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1 Introduction

Let a be a positive real number. For every non-negative integer n, Dana-Picard considered
in [2] the definite integral

I,,(a)=/ x"vVa?—x?dx (1.1)
0

and inductively obtained that

a’n - a*(n —1)

Io(a)=T, Il(a)=%, and I,(a) = ) In—2(a)

In der mathematischen Physik spielen Spezielle Funktionen eine tragende Rolle. Zu
den am besten untersuchten Exemplaren dieser Funktionen gehoren die Gammafunk-
tion und die Eulersche Betafunktion, die sich durch die Eulerschen Integrale zweiter
respektive erster Gattung ausdriicken lassen. Der Autor der vorliegenden Arbeit un-
tersucht Familien von parametrischen Integralen und den Wallis-Quotienten W, =
Qé—;)l,?ﬁ und driickt deren Werte mit Hilfe der Gamma- und der Betafunktion aus.
Dabei ergibt sich eine iiberraschende Verbindung zu den Catalan-Zahlen: Diese tre-
ten in der Kombinatorik in zahlreichen und auf den ersten Blick ganz verschiedenen
Abzihlproblemen auf. Die gefundenen Formeln erlauben dem Autor inbesondere den

Nachweis, dass die Folge der Catalan-Zahlen absolut konvex ist.
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for n > 2. Furthermore, by telescopic methods in [1, 3], Dana-Picard derived in [2] that

2p+2
a 2p)!
I == _—n, e N 1.2
and 2p+3~2p+1
o A i (p+ 1)
Bpi1(a) = PPl pso, (1:3)
Cp+D2p+2)2p+3) (2p)!
Dana-Picard also observed in [2] that the quantities
__Cp)!
Poplp+ Y B

are just the Catalan numbers in combinatorics and that

1 2
Cp = / x*Py/4—x2dx, peN. (1.4)
0

T

Dana-Picard further pointed out that the integral representation (1.4) is equivalent to

1 /4 4 —
Co==— [ "/ dx, nx0, (1.5)
27 Jo x

which was obtained in [11] by the Mellin transform. For more information on the Catalan
numbers C,, please refer to the monographs [6, 25] and the paper [18] and plenty of
literature cited therein.

In this paper, we will present a unified expression of the formulas (1.2) and (1.3) in terms
of the gamma function

o0
F(z):/ letdr, M(z) > 0,
0

X" _dxfora> Oandn > 0in

s @ a

compute a new sequence of parametric integrals fo
ac—x

terms of the gamma function I', discover the absolute convexity of the Catalan numbers

C,, compute a general sequence of parametric integrals

1(a;a,/3)=/0axa(a2—x2)”dx (1.6)

fora > Oand a, f > —1 in terms of the classical beta function

_I®)rQ)

= TGty R(x), R(y) > 0,

B(x,y)

and represent the above sequences of parametric integrals [j x" (a® — xz)il/ % dx, the

Catalan numbers C,, and the Wallis ratio W,, = Q("T;)IF in terms of the classical beta

function B(x, y).
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2 A unified expression of (1.2) and (1.3)

In this section, we present a unified expression of the formulas (1.2) and (1.3) in terms of
the gamma function I" as follows.

Theorem 2.1. Fora > 0andn > 0, we have

(241
In(a)_an-'-z\/_ (2 2) (2.1)
ar(5+2)
Proof. By changing variables x = asins for s € [O, %], we have
/2
I,(a) = a"+2f sin" sy/1 —sin’ s cossds
0
/2
= a"+2] sin” s cos® s d s
0
/2 w/2
= a"+2[/ sin" sds — [ sin"*2 s ds].
0 0
Since
w/2 (& + 1
/ sin"sds:—@—(%——Z) neN,
see [12, Section 1.1.3], it follows that
1 n+ 1 1
(@) = an+z[ﬁ r(z+3) +aT(%$+ i)] _ VT r(z+3)
n - — -
2 TEE) 2 T T T
The proof of Theorem 2.1 is complete. O

3 A new sequence of parametric integrals

Differentiating on both sides of the equation (2.1) produces a new sequence of parametric
. a xn . .
integrals [ T dx and a new integral representation for the Catalan numbers Cj,.

Theorem 3.1. Fora > 0andn > 0, we have

n L

a L )
ki 6 == AT O — 2L,
/0 a2—x NEe nf(%

(3.1)

~ NI'-

and, consequently,

g 2 2n
s TS, . . (3.2)
m(n+1) Jo V4—x2
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Proof. It is well known [16, Lemma 2.1] that

%/x;f(x,t)dx=f(t,t)+/x

0

b

'6f(x,t)d
ot

where f(x,t) is differentiable in 7 and continuous in (x, 7) in some region of the (x, 1)-
plane. Hence, differentiating with respect to a@ on both sides of (1.1) gives

n

I'(a) = a/ X dx. (3.3)
0 a

2 _ 2

On the other hand, differentiating with respect to a on both sides of (2.1) results in

e [(3+5)
i) = ¥ NGt \2 "2/ 3.4
Combining (3.3) with (3.4) and simplifying lead to the formula (3.1).
The formula (3.2) follows readily from combination of
c 4" (n + %) - (3.5)
=——*— n> .
U T(n+2)
in [6, p. 112, Eq. (5.5)] and (3.1). The proof of Theorem 3.1 is complete. O

4 Convexity of the Catalan numbers

It is common knowledge that a sequence {x, }3° is said to be convex if the inequality

p . Hn + Hn+2
n+l = _—'2

is valid for every n > 0. An infinitely differentiable function f on an interval [ is called
absolutely convex on I if f(y‘) (x) > Oon 1. See [9, p. 375, Definition 3], [13, p. 2731,
Definition 4.5], [22, p. 617, Definiton 3], or [23, p. 3356, Definition 3]. A sequence {x, }8"
is said to be absolutely convex if its elements are non-negative and its successive differ-
ences satisfy Az"u n > 0forn, k >0, where

k
k
Ak,un = Z(_ l)m (m)/-‘n+k—m .

m=0

It is clear that an absolutely convex function (sequence) must be convex.

Utilizing the integral representations (1.4), (1.5), and (3.2), we can derive the absolute
convexity of the sequences C, and (n + 1)C,,.

Theorem 4.1. The sequences C,, and (n + 1)C,, for n > 0 are both (absolutely) convex.
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Proof. The absolute convexity of the sequence C, follows from the integral represen-

tations (1.4) or (1.5) and the absolute convexity of the functions f02 x'/4 —x? dx and

04x’ 4%* d x with respect to ¢.

The absolute convexity of the sequence (n + 1)C, follows from rewriting the formula

(3.2) as
5 2 2n
(n+ 1)C, = —/ X dx
T Jo V4 -—x?

and the absolute convexity of the function foz —4\/L—2 dx with respect to ¢. The proof of
—X

Theorem 4.1 is complete. O

5 A general sequence of parametric integrals

Motivated by the proof of Theorem 2.1, we now compute a general sequence of parametric
integrals (1.6) in terms of the beta function B(x, y).

Theorem 5.1. Fora > Oand a, f > —1, we have
4 1 +1
I(a;a,p) = [ x° (a2 —xz)ﬂdx = Eaa“‘BHB(aT,ﬂ + I). (5.1
0

Proof. By changing variables x = asint for ¢ € [0, 5] as in the proof of Theorem 2.1,
we have

n/2
I(a;a,ﬂ):f (asint)*[a® — (a sint)z]'Bacostdt
0
w/2 ),
:aa+2/ sin"’t(l—sin2 t) costdt
0
2 [ 2841 1 ayopripf@+1
=aa+/ sin” ¢ cos?t tdt=§a”“L A+ B(T,ﬂ+l),
0

where we used in the last step the formula

T/2 1
f sin®* 19 cos??~19do = 5B(a,b), R(a), R(b) > 0 (5.2)
0
in [10, p. 142, Eq. 5.12.2]. The proof of Theorem 5.1 is complete. U
6 Remarks

Making use of the formula (5.1), we now represent the sequences of parametric integrals

f(;’ bl (a2 — xz)il/ 2dx, the Catalan numbers C,, and the Wallis ratio in terms of the
classical beta function B(x, y) in the form of remarks.
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Remark 6.1. By the formula (5.1) in Theorem 5.1, the formula (2.1) can be rewritten in
terms of the beta function B(x, y) as

1 n+1 3
I,(a) = Ea””B( —).

2 2
Remark 6.2. By virtue of (3.5) and Theorem 5.1, we immediately recover the relation
1 1 2 13
Co= —(@) = —22+ (2 2 (6.1)
T T 2 2

and the integral representation (1.4) forn > 0.

Remark 6.3. By Theorem 5.1, the formula (3.1) can be rewritten in terms of the beta

function B(x, y) as
“ 4 1 11
f X _dx= —a"B("+ : —).
0 JaZ—x2 2 2’2
Remark 6.4. It was stated in [5] that
/2 (L
f sin xdx = vr (rjz), t > —1. (6.2)
0 2 (%)
See also [12, p. 16, Eq. (2.18)]. By (5.2), we can alternatively express the formula (6.2) in
terms of the beta function B(x, y) as

/2 1 [t+1 1
f sin xdx = - B L,- .
0 2 2’2

Remark 6.5. It is well known that the Wallis ratio is defined by

W, — Cn-1I"  @2n)! 1 [(n+1/2)
Tt 222 Jr T+

This quantity has been studied and applied by many mathematicians. See [4, 17, 19], for

example, and plenty of literature therein. The Wallis ratio can be expressed in terms of the
beta function B(x, y) as

n € N.

1 11
WHZ;B(H-FE,E), n € N,

Remark 6.6. Since
1
B(a,b):/ 7l =nP"tde, Na), RGB) > 0,
0

see [10, p. 142, Eq. 5.12.1], the relation (6.1) can be rearranged as

s 2!
27’:1=;/0 21— )12 ds,

This implies that the sequence ZCT’:, for n > 0 is completely monotonic. For more informa-
tion on the Catalan numbers C,, their generalizations, and their (completely monotonic)
properties, please refer to the monographs [6, 25], the formerly published papers [7, 8, 14,
15, 18, 20, 21, 24] and plenty of references therein.
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