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Parametric integrals, the Catalan numbers,
and the beta function
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1 Introduction

Let a be a positive real number. For every non-negative integer n, Dana-Picard considered
in [2] the definite integral

In der mathematischen Physik spielen Spezielle Funktionen eine tragende Rolle. Zu
den am besten untersuchten Exemplaren dieser Funktionen gehören die Gammafunk-
tion und die Eulersche Betafunktion, die sich durch die Eulerschen Integrale zweiter

respektive erster Gattung ausdrücken lassen. Der Autor der vorliegenden Arbeit
untersucht Familien von parametrischen Integralen und den Wallis-Quotienten Wn —

und drückt deren Werte mit Hilfe der Gamma- und der Betafunktion aus.

Dabei ergibt sich eine überraschende Verbindung zu den Catalan-Zahlen: Diese treten

in der Kombinatorik in zahlreichen und auf den ersten Blick ganz verschiedenen

Abzählproblemen auf. Die gefundenen Formeln erlauben dem Autor inbesondere den

Nachweis, dass die Folge der Catalan-Zahlen absolut konvex ist.

(1.1)

and inductively obtained that
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for n > 2. Furthermore, by telescopic methods in [1, 3], Dana-Picard derived in [2] that

-G)
2p+2 (2vV

,2'(a)=DI JÛ7TÎ)!*' pN a'2)

and
a2/>+322p+1 p!(p+l)!

Ilp+ \ (fl) — v P> 0. (1.3)
(2p + l)(2p + 2) (2p + 3) (2/?)!

Dana-Picard also observed in [2] that the quantities

(2P)!
Cn P > 0p p\{p +1)!

are just the Catalan numbers in combinatorics and that

r2
Cp — f x2py/4 — X2 dx, p 6 N.

x Jo

Dana-Picard further pointed out that the integral representation (1.4) is equivalent to

-èjf-

(1.4)

Cn — / x",l dx, n > 0, (1.5)

which was obtained in [11] by the Mellin transform. For more information on the Catalan
numbers Cn, please refer to the monographs [6, 25] and the paper [18] and plenty of
literature cited therein.

In this paper, we will present a unified expression of the formulas (1.2) and (1.3) in terms
of the gamma function

rOO

r(z)=/ tz~le-'dt, 9t(z)>0,
Jo

compute a new sequence of parametric integrals JJf x" dx for a > 0 and n > 0 in
V a2—x1

terms of the gamma function T, discover the absolute convexity of the Catalan numbers

C„, compute a general sequence of parametric integrals

I(a;a,ß)= [ xa(a2 — x2)^dx (1.6)
Jo

for a > 0 and a, ß > —1 in terms of the classical beta function

B(x, y) 77-^—W(x), 91 (y) > 0,
T(x +y)

and represent the above sequences of parametric integrals /q x"(a2 — x2)±l/2 dx, the

Catalan numbers
function B(x,y).
Catalan numbers C„, and the Wallis ratio Wn in terms of the classical beta
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2 A unified expression of (1.2) and (1.3)

In this section, we present a unified expression of the formulas (1.2) and (1.3) in terms of
the gamma function T as follows.

Theorem 2.1. For a > 0 and n > 0, we have

In (a) a- nn+2 v^r(f + 2)

4T(§+2)
(2.1)

Proof. By changing variables x — a sins for s e [O, we have

r*/2f* / 7J~
In(a) a"+2 / sin"syf 1 — sin25 cos,vd.v

Jo
r'r/2

— an+2 sin" s cos2 s ds
Jo
- ric/2 rjt/2

/ sin" s d s — I sin"+ 5 d s
Jo Jo

a"+2

Since

I-sin.sds=^at±ii, „eN,2 r(| + i)

see [12, Section 1.1.3], it follows that

's/n r(l + 2) V^r(^ + i)n
In (a) an+2 an+2 V* r(l + 2)

4 r(§ + 2)'2 r(f + i) 2 r(^ + i).
The proof of Theorem 2.1 is complete.

3 A new sequence of parametric integrals

Differentiating on both sides of the equation (2.1) produces a new sequence of parametric
integrals fc

a x" dx and a new integral representation for the Catalan numbers Cn.Jo
V Cl —A

Theorem 3.1. For a > 0 and n > 0, we have

I"Jo sfa2

x" ,d^ Vï<."r(î + l)
»r(5)

and, consequently,

Cn
2 r2 x2nI7t(n + l)J0 jA-x2

dx.

(3.1)

(3.2)



106 Feng Qi

Proof. It is well known [16, Lemma 2.1] that

d

d/
I /"/(x,<)di /(»,>)+' Jxo Jxo St

where f(x,t) is differentiable in t and continuous in (x, t) in some region of the (x, t)-
plane. Hence, differentiating with respect to a on both sides of (1.1) gives

I»=a r
Jo

I,M)=a / / 7 7
dx- (3-3)

\JaA — xz

On the other hand, differentiating with respect to a on both sides of (2.1) results in

7>) :^(„ + 2)fl»+ll|L±ij. (3.4)

Combining (3.3) with (3.4) and simplifying lead to the formula (3.1).

The formula (3.2) follows readily from combination of

4T(n + A)

in [6, p. 112, Eq. (5.5)] and (3.1). The proof of Theorem 3.1 is complete.

4 Convexity of the Catalan numbers

It is common knowledge that a sequence is said to be convex if the inequality

Pn TPn+2
Pn+1 <

2

is valid for every n > 0. An infinitely differentiable function / on an interval 7 is called
absolutely convex on I if f^k\x) > 0 on /. See [9, p. 375, Definition 3], [13, p. 2731,
Definition 4.5], [22, p. 617, Definiton 3], or [23, p. 3356, Definition 3], A sequence {//«Jq0
is said to be absolutely convex if its elements are non-negative and its successive differences

satisfy A2kpn > 0 for n, k > 0, where

£

A* Pn —

m=0 A /
+k-m-

It is clear that an absolutely convex function (sequence) must be convex.

Utilizing the integral representations (1.4), (1.5), and (3.2), we can derive the absolute

convexity of the sequences Cn and (n + 1)C„.

Theorem 4.1. The sequences Cn and (n + l)C„ forn > 0 are both (absolutely) convex.
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Proof. The absolute convexity of the sequence C„ follows from the integral representations

(1.4) or (1.5) and the absolute convexity of the functions /q x' s/A — x2 dx and

Jo x'c'x w'th respect to t.

The absolute convexity of the sequence (n + 1 )C„ follows from rewriting the formula
(3.2) as

2 f2 x2n
{n + 1)C„ — dx

it Jo V4 - x2

and the absolute convexity of the function fQ2 dx with respect to t. The proof of

Theorem 4.1 is complete.

5 A general sequence of parametric integrals

Motivated by the proof of Theorem 2.1, we now compute a general sequence of parametric
integrals (1.6) in terms of the beta function B(x, y).

Theorem 5.1. Fora > 0anda,ß > — 1, we have

I(a;a,ß) J xa(a2 - x2)ß dx l-aa+2ß+]t B ß + 1^. (5.1)

Proof. By changing variables x a sin t for t e [0, f] as in the proof of Theorem 2.1,

we have

I(a\a,ß)= [ (asin/)°[a2 — (a sin t)2]^acost dt
Jo

sin" t( 1 — sin2 t)^ cost df

aa+2 J sin" t cos2^+11 dt lag+2/?+1g^a ^ ,ß + 1^,

where we used in the last step the formula

rn/2 I
/ sin2a~l 0 cos2b~l 0 d0 =-B(a, b), di(a), 9Î(£) > 0 (5.2)

Jo 2

in [10, p. 142, Eq. 5.12.2], The proof of Theorem 5.1 is complete.

6 Remarks

Making use of the formula (5.1), we now represent the sequences of parametric integrals

Jq x"(a2 — x2)±l/2 dx, the Catalan numbers C„, and the Wallis ratio in terms of the
classical beta function B(x,y) in the form of remarks.
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Remark 6.1. By the formula (5.1) in Theorem 5.1, the formula (2.1) can be rewritten in
terms of the beta function B(x,y) as

1

ln{a)=-an+2B (n + 1 3\
V 2 ' 2/

Remark 6.2. By virtue of (3.5) and Theorem 5.1, we immediately recover the relation

Cn -/2,,(2)=,i22"+1B(^i,|) (6.1)
K 7C \ 2 2/

and the integral representation (1.4) for n > 0.

Remark 6.3. By Theorem 5.1, the formula (3.1) can be rewritten in terms of the beta
function B(x, y) as

fa x" 1 _ /n+l 1\
/ - d r -n" R — 1.

Jo sfä^x1 2 V 2 '2)
Remark 6.4. It was stated in [5] that

I sin'XdX VïS)' 1>~L (6'2)

See also [12, p. 16, Eq. (2.18)]. By (5.2), we can alternatively express the formula (6.2) in
terms of the beta function B(x, y) as

r7u/2r' i /' + i
Jo

Remark 6.5. It is well known that the Wallis ratio is defined by

_(2„-!)!!_ (2,,)! 1 r(„+ 1/2)

(2«)!! 22"(«!)2 VF r(n + l) '

This quantity has been studied and applied by many mathematicians. See [4, 17, 19], for
example, and plenty of literature therein. The Wallis ratio can be expressed in terms of the
beta function B(x,y) as

W,

Remark 6.6. Since

" M"+i'0- "R

B(a, b) — f m(a),!H(b)> 0,
Jo

see [10, p. 142, Eq. 5.12.1], the relation (6.1) can be rearranged as

Cn

22"
:"=1 [\n-l/2(1_0l/2d,
2" K Jo

This implies that the sequence ^ for n > 0 is completely monotonie. For more information

on the Catalan numbers Cn, their generalizations, and their (completely monotonie)
properties, please refer to the monographs [6,25], the formerly published papers [7, 8, 14,

15, 18, 20, 21, 24] and plenty of references therein.
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