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Short note  Gerretsen and the
Finsler—-Hadwiger inequality

Gerhard Wanner

The inequalities. The beautiful paper [2] (1953) by J.C.H. Gerretsen, written in Dutch
language, is of difficult access!. It starts by stating Weitzenbock’s inequality from 1919 [4]

a? + b2 +c* > 443, (D

where A denotes the area of a triangle with sides @, b, ¢. Next follows its sharpening by
P. Finsler and H. Hadwiger [1] from 1938

a2 +b2+2 > 443+ 0, 2)

where
Q=(a—b)+(b—0c)+(c—a) (3)

can be seen as a measure for the “ongelijkzijdigheidsgraad”™ of the triangle. In both in-
equalities we have equality only for the equilateral triangle. Gerretsen then elaborates in
Art. 2 the original proof of Finsler and Hadwiger (“Het bewijs ... is nogal listig”) and
gives simpler proofs for (1) and (2) in Arts. 3 and 4.

A further consequence. In Art. 5 Gerretsen continues as follows: From the Cosine Theo-
rem

a = b? —|—02 —2bccosa = b% + ¢* — 4 Acota

we obtain by cyclic permutations and addition’

Ya? =443 cota

IThe author is grateful to W. Hundstorfer, Amsterdam, for providing him with a copy (“The scanner is not used
often anymore, everything is on the internet. Well ... almost everything”).

2literal]y “degree of unequilaterality”; Gerretsen adds: “as long as one does not find this word to crazy [wanneer
men dit woord niet te gek vindt]”.

3Gerretsen leaves the meaning of the notations X a? =a?+b>+c2or T cota = cota +cotf + coty or
¥ ab = ab + bc + ca to the intelligence of the reader.
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so that

Ya’>—Q=2%ab— Za2:4AE(
Sin o

— cota) =44 % tan % , 4)

thus the inequality of Finsler and Hadwiger means that

o B y
tan — tan — tan — > +/3 3
an2+an2+an2_x/— )]

for all angles @, f5, y of a triangle.

1.

2 T pon

Proof of tan & + tan g +tan £ > /3

Backward proof. However, we believe the inequality (5) at once: the angles a, 8, y of a
triangle satisfying a + f + y = « form in R? an equilateral triangle for which (e, £, 7)
are the barycentric coordinates (see the Figure above). The three terms of (5) are convex
functions on this triangle, each one strictly convex in another direction, therefore their sum
is strictly convex with a 120°-symmetry. Thus its minimal point, which must be unique,
can only lie in the center where & = f# = y = % and the sum is V3. Reading now the
proof in (4) backwards, we obtain another nice proof of the Finsler—-Hadwiger inequality.

Epilog. In Art. 7 Gerretsen proves “his” famous inequalities with the standard proof from
the Euler distances of the “bijzondere punkten” (see, e.g., [3]), and, inversely, Lukarevski
[3] proves the Finsler—-Hadwiger inequality from Gerritsen’s inequalities.
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