qui se vantent de posséder de si excellentes méthode

de maximis et minimis, s'y attachassent, car voylà un exemple, qui leur donnera de la besoigne
et peutetre plus que leur méthode ne pourra faire. [I would like that some of your Geometers,
who are so proud of their excellent methods de maximis et minimis, should also attack this problem,

because this example will give them a lot of work, and perhaps more than their methods can

achieve.]" [6, p. 321]

At the end of the deadline, the texts of Johann, Jakob, Leibniz, de l'Hospital, Tschirnhaus
and Newton are published in the Acta Eruditorum of May 1697:

Theorem 5. The brachystochrone curve is a cycloid.

Johann's indirect solution. This solution ([2,1, pp. 187-193], see Fig. 11) was another of
Johann's strokes of genius: he applies "une merveilleuse identité de nôtre courbe avec la
courbure du rayon de lumière19". Namely, recalling the research of Fermât, Leibniz and

Huygens, he uses the fact that a light ray, passing through two different media and obeying
the Snellius-Descartes law of refraction

Ol 02
— (uj, 09 speeds of light) (11)

sinaj sin «2

connects two given points A and B in the shortest possible time.

If now the light ray crosses several layers of material at varying speed (see Fig. 12 (a)), it
would satisfy equation (11) all along the curve, hence

v
a (constant) or v2(dx2 + cly2) — a2 dy~ or dy - dx (12)

sin a
-

^2 _
18 Journal clés Sçavans, 19 November 1696, pp. 451—455.

19Letter of Johann Bernoulli to the Marquis de l'Hospital, March 30, 1697, [3, p. 347].
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Figure 11 Johann's figure for the brachystochrone problem [2,1, p. 202],

(a) ,.A

Figure 12 (a) The brachystochrone problem; (b) Integration of the differential equation (13).

(because sin a
dy dy
dz ~ «JdJ+dyl

The same should be true for our moving body, for

which we know, since Galileo, that the velocity (represented by the curve AHE to the left
of Fig. 11) forms a parabola as function of the altitude x, hence is proportional to */x. We
normalize the constant of gravity to have v -J~ax, so that (12) becomes

dx.dy —

This is precisely the differential equation (2) for a cycloid generated by a circle of radius

a/2. However, Johann establishes the link with the cycloid as follows:

dy dx
x dx a dx (ia — 2x)dx

Vax — x2 2Vox — x2 2Vax — x2
(13)

Here, the last operation cleverly produced the factor a — 2x, which for us is the inner
derivative of the denominator. So the second term can easily be integrated (from A to C,
hence from 0 to x) and gives Vax — x2, which is the distance LO in Figures 11 and 12

(b) for the circle of radius |. The first term, from Figure 12 (b) and Thaïes' theorem, is
the arc length ds of this circle, so that its integral becomes the arc GL. Hence integrating
equation (13) between A and M of gives

CM f dy arc (GL) - LO (14)
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This relation holds for any circle of radius § tangent to AG. If we place it so that AG
CM + ML + LO — arc (GL) + arc (LK), then equation (14) leads to

ML arc (LK) (15)

This is the characterization of Theorem 1 (a) for a cycloid.

Johann's solution "d'une maniéré directe & extraordinaire". Johann had this "extraordinary"

idea for his second proof already in 1697 but, following the advice of Leibniz,
did not publish it for more than 20 years20. Two centuries later, Constantin Carathéodory
(1873-1950), in an appendix to his thesis (Göttingen 1904 with H.Minkowski) wrote
"diese höchst eleganten Betrachtungen [sind] die erste vollkommen befriedigende, strenge
Lösung eines Variationsproblems21".

Proof. Imagine a horizontal line ALL' and a fixed narrow sector LDL' with fixed distance

LD a and fixed inclination a (see Fig. 13, left). We ask: for which point C at unknown
distance CL x, does a body starting at A, and arriving at C with speed v ~J2gx sin a

(g gravitational acceleration), cross this sector on an orbit CC' in shortest possible time?
We imagine the angle cla to be infinitely small ("infiniment aigu"), so that we can take the

orbit to be a small straight line making an angle ß + j with the line DL. The crossing
time is thus

1 (a + x) da 1

dt ds - - (16)
ü cos ß v2gx sin a

We see that ß must be zero, i.e., the crossing is perpendicular to DL and that, neglecting
constants, we have to minimize

a + x a !——— —= + \/x which leads to x a.
s/x *Jx

Our intuition tells us that for da tending to zero, the intersection D of two neighboring
perpendiculars is the center of curvature. The condition x a means that the base line AL
divides the radius of curvature in the middle, hence the solution curve should be a cycloid
by (5).

Synthetic solution. We draw the entire fan of perpendiculars of a cycloid (Fig. 13, right),
indicating the crossing time (16) for each sector by shades of grey (white fast, dark

slow). We clearly see that any curve other than the cycloid enters somewhere into slower
regions and has somewhere angles ß different from zero, hence needs more time for the
entire trajectory.

Final solution. In order to complete his solution for fixed given points A and B, Johann
draws an arbitrary cycloid AS (see Fig. 14, left) and uses the fact that all cycloids starting
at A are similar. Hence, the intersection point R of the line AB with this cycloid determines

20[2,1, pp. 197-198], [2, II, pp.266-269 (1718)]. Johann writes in 1718: "L'incomparable Mr. Leibniz
trouva cette méthode directe d'une beauté si singulière, qu'il me conseilla de ne la pas publier )."
21 [10, pp. 69-70],
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the similarity factor AB/AR. An anonymous author from England had submitted, without
further explanation, the same drawing (see Fig. 14, right) and had been designated by
"from the lion's claw22".

Figure 14 Johann's final solution of the brachystochrone problem (left) and Newton's solution (right)
in the Acta Eruditorum (May 1697).

5 The isochronous pendulum
"Quod si vero Hugeniana, licet légitima, sed ob multarum propositionum farraginem & perplexi-
tatem non arrisit; laudo propositum succinctiorem tradendi, modo tradidisset genuinam. [But Huy-
gens' proof, although correct, did not please him [Philippe de La Hire] because of the jumble of
several propositions; I agree to give it more succinctly, but it should appear accurate.]" (Johann

Bernoulli, [2,1, p. 248])

Before Huygens, time measurements were very rudimentary and the precision of pendulum

clocks suffered from the fact that the period of oscillation increased with increasing
amplitudes. A spectacular discovery of Huygens'23, useful for the invention of accurate

pendulum clocks, was item (g) in Theorem 1 above, namely that the period of a pendulum
moving on a reversed cycloid is independent of the amplitude.

~~"ex ungue leonem" [2,1, p. 196].

23[18,Prop. XXV, p. 57].
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After reading an erroneous proof of this theorem by Philippe de La Hire (1640-1718),
Johann Bernoulli published a very short proof in the Acta Eruditorum of June 1698 [2,1,

pp. 248-249],

Figure 15 Johann's drawing for the isochronous oscillations of the cycloidal pendulum |2,1, p. 254].

Proof. Suppose that two bodies start sliding simultaneously, one at G, the other at F (see

Fig. 15). We divide the arcs CD and FD in the same number of equidistant infinitely small

parts, a pair of these being Mm corresponding to Ee. We denote the ratio

— - q so that also Mm — q Ee arc(MD) q sltc(ED) (17)
arc (FD)

Therefore, "per naturam Cycloidis" (see Theorem 3 (a)), we also have

LD q AD, OD q BD so that LD2 — q2 AD2 OD2 =q2 BD2 (18)

If a is the diameter of the circle ABDOL, then

AD2 LD2 BD2 OD2
AD — HD TD ND (19)

a a a a

by Thaies' Theorem. Thus we have by (19) and (18)

LD2-OD2 9 AD2-BD2
HN HD — ND — q2 q2 (AD - TD) q2 AT

a a

Finally, "per naturam gravium descendentium" the velocities of the bodies at the positions
M and E are proportional to VHN and AT respectively, therefore

velocity for Mm — q velocity for Ee.

Since Mm q Ee (see (17)), this equality shows that the two bodies take precisely the

same time to travel along the two intervals. Since this happens everywhere, the "descensus

per DF & DG sunt isochroni".
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Short proofs. New insight arose from Euler's work (in particular [15, El 12] from 1747

and [13, E62] from 1743). For a mass point (of mass m 1, see Fig. 16) sliding on a curve
with distance ^(t) from the base point, accelerated by gravitation g, we obtain a force / in
direction of the curve for which we have, using two similar triangles,

— — — hence / — • I (because I — 2u ; Theorem3 (a)).
g a 2a

Therefore the movement is governed by24

£+ — •/' 0 =4> £ A cos /— t (for £(0) A, C(0) 0).
2a V 2a

Because cos reaches zero for t f-, the time of descent to the base point is

independent of the amplitude A.

From another pair of similar triangles (see again Fig. 16), we find that

• 2
x a sin a, i.e., — a,

sin a

which, together with Galileo's law for the velocity, is the condition (12) for the brachys-
tochrone.

Thus the three similar triangles of Figure 16 prove both famous properties of the cycloid
simultaneously.

6 Squarable areas bounded by the cycloid
% • • toutte la facilité qu'il [Jakob] pretend faire voir en cela, ne sert qu'à relever vostre solution,
& à faire admirer davantage que dans une courbe aussi examinée que celle-là, on ne luy en eust

24"While physicists call these "Newton's equations", they occur nowhere in the work of Newton or of anyone
else prior to 1747." (C. Truesdell, Essays in the History ofMechanics, 1968).



Johann Bernoulli and the cycloid: A theorem for posterity 153

cru que deux quarrables avant vous. [(...) all the ease he claims to display in this, serves only
to enhance your solution and make us admire more the fact that before you we believed that this

curve, the object of so much study, could have only two squarable areas.]"

(Pierre Varignon (1654-1722) to Joh. Bernoulli, April 5, 1700, [7, p. 236])

In the introduction to a memoir published in two versions (Latin and French) in 169925,

Johann begins by writing that this year is, as we have already mentioned, the centenary of
Galileo's invention of this curve according to Tomcelli. We know that Galileo tried without
success to determine the area under the cycloid and that around 1637 several geometers
had found this area to be three times that of the generating circle. Later, a challenge by a

certain Amos Dettonville (who was in fact Blaise Pascal, 1623-1662) published in June
165826 again encouraged research about this curve. A month later, Huygens found a new
proof for the area formula (see Fig. 4) and, by comparing surfaces of spheres and cylinders
in space, found a segment of the cycloid whose area does not involve the quadrature of the

circle ([17, II, pp. 348-351], see Fig. 17, left). This result is the outcome of his attempt to
solve Pascal's first problem: given any point Z on the cycloid, determine the dimension of
the surface CZY [22, II, p. 319]. Huygens writes about Pascal's problems:

"Ils me semblent si difficiles pour la pluspart que je doubte fort si celuy mesme qui les a proposez
les pourrait tous résoudre, et voudrais bien qu'il nous en eust assuré dans ce mesme imprimé.
Autrement il est fort aisé d'inventer des problèmes impossibles [These problems seem to me
so difficult, that I have strong doubts that the proposer himself was able to solve them all, and I

am sorry that he did not inform us about this. Otherwise it is easy to invent impossible problems

(...).]"
(Huygens to Ismaël Boulliau, July 25, 1658, [17, II, pp. 200-201])

Huygens' result was then mentioned by Pascal in his Histoire de la roulette27 by saying
that the "Dutchman" Huygens had discovered it, but also the "Englishman" Wren at nearly
the same time. Huygens published it eventually (without proof) in his Horologium oscil-
latorium [18, p. 69] in 1673. The next year, Leibniz presented him with his Quadrature
arithmétique du cercle, where (again without proof) another squarable segment of the
cycloid is mentioned (see Fig. 17, right): the area of the segment AG of the cycloid is equal
to the area of the triangle AFB. During the following twenty-five years no other such

quadratures were found and people thought that such discoveries were impossible28.

After having found an infinity of such squarable segments or sectors of the cycloid, Johann

sent his article to the Académie des sciences with the words:

25Cycloidis primaria: Segmenta innumera Quadraturam recipientia; aliorumque ejusdem spatiorum quadrabilium
determinatio: post varias illius fortunas nunc primum detecta a Joh. Bernoullio (Quadrature of innumerable

segments of the ordinary cycloid and determination of other squarable areas now discovered for the first time
after varied attempts by Joh. Bernoulli), Acta Eruditorum (A. £.), July 1699, pp. 316-320, [2,1, pp. 322-327] or
[8, pp. 393-399]. The French version is presented to the Académie des sciences in Paris on July 11, 1699 [3].
Jakob and Johann were elected foreign associates of the Academy of sciences on February 14, 1699.
26It is reported that Pascal was searching a terribly difficult geometric problem in order to divert his spirit from
painful tooth akes [22, II, p. 1254].
27"(... M. Huygens, Hollandais, qui a le premier produit que la portion de la roulette retranchée par l'ordonnée
à l'axe, menée du premier quart de l'axe du côté du sommet, est égale à un espace rectiligne donné. Et j'ai trouvé
la même chose dans une lettre de M. Wren, Anglais, écrite presque en même temps." [22, II, p. 353]
28Johann Bernoulli attributes such an opinion to Tschirnhaus [2, I. p. 326] or [3, p. 135J. It seems that it is in

September 1696 that he denies for the first time this assertion [9,1, p. 202].



154 Ph. Henry and G. Wanner

C

Y

G

F
Figure 17 Left: if CY jjCF, then the area CZY equals the triangle F OY (Huygens). Right: if F is the centre
of the generating circle, then the segment AG equals the triangle AB F (Leibniz).

"(... comme selon toutes les apparences, ce sera la derniere observation qu'on aura faite dans ce

siecle au sujet de nôtre cycloïde, il est juste qu'après une durée de cent ans, qu'elle a continuellement

exercé les Mathématiciens de toute l'Europe, elle retourne maintenant porter ce dernier éclat

en France où elle a pris son premier lustre. [Because by all appearances, this will be the last
observation made in this century about our cycloid, it is fair that after a period of a hundred years in
which it has continuously exercised Mathematicians from all over Europe, it now returns to France,
where it began to gleam, to shine with this new result.]" [3, p. 135]

We start the presentation of Johann's results with the following lemma, which he claims
to be "une propriété de la cycloïde déjà connue29":

Lemma 1. The surfaces Si and S2 in Figure 18 {left) have the same area.

Proof. This is in fact Theorem 3 (b), if the identical triangles AKD and CO H are attached

Here are the three new results contained in Johann's paper:

Theorem 6. IfAK IH {where H is the center of the generating circle) and points B

and D lie on opposite branches of the cycloid {see Fig. 19 (a)), then

area ofsegment BCDB sum ofareas of triangles LFI and MFK.

Theorem 7. IfAK IH and points B and D lie on the same branch of the cycloid {see

Fig. 19 (b)), then

area ofsegment BCDB — difference ofareas of triangles LFI and MFK.
2®[3, p. 137], Newton also gave a demonstration of this lemma [20, p. 91].

Figure 18 Figures for Lemma 1.

to U and V respectively (see Fig. 18, right).
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Theorem 8. If A K IH and points B and D lie symmetrically with respect to A (see

Fig. 19 (c)), then

area of sector IBADI area of isosceles triangle LFM.

Proof of Theorem 6. Because of the hypothesis AK / H we have NB+OD — where
a is the radius of the circle AF. Thus the area of the trapezium BDON is NO c^. To make
the proof as clear as possible, we surmount Johann's picture with the triangle NOZ —

T\ + T2 + r2' + T'y with ZA a (see Fig. 20) so that we have

area trapezium BDON area triangle NOZ T\ + To + T,' + T[. (20)

We now insert

T\=s2 + T3, t; S'2 + T;, T2 T4, T2 T{ (21)

(the first two equalities follow from Theorem 1 (a) and the last two from the fact that we
have two pairs of triangles with same base and same altitude) in (20) and we obtain

Tx&p.ßDON — ^2 + T2 + T4 + T{ + So + T2.
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We then replace S2 by 5] and SL by SJ by using Lemma 1 and have

Segm-badb Trap-boon — Si — S[ T4 + T3 + T{ + r3'.

Proofof Theorem 7. Here also NB+0D — | but now NO — NA — AO and thus

Trap-boon — T\ + T2 — T2' — T[.

Therefore, we obtain by using (21) and Sj S\, S'2 Sj as above

Segm,BDB — Trap-bdon ~ ^1 + ^ T4 + Tj — T'A - T3'.

Proof of Theorem 8. We move point I horizontally to a point b on the cycloid, so that the

areas of the triangles I BD and b BD are the same, hence also the areas of the gray sectors

IBAD and bBAD (see Fig. 21). The latter is the difference of the segment of Theorem 6

and that of Theorem7 and therefore its area is equal to 2(T4' + Tff.

Theorem6 for K I is the result of Huygens and for I A (and therefore K — H) that
of Leibniz.

At the end of the article he sent to Paris, Johann Bernoulli states that, whenever the

"démonstration synthétique" of his general results "aura eu le bonheur de plaire à

l'Académie", he would also forward his analytic calculations, which were at the origin of his

discovery. But he did not carry out this project.
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7 Epilogue
"J'espere, Monsieur, que vous ne communiquerez rien à mon frere de tout ce que je viens de

vous montrer, car cela luy donnerait une ouverture à la solution du problème [I hope, sir, that

you will communicate nothing to my brother of all that 1 have just shown you, for that would

open his way to the solution of the problem ).]"

(Johann Bernoulli to de 1'Hospital, January 22, 1701, [6, p. 373])

Which of the many theorems presented by Johann on the cycloid is the one for which he

seems particularly proud and on which he decided to base his reputation in an allegorical
way? Is this yet another result30? Let us take a closer look at the pictures of Figure 1 (see

Fig. 22, left). This same drawing also appears on another portrait (see Fig. 22, right) and

on an oil painting version of it preserved at the University of Basel.

We recognize clearly the picture for Theorem 6 (see Fig. 19 (a)) in his paper of 1699 but
with a small mistake due to the engraver31. Precisely hundred years after the discovery
of the cycloid by Galileo, after a century of efforts by the most eminent mathematicians,
Johann was able to generalize two results of two of them and to achieve a nice discovery
in a long standing tradition.

At the end of the Latin version of the same paper, Johann states without proof that if
HA a, HK x — ^ arc (ML) arc (AM) (notations of Fig. 23), then

zona cycloidalis IKDB triangles H AL + IAL — H AM — KAM (22)

Jakob Bernoulli's reaction. His brother's discovery was apparently a bitter pill for
Jakob32. Two months later he publishes an article33 in which he does not give a word
of mention to Johann's result, and starts by writing:

"Omnia, quEe circa Quadraturas spatiorum cycloidalium inveniri possunt, una Cycloidis proprietate
dudum detecta nituntur, & ex ea tam aperte fiuunt, ut Viri celeberrimi Hugenius & Leibnitius, qui
duo ejus segmenta quadrarunt, non potuissent non pari facilitate estera omnia segmenta & sectores

quadrabiles reperire, si animum intendere voluissent. [Everything that can be found concerning the

quadrature of cycloidal areas depends on a newly discovered property of the cycloid from which
this follows so easily that the very famous Huygens and Leibniz, who both obtained a squarable

segment, could not have found with such ease other squarable segments or sectors if they had

wanted to do.]" [1, II, p. 871J

This "newly discovered property" of the cycloid is Lemma 1 above. It allows Jakob to

calculate, with the notations of the Figure 23 and some elementary geometry, the areas

Zona AKD Zona AKDO — Zona AKM (1 — x)(p + s) s H—px

Zona AMD Zona AK DO — 2 • Zona AKM (1 — x)(p + s) — s + px

30On iterated involutes of the circle, see Ph. Henry, G. Wanner, Jost Biirgi, Johann Bernoulli and the Euler
Numbers, in preparation.
-''The point M on Figure 19 (a) is not the intersection of the circle with BD\
^"Concerning the relationship between the two brothers, see [23].
33A E„ September 1699, pp. 427-428, [1, II, pp. 871-873], also in [2,1, pp. 328-329] or [8, pp. 400-403],
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Figure 22 Left: details of the frontispiece and the vignette. Right: Johann's portrait in the Matriculation Reg¬
ister of the Rectorate of the University of Basel (Universitätsbibliothek, Basel, AN II 4a, f. 187v,

http : / /www. e-codi ces uni fr. ch).

In the same way, he finds the areas of the analogous "zona"

Zona AI B — Zona AI BN — Zona AIL (1 — z)(q + t) — —t + —qz

Zona ALB Zona AI BN — 2 • Zona AIL (1 — z)(q + t) — t + qz

By subtracting, we obtain34

Zona IKDB ~q — \qz ~ p + \px+ \t — z^ — s

Zona LMDB 2 Zona ADB — q — p + [sx — tz]
(23)

The first terms of the expressions in (23) are "purely rectilinear35" because they are sums

34The relation Zona LMDB 2 Zona ADB was stated by Jakob without further comment and allowed him to
declare ADB to be a "sector quadrabilis" of the cycloid. By Lemma 1, we have Zona AB ANB — [ANBD
AIL] f — T an<3 similarly Zona AD Ç Therefore, we obtain Zona ADB Zona AS —Zona AD

2 • Zona LMDB. It seems that this was known to Leibniz as a result of his "méthode de la métamorphose",
communicated in some letters but never published.
35 [1,11, p. 872],
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and differences of four (or two) triangles. Therefore the terms in brackets, containing arc
lengths (depending on n), should vanish. If we manage to find HI z and H K — x such

that

— z) — — *) 0 in the first case and sx — tz 0 in the second, (24)

we would have found new squarable regions of the cycloid.

Jakob's idea is to assume that t ns for n 2, 3, 4... and thus (24) becomes

ii — I x x
z 1— in the first case and z — — in the second. (25)

2n n n

Since for n — 2, 3, 4,... we have the equations

z — 2x2 — 1, z 4x3 — 3x, z 8x4 — 8x2+1, (26)

we find with (25) the following algebraic equations for the unknowns:

n first case second case

2 0 a2 - - § 0 x2 — f — J
3 0 X2, — |x — j2 0 — x2 —

4 0 X4 — X2 — + 0 A'4 — X2 — + l
Johann's result (22) is the same as (23) (first case), since his value for HK a is the root
of the quadratic equation corresponding ton — 2 of the first case36.

The polynomials (26) are today known as Chebyshev polynomials of the first kind37 and

they allow us to calculate the maximal solutions numerically for any degree (see Fig. 24).
Observe that for n oo, the left "spatia" converge to that of Huygens and the right one
to that of Leibniz.

Jakob concludes his article by writing:

36Johann will agree that this constitutes the "foundation" of his method [2,1, p. 331],
37Since x cos a, z cos(na), this is the definition of these polynomials 7), (cos a) cos(/ia).
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"Methodum vero tarn facilem haud alia fini pandere volui, quam ut Frater, exemplo meo, ad paria
przestanda incitatus, mei quoque Problematis Isoperimetrici promissam analysin tandem aliquando
nobis impertiat. [I developed this really easy method for no other reason than that my brother
should follow my example and reveal after all his promises his solution of my problem about

isoperimetric curves.]" [1, II, p. 873]

This last sentence should remind the reader that Jakob, who might be on the way to loosing
a battle against Johann, was victorious in another battle, the one about the calculus of
variations38.

Jakob's second paper. After being challenged by Johann39, Jakob publishes another
paper40 containing the following construction (without proof):

^For more information, see [8].
39A. £., June 1700, pp. 266-271, [2,1, pp. 330-335] or [8, pp. 420^124],
404. £., December 1700, pp. 551-552, [1, II, pp. 892-994], also in [2,1, pp. 336] or [8, pp. 455^157].
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Theorem 9. Let AQH be a quarter of circle. To obtain geometrically a "quadrabilis"
area (22) such that s at for a given 0 < a < 1,

i) put AP AH 1 and choose G such that AG a;

ii) let R be the midpoint of G P and draw a parallel to G H through R;

iii) construct the curve PSO as follows: for every horizontal line CEF. set HT —

a CE, draw the circle of center T and radius 1 which intersects the cycloid in V
{the farthest point of A), draw the horizontal line V N and put NO — H F;

iv) the intersection S of the curve PSO with the parallel through R defines K (and thus

M, D) and put Hl KS to define I {and thus L, B).

Proof By construction of T and of the parallelogram T H XV, the pair of segments CE
and VX are such that VX a CE, so that by Theorem 1 (a) the arcs XA and EA are
also in the same ratio. With the notations F H — z and NH x (as above), we have by
construction (see Fig. 25)

NO z and NZ NW + WZ — ax H —
2

If the line V X moves up and down, the points O and Z respectively describe a curve OSP
and a straight line ZSR. At the point S of their intersection, the relation (25) (first case)

with, for the present situation a instead of is satisfied.

Johann's reply. Johann, not satisfied with this construction, writes:
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"Dico algebraïce; qui enim ad eas determinandas utitur curva quadam transcendente, sane is non
plus prsestitit, quam qui quadraturam circuli, ex supposita peripheriae rectificatione, se invenisse

gloriaretur. [I say algebraically; indeed, he who uses a certain transcendental curve to determine
them (the squarable areas) does not accomplish any more than he who expects glory for having
found the quadrature of the circle assuming the rectification of its circumference.]" [2,1, p. 389]

Johann is also not satisfied with the equations (26) because, according to him41, in the
three very simple cases given by his brother one does not distinguish the law of formation
of the polynomials. He would have liked to invite his brother to find solutions based on the
formula42

î bn-1 _ " ~2 bn-3
(» - 3)(fl - 4) 5 _

(n - 4)(n - 5 )(n - 6) ^a 1 1-2 1-2-3

"cujus progressionis natura per se manifesta est43", where a 2 sin a, b 2 cos a, x
2 sin(raa). While Jakob had given in (26) the first three Chebyshev polynomials of the first
kind, Johann's formula is today written sin(na) sin a • ï/„_i(cosa) with the general
formula of the Chebyshev polynomials of the second kind44.

Acknowledgment. It is a pleasure to thank John Steinig for his many valuable corrections
that helped to greatly improve the text.
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