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Die Gregorianische Kalenderreform, Teil 2

Claudia Albertini und Martin Huber

Claudia Albertini erwarb 1986 das Primarlehrerpatent. Anschliessend studierte sie
Mathematik an der Universitidt Ziirich und schloss 1996 mit dem Doktorat ab. Von
1996 bis 2003 unterrichtete sie Mathematik an der Kantonsschule Ziircher Oberland.
Seit 2003 ist sie an der PH Ziirich als Dozentin fiir Mathematik und Mathematikdi-
daktik titig. Seit 2007 ist sie auch Lehrbeauftragte an der Universitit Ziirich und hiilt
Vorlesungen fiir zukiinftige Sekundarlehrpersonen.

Martin Huber studierte Mathematik an der ETH Ziirich und doktorierte dort 1976. Mit
einem Stipendium des Schweizerischen Nationalfonds arbeitete er von 1978 bis 1980
an verschiedenen US-amerikanischen Universititen im Bereich der Algebra. Bis 1985
war er dann an der Universitit Freiburg im Breisgau titig, wo er sich 1982 habilitierte.
In den Jahren 1983 bis 2013 hielt er Vorlesungen an der Universitit Ziirich fiir kiinftige
Sekundarlehrpersonen. Ab 1987 bis zu seiner Pensionierung 2014 wirkte er als Dozent
an der FH Winterthur.

Zusammen mit Teil 1 bildet diese Publikation eine iiberarbeitete und erweiterte Fassung
eines Vortrags, den die Autoren im November 2016 im Kolloguium fiir Mathematik, Infor-
matik und Unterricht an der ETH Ziirich gehalten haben.

1 Verteilung von Schaltungen

Beim Herstellen eines Kalenders geht es oft darum, S Schaltungen auf einen Zyklus von
N Zeiteinheiten (im Folgenden meistens Jahre) zu verteilen. Z.B. miissen im Metonschen
Zyklus 7 embolistische Jahre (Mondschaltjahre) auf 19 Mondjahre verteilt werden.

Die Gregorianische Reform, dank der das Friihlingséquinoktium und damit das Da-
tum des Osterfestes im Kalender wieder an den richtigen Platz geriickt wurde, ist im
letzten Heft, im ersten Teil dieser Arbeit, beschrieben worden. Aus dieser Beschrei-
bung gewinnen die Autoren im vorliegenden zweiten Teil eine Formel zur Berechnung
des Osterdatums, welche auf der Goldenen Zahl und der Epakte beruht. Die Neuerun-
gen der Gregorianischen Reform (Neulichtkalender, Sonnen- und Mondangleichung)
werden hier mathematisch modelliert und daraus die Osterformel entwickelt. Dieser
historisch motivierte Zugang hat den Vorteil, dass alle in der Formel vorkommenden
Grossen inhaltlich begriindet sind. Im Gegensatz zu den anderen bekannten Osterfor-
meln handelt es sich also nicht um eine Prizisierung oder Vereinfachung der beriihmten
GauBschen Osterformel.
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Fiir beliebige Zahlen x € R werden wir die folgenden Bezeichnungen verwenden:

e [x] fiir die kleinste ganze Zahl, welche griosser oder gleich x 1st;
e | x| fiir die grosste ganze Zahl, welche kleiner oder gleich x ist.

1.1 Die kanonische Verteilung von Schaltungen

Zerlegt man das Zeitintervall [0, N] in § gleich lange Teilintervalle, so sind die Zeitpunkte
m - %, 1 <m < §, deren Endpunkte.

gk
S

2. N Byt s.N_n
S S N
|
1

Intervalle } } 4 l{ } :I - : l,l } 1 } } |= } :| } }
Zeiteinheiten 1 2 3 N

Figur 1: Zerlegung in § gleich lange Teilintervalle

Fiir jeden Index m, 1 < m < S, definieren wir die Zahl k,, € N dadurch, dass der m-te
N

Zeitpunkt m - T in die k,,-te Zeiteinheit |k,, — 1, k,,] fallt.
Somit gilt:
k,,,—l<m-%§km, I1<m<S (1)
und folglich:
km:’rm-%-‘, I<m<S. 2)

Definition. Die Folge k| < k2 < k3 < - -+ < kg nennen wir kanonische Verteilung von S
Schaltungen auf N Zeiteinheiten. Dabei findet die m-te Schaltung in der k,,-ten Zeiteinheit
statt.

Beispiel. Die kanonische Verteilung im Metonschen Zyklus (N = 19, § = 7) lautet:
36911141719, denn:

ky ka k3 kq ks kg k7
141 [ o 91| 91 | 41| 91| o 91| 91
3 6 9 11 14 17 19

Tabelle 1: Kanonische Verteilung im Metonschen Zyklus
Definition. Die aufsteigende Folge (k,)nen mit
N
k,,=[n.ﬂ, neN 3)

nennen wir zyklische Fortsetzung der kanonischen Verteilung.

Beispiel. Die zyklische Fortsetzung der kanonischen Verteilung im Metonschen Zyklus
sieht wie folgt aus:
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ky |k 'k | kg | ks | ke kg kg | ko | ko | kit | kiz | ki3 | ke || Kis | ke | ki

3 6 9 11 14 17 19 22 |25 |28 [30 |33 |36 |38 41 | 4 | 47

Tabelle 2: Zyklische Fortsetzung der kanonischen Verteilung im Metonschen Zyklus

Hiergilt zB.:kj7 = k3+2-19=9+38 =47, wobei 17=3+4+2-7.

Allgemeiner Fall: Zu jedem Index n > § gibt es eindeutige Zahleni,m € Nmit 1 < m <
S,sodassn =m +1i - S, und es gilt:

. N
kn = km+i-s = ’V(m + 28}« E]

N—l-‘N N +i-N
:m.— l. =m.——- l.
S S

=ky +1i-N. (4)

Es stellen sich nun bei gegebener Zeiteinheit j die folgenden Fragen:

1. Wie viele Schaltungen haben bis und mit der Zeiteinheit j stattgefunden?
2. Wird in der Zeiteinheit j geschaltet?

Bis und mit der Zeiteinheit j haben n Schaltungen stattgefunden, falls k, < j < ky41.
Es gilt:

N N
kn < J < knti g ["'E—‘SJ"<"(H+1)'5—I

& N<'<(+1)N
g s S

S
= néj-ﬁ<n+l

N 1

Damit kénnen wir beide Fragen beantworten:

1. Bis und mit der Zeiteinheit j haben

S
=|j-— 5
n \f NJ ()
Schaltungen stattgefunden.
2. In der Zeiteinheit j findet genau dann eine Schaltung statt, wenn

5 |-la-v5]-t ©

S
SZN—)Z;jI—-)\\j'ﬁJ, (7)

welche jeder Zeiteinheit j die Anzahl Schaltungen bis und mit der Zeiteinheit j zuordnet,
nennen wir die kanonische Schaltfunktion.

Definition. Die Funktion
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1.2 Moglichst gleichméssige Verteilung von Schaltungen

Beispiel. Die Verteilung (#,)1<m<7 im Metonschen Zyklus (N =19, § =7), gegeben
durch

n 15 13 14 Is 1g 7
2 5 8 10 13 16 19

Tabelle 3: Verteilung ()< <7 im Metonschen Zyklus

geht aus der kanonischen Verteilung (k) 1<m<7 durch eine Verschiebung um v = 9 Jahre
hervor:

k, k, k, Ky ks ke k,
L L 1 1 L L ] L L 1 1 L | L 1 1
"1 727374 "5 7 8910 11 12 13 14' 15 16 17 18 19 ..
— Vv 7: |t1| : |t2: : lt3| |t4| I[

1 2 3 4 5 6 7 8 9 10 11 12

Figur 2: Vergleich von (1)1 <m<7 mit der kanonischen Verteilung

Bei der kanonischen Verteilung haben nach Formel (5) bis und mit dem 9. Jahr \_9 . 17—9J =3
Schaltungen stattgefunden. Es gilt:

19
tm=km+3—9=’r(m+3)-7—‘—9, 1<m<T.

Definition. Eine Folge r; < --- < fg nennen wir moglichst gleichmissige Verteilung
von S Schaltungen auf N Zeiteinheiten, wenn es Zahlen v, d € Ny gibt, so dass

N
tm=km+d—u=’>(m+a’)-5-’—v, 1<m<S. (8)

Die Verteilung #; < --- < rg geht durch Verschiebung um v Zeiteinheiten aus der kano-
nischen hervor. Die Zahl d ist die Indexverschiebung und kann durch » bestimmt werden.

Nach Formel (5) gilt:
S
d= -— . 9
{v NJ )

1. Die kanonische Verteilung ist moglichst gleichmiissig (man wihle v = Oundd = 0).
2. Die Verteilung 2 < 4 < 6 < 8 < 10 < 12 < 14 ist nicht mdglichst gleichmassig.

3. Wie oben erldutert, ist die Verteilung 2 < 5 < 8 < 10 < 13 < 16 < 19 im
Metonschen Zyklus moglichst gleichmaéssig.

Beispiele:

Auch die Verteilung #; < --- < tg5 kann zyklisch fortgesetzt werden:
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n 1 3 14 Is I 17 18 Ig o |1 | 2 | 13 | h4 15 | e | 17

2 5 8 10 |13 16 19 21 24 (27 |29 |32 |35 | 38 40 | 43 | 46

Tabelle 4: Fortsetzung der Verteilung 2 < 5 <8< --- < 19

Zuriick zum allgemeinen Fall:

Definitionen. Jede moglichst gleichmissige Verteilung 1 < --- < tg, gegeben durch N,
S, v und d(v), kann zyklisch fortgesetzt werden. Die zyklische Fortsetzung (7,),cn wird
definiert durch:

t,,=’r(n+d)-%-‘—v, n e N. (10)

Eine solche Fortsetzung nennen wir ebenfalls moglichst gleichmissig.
Fiir jede zyklische Fortsetzung gilt (vgl. Formel (4)):

th=ty+i-N, wobei n=m+i-§ und 1<m<S. (11)

Auch fiir die zyklische Fortsetzung einer beliebigen moglichst gleichmissigen Verteilung
(tm)1<m<s betrachten wir die beiden Fragen am Ende von Abschnitt 1.1.

Bis und mit der Zeiteinheit j haben n Schaltungen stattgefunden, falls 7, < j < t,,41. Wir
schliessen:

N N
h S J <lnyl (g !V(n+d)-g-‘—v<j<[(n+1+d).i—‘_v

~

N
& (n+d)-§—v§j<(n+1+d)-5—v
N N
& (n+d)-§<j+v<(n+l+d)-g
S
& n+d€(j+v)-ﬁ<n+l+d
S
= né(j+v)-ﬁ—d<n+l
& (J+0v) a d
B = v) — | —d.
/ N
Damit konnen wir beide Fragen beantworten:
1. Bis und mit der Zeiteinheit j finden
(j+0) S d (12)
4 N

Schaltungen statt.
2. In der Zeiteinheit j findet genau dann eine Schaltung statt, wenn

l(j+u)-%J—{(j+v—1)%J=1. (13)
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Definition. Die Funktion
S
s:N—>Z; j> L(j+v)'ﬁJ —d,
welche jeder Zeiteinheit j die Anzahl Schaltungen bis und mit der Zeiteinheit j zuordnet,
nennen wir die zu N, S, v und d gehorige Schaltfunktion.
1.3 Verteilung von Schaltungen, die im Jahr jj beginnen

Es kommt vor, dass innerhalb einer Zeitrechnung erst ab einem bestimmten Jahr neue
Schaltregeln eingefiihrt werden. Sollen, ausgehend von der kanonischen Schaltfunktion

ey

Schaltungen erst ab einem Jahr jy stattfinden, so ist die neue Schaltfunktions : N — Z
gegeben durch:

S
s(j) = L(J' — (jo — k1)) - NJ : (14)

wobei k; = [l . %] dasjenige Jahr bezeichnet, in dem die erste kanonische Schaltung
stattfindet.

Beispiel. Soll im Metonschen Zyklus die erste Schaltung im Jahr 1000 der Christlichen
Zeitrechnung stattfinden, so lautet die neue Schaltfunktion (k| = 3):

i [(j—997)-17—9J.

Allgemeiner: Sollen, ausgehend von der Schaltfunktion einer moglichst gleichmissigen

Verteilung
8
= | (j+0) —|—d
J {(J v) NJ
Schaltungen erst ab einem Jahr jp stattfinden, so veriindert sich die Schaltfunktion wie
folgt:
: . . S
j {(]+v—(10—t1))-NJ—d, (15)
wobei ] = [(1 +d) - %] — v, das Jahr der ersten Schaltung der gegebenen Verteilung ist.

Etwas komplizierter ist die Formalisierung der neuen Schaltregeln nach der Gregoriani-
schen Reform (1582).

Beispiel. Innerhalb von 400 Jahren sollen drei Schalttage ausfallen, und zwar in den
Sikularjahren 1700, 1800 und 1900 und dann erst wieder im Jahr 2100 (vgl. Teil 1, Ab-
schnitt 2.2 [AH17]). Fiir diese spezielle Situation betrachten wir zuniéchst die Schaltfunk-

tiono : N — Z mit
(')_ L é
V=1 100 4"
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Zur Abkiirzung definieren wir fiir ein beliebiges Jahr j die Sikularzahl J = LT—&;J Die
Schaltfunktion ¢ kann somit dargestellt werden als

3

In der nachstehenden Wertetabelle haben wir die fiir natiirliche Zahlen uniibliche Inter-
vallschreibweise verwendet.

j [1,100[ | [100,200[ | [200,300[ | [300.400[ | [400,500[ | [500.600[ | [600,700[
J = [T&TJ 0 1 2 3 4 5 6
a(j) 0 0 1 2 3 3 4

Tabelle 5: Wertetabelle der Funktion o

Die Schaltungen finden in den Jahren j mit o (j) — o(j — 1) = 1 statt. Dies sind die
Sikularjahre 200, 300, 400, 600, 700, 800,... Wir wollen aber, dass die erste Schaltung
nicht im Jahr 200, sondern im Jahr 1700 stattfindet. D.h. wir vermindern das Argument
um 1500 Jahre und erhalten so die Schaltfunktion o : N — Z mit

awli) = {(J _15). ZJ , (16)

welche nun die Schaltungen zum richtigen Zeitpunkt bringt, nimlich in den Jahren 1700,
1800, 1900, 2100,...

2 Berechnung des Osterdatums

Wir verwenden die folgenden Bezeichnungen und Definitionen (vgl. Teil 1, Kapitel 2
[AH17]):

e j ist die Jahreszahl in der christlichen Zeitrechnung.

e Zum Jahr j gehort die Séikularzahl J = LTOLOJ (vgl. Abschnitt 1.3).

e 7 (j) steht fiir die Goldene Zahl: die Position des Jahres j im zugehorigen kanoni-
schen 19-jdhrigen Zyklus;

e £(j) bedeutet die Gregorianische Epakte: das Alter des zyklischen Mondes am 31.
Dezember des Vorjahres (vgl. Teil 1, Abschnitte 2.2 und 3.8);

e 7(j) ist die Alexandrinische Epakte: das Mondalter am 22. Mirz des Jahres j.
Falls die Abhiingigkeit der Gregorianischen Epakte vom betreffenden Jahr j wesentlich ist,

schreiben wir (), sonst &. Dasselbe gilt fiir die Goldene Zahl und die Alexandrinische
Epakte.

Bekannt sind die Formeln fiir die Berechnung der Goldenen Zahl (Teil 1, Formel (6)) und
der Alexandrinischen Epakte (Teil 1, Formel (7))

e y(j)=1+ jmod19

e 7(j) = ((y (j) — 1) - 11) mod 30
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2.1 Die Gregorianische Epakte

Wie wir dem Neulichtkalender (vgl. Teil 1, Kapitel 3 [AH17]) leicht entnehmen kénnen,
stimmt das Alter des zyklischen Mondes am 30. Mirz mit der Gregorianischen Epakte ¢
des betreffenden Jahres iiberein. Z.B. ist fiir ein Jahr mit Epakte 5 der zyklische Mond
am 30. Mirz 5 Tage alt. Im Gegensatz zur Definition von ¢ gibt es hier keine Ausnahmen
(vgl. Teil 1, Abschnitt 3.8). Da die Alexandrinische Epakte # das Mondalter am 22. Miirz
bedeutet, ist der Mond im Julianischen Kalender am 30. Mirz #n + 8 Tage alt. Anldsslich
der Gregorianischen Reform ist das Alter des zyklischen Mondes um 7 = 10 — 3 Tage
zuriickgesetzt worden: Zehn Tage des Sonnenkalenders wurden ausgelassen und der zy-
klische Mond wurde um drei Tage korrigiert. Die neuen zyklischen Monddaten stimmen
seither mit den astronomischen Daten recht gut iiberein. Also war der neue zyklische Mond
in den Jahren 1583 bis 1699 (vor der ersten Sonnenangleichung) am 30. Mirz des Grego-
rianischen Kalenders n + 8 — 7 = 5 + 1 Tage alt, wobei bei den Epakten stets modulo 30
zu rechnen ist. Fiir die Jahre 1583 bis 1699 gilt somit

e=(n+1)mod30=((y —1)-11+ 1) mod30. (17)

Im Folgenden werden wir fiir die Berechnung der Epakte eines beliebigen Jahres j eine
Formel herleiten. Da wir uns dabei auf das Jahr 1583 beziehen, miissen wir sdmtliche bis
und mit dem Jahr j stattgefundenen Sonnen- und Mondkorrekturen beriicksichtigen.

1. Nach Teil 1, Abschnitt 2.2 wird in jedem Sikularjahr, dessen Jahreszahl durch
400 nicht ohne Rest teilbar ist, von der Epakte ein Tag subtrahiert (Sonnenanglei-
chung). Fiir ein beliebiges Jahr mit Sikularzahl J kann diese Angleichung aus

— L(J —-15)- %J berechnet werden (vgl. Formel (16)). Fiir das Jahr 2435 gilt z.B.

— L(24 - 15)- %J = —6, denn fiir die Sdkularjahre 1700, 1800, 1900, 2100, 2200
und 2300 muss je ein Tag subtrahiert werden.

2. Ebenfalls nach Teil 1, Abschnitt 2.2 wird in 2500 Jahren den Sikularjahren 8mal (be-
ginnend mit dem Jahr 1800 und mit den Absténden von sieben mal drei und einmal
vier Sékularjahren) zur Epakte jeweils ein Tag addiert (Mondangleichung). Fiir ein

Jahr mit Sdkularzahl J berechnet sich diese Korrektur aus + L(J — 14) - %J (vgl.

Formel (16)). Fiir das Jahr 2435 betrigt sie beispielsweise + {(24 — 14) - %J =3,

denn fiir die Jahre 1800, 2100 und 2400 wurde bzw. wird je ein Tag addiert. Insge-
samt erhalten wir fiir die Gregorianische Epakte die folgende Formel:

Satz 2.1
e(j)= ((y(j)— 1)-114+1-— [(J —15) - %J + L(J — 14)%J) mod30. O

Diese Formel entspricht dem Inhalt von Kapitel XI der ,,Explicatio” [Cla03, S. 105-133],
welches vorwiegend aus Tabellen besteht (Tabula Epactarum expansa, S. 110/111 und
Tabula Aequationis, S. 112-131). Im 16. Jahrhundert war man noch nicht in der Lage,
eine solche Formel aufzustellen.
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pReor = e i

Figur 3: Tabelle zur Bestimmung der Gregorianischen Epakte aus der ,Explicatio“ [Cla03, S. 110/111] unter
Beriicksichtigung der Sonnen- und Mondangleichungen. Die Zuordnung zwischen den Buchstaben in der ersten
Spalte und den Jahrhunderten ist in weiteren Tabellen (Tabula Aequationis [Cla03, S. 112ff]) festgelegt.

e L

Beispiele:

Jahr Goldene Sonnenangleichung Mondangleichung Epakte
Zahl

Jj=1702: y =12 J—15)- (J —14) -

Il
o

e = (122 — 1)mod 30 = 1

J = 1965: y=9 (J —15)- (J —14)-

[

&= (89 -3+ 1)mod30 =27

3

.

3

1

j=2016: =3 (J-15-3 G — 14 e=(23 -3+ 1)mod30 = 21
3
7

r

j=2435.  y =4 & — 15)- (J — 14) -

Il
w

e=034—-6+3)mod30 =1

Gloo Bloo Bloo Gloe oo

T T T T
Il
=i

(J — 14) -

I
[

e=(1—-11+5)mod30 =25

Il
W
e b = =

j=397 y=1  |U-19-}|=11

Tabelle 6: Beispiele Gregorianischer Epakten

2.2 Die Ostergrenze

Wie weiter oben gezeigt, kann die Gregorianische Epakte ¢ als das Alter des zyklischen
Mondes am 30. Mdrz interpretiert werden. In einem Jahr mit Epakte ¢ tritt somit ¢ Tage
vor dem 3 1. Mdirz ein zyklisches Neulicht und 13 Tage spiter ein zyklischer Vollmond ein.

1. Wenn die Epakte kleiner als 24 ist, so fillt die Ostergrenze auf den Tag 31 —e+13 =
44 — ¢ als Mirzdatum. Die Ostergrenze fillt z.B. fiir Epakte ¢ = 19 auf den 25. Mirz
(44 — 19 = 25) und fiir Epakte ¢ = 5 auf den 8. April (44 —5 =39; 39 — 31 = 8).
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2. Fiir Epakte > 24 ist 44 — ¢ ein Datum vor dem 21. Mirz, und es braucht einen
zusitzlichen zyklischen Mondmonat, um zur Ostergrenze zu gelangen. Fiir die Be-
stimmung der Ostergrenze ist entscheidend, ob dieser zusitzliche Mondmonat voll
(30 Tage) oder hohl (29 Tage) ist. In den Abschnitten 3.2 und 3.4 von Teil 1 haben wir
festgestellt, dass der anschliessende Ostermonat nur fiir die Epakten 24 und xxv voll
ist. Dies bedeutet umgekehrt, dass der dem Ostermonat vorangehende zusitzliche
Mondmonat fiir diese Epakten hohl und fiir alle anderen voll ist.

Fiir jedes Jahr j unserer Zeitrechnung ldsst sich die Ostergrenze OG(j), als Mérzdatum,
mit Hilfe der Goldenen Zahl y () und der Epakte ¢(j) wie folgt berechnen:

Satz 2.2

e(Jj) e(J) y () e(Jj) e(j)
oo - 4] 0| ) - |22 2] 2)

Beweis.

e Fiir Epaktenwerte & mit ¢ < 24 reduziert sich die Formel zu OG = 44 — ¢. Alle
weiteren Terme werden in diesem Fall zu Null.

e Fiir ¢ > 24 kommt ein zusitzlicher Mondmonat hinzu. Der Summand L%ﬁ)" - 29
bedeutet, dass fiir ¢ > 24 mindestens 29 Tage addiert werden.
— Fiir ¢ = 24 ist der zusitzliche Mondmonat hohl. Deshalb wird in der Formel

von Satz 2.2 nichts mehr addiert, denn wegen ‘.82(%)_| {”—Z((fle = () verschwin-
den die letzten beiden Summanden.

— Fiire = 25und y > 12 sind wir im Fall ¢ = xxv. Auch in diesem Fall ist der
zusiitzliche Monat hohl und auch hier wird in der Formel nichts hinzugefiigt,

denn die letzten beiden Summanden heben sich gegenseitig auf: \_%J = 1 und

[ ([0 ] - [50]) =
12 26 -
— Fiire =25und y < 12 ist der zusitzliche Mondmonat voll. Da L J = 1und

I_TiJ = 0, ergeben die letzten beiden Summanden den Wert 1: Es wird ein Tag
hinzugefiigt.
— Fiir Werte ¢ mit ¢ > 26 ist der zusitzliche Mondmonat ebenfalls voll. Fiir
solche ¢ gilt LE(])J L%J = 1, und die Summe der letzten beiden Sum-
manden ist wieder gleich 1. U
Bemerkung. Dank einer Idee von Lichtenberg [Lic97] kann im Satz 2.2 auf die tiblichen
Ausnahmeregeln verzichtet werden.
Die Formel von Satz 2.2 ldsst sich noch etwas vereinfachen. Wir verwenden das folgende
Hilfsresultat:

Lemma 2.3

)-8 )12
25 12 25 26 B 25
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Beweis.
e Fiir Epaktenwerte ¢ < 24 verschwinden beide Seiten der Gleichung.
e Fiir ¢ = 25 gibt es wieder zwei Fille zu unterscheiden:
—Isty < 12, so gilt \_llzJ = 0, also sind beide Seiten gleich I_%QJ =1,

— Ist jedoch y > 12, so ist \-%J = 1 und beide Seiten sind gleich Null — wir
sind im Fall der Epakte xxv.

e Im Fall von ¢ > 26 ist die linke Seite gleich 1. Aber auch LE_%SIIQ ] J = 1, denn fir
solehe ¢ gilt stets & — | 45 | > 25. 0
Die Formel fiir die Ostergrenze des Jahres j lisst sich somit wie folgt darstellen:
Korollar 2.4
() - | 52
25

0G(j) = 44 — e(j) + L%J .29 +

Beispiele:
e j = 1702: Nach Tabelle 6 ist ¢ = 1. Die Formel von Satz 2 (bzw. von Korollar 4)
ergibt dann OG = 44 — 1 = 43. Die Ostergrenze war somit am 12. April.

e j =1965: Gemiss Tabelle 6 gilt ¢ = 27. Nach der Formel von Satz 2 (Korollar 4) ist
dann OG = 44 — 27 + 30 = 47. Die Ostergrenze war somit am 16. April.

e j =2016: Tabelle 6 liefert ¢ = 21. Die Formel ergibt dann OG = 44 — 21 = 23. Die
Ostergrenze war am 23. Miirz.

e j =2435: Es gilt ¢ = 1 (vgl. Tabelle 6), also dieselbe Epakte wie im Jahre 1702.
Dann stimmen auch die Ostergrenzen iiberein: OG = 44 — 1 = 43, der 12. April.

e j =3097: Gemiss Tabelle 6 ist & = 25. Wegen y = 1 sind wir nicht im Fall xxv. Es
folgt OG = 44 — 25 4 30 = 49. Die Ostergrenze wird am 18. April eintreten.

2.3 Das Osterdatum

Wir nummerieren die Wochentage wie folgt:

0 1 2 3 4 ] 6

Sonntag | Montag | Dienstag | Mittwoch | Donnerstag | Freitag | Samstag

Tabelle 7: Nummerierung der Wochentage

Wir beziehen uns im Folgenden nicht auf das Jahr 1583 sondern auf das darauffolgende
Sikularjahr. Die Formel, die wir herleiten, kann dadurch etwas iibersichtlicher gestaltet
werden, und ist dennoch auch fiir die Jahre von 1583 bis 1599 giiltig.



100 C. Albertini und M. Huber

Mit der Information, dass der 29. Februar 1600 ein Dienstag war (Wochentagsnummer 2)
bestimmen wir fiir ein beliebiges Jahr j (mit j > 1600) die Wochentagsnummer wq ()
des 0. Miirz (des letzten Tages im Februar):

wo(j) = (2+(j — 1600) + L(j — 1600) - %J o {(J b = %J) mod 7

= (2 + [(j — 1600) - %J — L(] = 15) - %J) mod 7. (18)

Dabei haben die Summanden die folgende Bedeutung:
1. Da365mod7 = 1, nimmt die Tagesnummer (modulo 7) pro Jahr um 1 zu. Dies wird
durch den Term j — 1600 ausgedriickt.
2. Im Fall eines Schaltjahrs nimmt die Tagesnummer (modulo 7) um 2 zu. Die Anzahl
der Schalttage wird durch den Term L( Jj — 1600) - H beschrieben.

3. Wie in der Formel (16) fiir die Gregorianische Epakte bedeutet L(J - 15). %J die

Anzahl der in Sikularjahren ausfallenden Schalttage. Diese muss von der Tagesnum-
mer subtrahiert werden (modulo 7).

4. Fiir die zweite Darstellung (Formel (18)) haben wir verwendet, dass

(j — 1600) + L(J — 1600) - 4J [(_] — 1600) + (j — 1600) - %J

=| G -1600)-|.

Beispiele:

o j=1702: wo(j) = (2 n LIOZ : gJ - [ gJ) mod7 = 128 mod7 = 2. Also war der
28. Februar 1702 ein Dienstag.

o j = 1965: wo(j) = (2+ [365-5 | - |4+ 3]) mod7 = 455 mod7 = 0. Somit war
der 28. Februar 1965 ein Sonntag.

o j =2016: wo(j) = (2 5 L416 J L %J) mod7 = 519mod7 = 1. Der 29. Fe-
bruar 2016 war ein Montag.

o j=2435: wo(j) = (2+[835-3| — |9} ) mod7 = 1039 mod7 = 3. Der 28.
Februar 2435 wird ein Montag sein.

o j =3097: wo(j) = (2 + {1497 : gJ . LIS : %J) mod7 = 1862 mod7 = 0. Der 28.
Februar 3097 wird ein Sonntag sein.

Die Wochentagsnummer w(j) der Ostergrenze im Jahr j ist die Summe der Oster-

grenze OG(j) als Mirzdatum und der Wochentagsnummer wq(j) des 0. Mirz, modulo 7
gerechnet:

w1(j) = (0G(j) + wo(j)) mod7. (19)
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Nach unserer Nummerierung der Wochentage ist Ostern 7 — w1 (j) Tage nach der Oster-
grenze. Somit konnen wir das Osterdatum OD(j) des Jahres j als Miarzdatum wie folgt
berechnen:

Satz 2.5

OD(j) = 0G(j) + 7 — w1 (j). O
Beispiele:
Jahr Ostergrenze Wochentag Ostergrenze Ostern Mirzdatum Osterdatum

Datum

1702 w; =@43+2)mod7 =3 Mi, 12. April OD=43+7-3=47 16. April
1965 w; =@74+0)mod7 =5 Fr, 16. April OD=47+7-5=49 18. April
2016 w; =23+ 1)mod7 =3 Mi, 23. Mirz OD=23+7-3=27 27. Mirz
2435 w; =43+4+3)mod7 =4 Do, 12. April OD=43+7—-4=46 15. April
3097 w; =@49+4+0)mod7 =0 So, 18. April OD=49+7—-0=56 25. April

Tabelle 8: Beispiele von Osterdaten

2.4 Zusammenfassung

Mit j bezeichnen wir die Jahreszahl und mit J die zugehorige Sdkularzahl in unserer
Zeitrechnung. Ferner bedeutet y die Goldene Zahl.

Das Osterdatum des Jahres j kann wie folgt in 5 Schritten berechnet werden:

()= (G =D 11+1-| =153 |+ 14 &) mod30 g;:i‘::i““ische

0G(j) =44 —¢e(j) + ‘_%ﬁlj 29+ L%J - LLI(PJ (L%JJ - [%J) gls::lgi:zg::um)

Wochentags-
woj) = (2+ ]G = 1600) - 3| = | (7 = 15) }|) moa7 -

(28./29. Februar)

Wochentags-
w1(j) = (0G(j) + wo(j)) mod7 nummer der
Ostergrenze

‘ _ . Osterdatum
OD(j) = 0G(j) + 7 — w1(J) (als Mirzdatum)
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Dank

Diese Publikation ist im Zusammenhang mit einem Buchprojekt zum Thema Kalender-
mathematik entstanden. Wir danken Norbert Hungerbiihler fiir seine ideelle und finan-
zielle Unterstiitzung sowohl des Buchprojekts als auch dieser Arbeit. Das Buchprojekt
steht unter dem Patronat der Deutschschweizerischen Mathematik-Kommission (DMK).
Projektleiterin ist Daniela Grawehr, die Prisidentin der DMK; das Buch wird beim Carl
Hanser-Verlag erscheinen. Wir danken Daniela und dem Carl Hanser-Verlag fiir die Be-
reitschaft, diese separate Publikation zu unterstiitzen.
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