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I Elemente der Mathematik

Short note Expressing the remainder of the Taylor poly¬
nomial when the function lacks smoothness

Radim Hosek

Abstract. Taylor's theorem is a widely used tool for approximating a function by a

polynomial. This is only possible when the function possesses continuous derivatives

up to a corresponding order. To be able to get a more precise formula for the remainder,

i.e., the difference between the function and its Taylor polynomial, the standard

theorem requires the function to have in addition one more continuous derivative. In
this paper we bring a simple generalization of such a result, allowing the highest-order
derivative to have jump discontinuities.

1 Introduction

Taylor's theorem enables to approximate a sufficiently smooth function locally by polynomials.

This is what makes it a very popular tool even far outside the mathematical
community. Recently, a generalized version of the standard theorem appeared useful in our
analysis of a numerical method for compressible flow [4].

Obviously, many extensions to Taylor's theorem have been done and published, let us

name for example Diaz & Vyborny [1, 2] or recent development in the direction of
fractional derivatives, see, e.g., Liu et al. [5] among many others. Our aim is to introduce a

generalization that requires weaker assumptions on the differentiability of the function,
assuming only one-sided differentiability in its highest order. As a consequence, our Taylor-
type theorem is well suited for functions with jumps in their highest derivative.

2 The Standard Taylor Theorem

We start with the standard definition.

Definition 2.1 (Taylor polynomial). Let k e N U {0} and f e Ck[a, b], then we define its

Taylor polynomial of the £th order at to e [a, b] by

Pk(x0; x) /(x0) + /'(t0)(t - to) + LM(x - t0)2 H 1-
^ - xo)k-

2! k\

We recall the version of Taylor's theorem that gives additional information about the
remainder term.
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Theorem 2.2 (Taylor's Theorem with Remainders). Let k e N U (0) and f e Ck[a,b]n
Ck+i(a,b) and Pk (to ; •) be its Taylor polynomial of the order k at xq e \a, b], Thenfor
any x e [a, b] there exist £l,£c £ (x, xq) (or e (xq, x)) such that

f(k+l)(X, \
f(x) - Pk(x) (x - x0)k+ (1)

{k+ 1)!

f(k+x]icc) Ifix) - Pkix) J- rr^ix - tcfix - to). (2)
k\

The right-hand sides of (1) and (2) are called Lagrange and Cauchy remainder forms,
respectively. Notice that for k 0, (1) and (2) coincide and Theorem 2.2 reduces to the
Mean Value Theorem.

The above claim does not tell how to find points fc, nevertheless, one can still gain
useful information. For instance, let k 1 and / be convex, then from (1) we deduce

fix) - P\ixQ\ x) > 0, for all x e [a, b], (3)

since /" > 0 in [a, b]. Clearly, (3) holds for any convex function /, not only C2, as

Pi (xo; is a tangent line to the graph of / at the point xo- As such it lies under the graph
of /, when / is convex.

This illustrates that when the assumptions of Theorem 2.2 are weakened, we still might
make useful conclusions on the relation of the function and its Taylor polynomial. In
particular, we will suppose the existence of one-sided derivatives of the functions.

3 Preliminaries

We define

£,, fix) ~ fix-h) fix+h)-fix)f-ix) — lim and /+(x) lim (4)
A—»o+ h T ft^o+ h

if the above limits exist and call them left ione-sided) derivative of / at x, and right ione-
sided) derivative of / at x, respectively.

Clearly, if f'_ix) ffix), then the derivative of / at x exists and fix) f'_ix)
ffix). We say that one-sided derivatives of / exist in (a, b), if they exist at every x e
\a,b).

Next, u C[a, b] having one-sided derivatives in (a, b) and u e Cl[a, b], comply with
the following algebraic rules

(m + u)'± u'± + o', («o)± u'±v + uo'. (5)

One-sided higher-order derivatives are defined in a natural way; choosing / g® in (4)
we can define the left- and right-sided ik + l)st derivative of g.

Further, we use the notation co{x, v} [x, y] or [y, x], in dependence on the ordering of
points x, v.
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Finally, one easily checks that for / (a, b),r e M we have

x e I -£=> x + r e I + r, x e I =4 rx e rl, (6)

where we define I + r := (a + r, b + r) and rl := co{ra, rb). Notice that the backward

implication in the latter claim of (6) holds, if we restrict ourselves to r el\{0).

4 The Generalized Taylor Theorem

Having introduced all necessary notation allows us to state the main result.

Theorem 4.1 (Generalized Taylor Theorem). Let k e N U {0} and assume that f e Ck (I)
has a one-sided (k + \)-st derivatives in I. Then for any xq e I, any x e I there exist

£l, Qc e int co{x, xo} such that we have

f(x) - P,(xo; x) e co {/?+1)(&), /1"+1)(^)}, (7)

fix) - Pkixo; x) e ÇL-JçLçk - x0) • co {/++1)(£c), /l^+1)(<fc)} • (8)

Theorem 4.1 is a Taylor type theorem for functions having jump discontinuities in their
highest derivative. An application of Theorem 4.1 can be found in [4, Remark 3]. Notice
that we could also include the case when the one-sided derivative diverges to +oo (or
—oo), the assertion remains unchanged.

The proof of Theorem 2.2 can be found for instance in [6, Section 5.3.3] and consists of the
standard theorems of differential calculus. To prove Theorem 4.1 we follow the very same

steps using our weaker assumptions on differentiability of the functions. Notice that one
can recover the original proof from what we present simply by assuming that all functions
are continuously differentiable of the appropriate order, which reduces all the intervals

representing the possible jumps of derivatives to a single point, compare, e.g., (1) and (7).

We start with the following generalized version of Rolle's Theorem, which was also proved
in [3],

Lemma 4.2 (Generalized Rolle Theorem). Let g e C[a,b], gia) gib) and let the

one-sided derivatives of g exist in (a, b). Then there exists if (a, b) such that 0

co{gV(f),sL(£)}-

Proof. The continuity of g ensures (Weierstrass Theorem) that there exist its maximum

g(x\i) > g(a) and its minimum gixm) < gia). If g is a constant function, then ç is

any point of ia,b). If not, then at least one of the inequalities must be strict. Without
loss of generality let us assume g(xjw) > gia) gib), hence xm is in the interior of
ia,b). To avoid contradiction with the maximality of gixM), necessarily gfixw) > 0

and g'_,_(xm) < 0. In any case, this implies that 0 e lg'+ix,\i), gf(xM)\, with this interval
possibly degenerated to a single element set {0}.
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Lemma 4.3 (Generalized Cauchy Mean Value Theorem). Let v e Cy[a,b\ such that
v(a) fz v(h), u 6 C\a, b] and let the one-sided derivatives of u exist in (a, b). Then there
exists £ 6 (a, b) such that

v(b) - o(a)

Proof. Define the function w by

u(b) - u(a)
v (C) co{«+(C), "_(<?)}. (9)

u(b)-u(a)
w(x) u(x) ———v(b) - v(a)

Then w is continuous in [a, b] and its one-sided derivatives exist in (a, b), and one can
check that w(a) — w(b). The Generalized Rolle Theorem (Lemma 4.2) applied to w

yields existence of some f e (a, b) such that

rr f ' txs ' m, ~ "(a) //xr0 co{w_|_(f), U__ (f)} — — V (f),
v(b) — D(a)

where we already used (6). Finally we rewrite (10) equivalently as (9).

Now we can Conclude with the proof of the central theorem.

Proofof Theorem 4.1. Let k > 1. Consider

(10)

F(t) := f(x) - Pk(t\x) f{x)
fik)(t)

/(t) + f'(t)(x — t) 4- 1 ——(x — t)

Applying the algebra for one-sided derivatives (5) we compute

F'±(t) - fit) - fit) + f"it)ix - t) - f"it)ix -?) + ••• +

k\

/±+1)(0,„
k\ -ix-tf

fik+l)it)
k\ ix-tf.

We use the Generalized Cauchy Theorem (Lemma 4.3) with the choice u(t) Fit),
vit) (x — tf+l and either a xo,b x or a — x,b xo (depending on their

ordering) to get

Fjx) - F(xp)

-(A- - xo)*+r(-l)(£ + l)(x-ff e CO
,(*+1) _ r(*+D m ~-f+'itY -,-frl'iO-k\ J~ k\

As Ffx) — 0 and Fixo) fix) - Pkixo; x), we can use the algebra of intervals (6) to get

ix - x0)k+l
fix) - Pkix0;x) e

(*+D!
coj 4*+1)(f),/?+1)(f)],
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which is (7). To prove (8), one just chooses v(t) — x — t in the above consideration and

performs the same steps. The case k 0 (generalized Mean Value Theorem) is proved by
virtue of Lemma 4.2 applied to the function
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F(t) := h(t) - (11)

or with possibly interchanged roles of x and xq.
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