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I Elemente der Mathematik

Die Gregorianische Kalenderreform, Teil 2

Claudia Albertini und Martin Huber

Claudia Albertini erwarb 1986 das Primarlehrerpatent. Anschliessend studierte sie

Mathematik an der Universität Zürich und schloss 1996 mit dem Doktorat ab. Von
1996 bis 2003 unterrichtete sie Mathematik an der Kantonsschule Zürcher Oberland.
Seit 2003 ist sie an der PH Zürich als Dozentin für Mathematik und Mathematikdidaktik

tätig. Seit 2007 ist sie auch Lehrbeauftragte an der Universität Zürich und hält
Vorlesungen für zukünftige Sekundarlehrpersonen.

Martin Huber studierte Mathematik an der ETH Zürich und doktorierte dort 1976. Mit
einem Stipendium des Schweizerischen Nationalfonds arbeitete er von 1978 bis 1980

an verschiedenen US-amerikanischen Universitäten im Bereich der Algebra. Bis 1985

war er dann an der Universität Freiburg im Breisgau tätig, wo er sich 1982 habilitierte.
Inden Jahren 1983 bis 2013 hielt er Vorlesungen an der Universität Zürich für künftige
Sekundarlehrpersonen. Ab 1987 bis zu seiner Pensionierung 2014 wirkte er als Dozent
an der FH Winterthur.

Zusammen mit Teil 1 bildet diese Publikation eine überarbeitete und erweiterte Fassung
eines Vortrags, den die Autoren im November 2016 im Kolloquiumfür Mathematik, Informatik

und Unterricht an der ETH Zürich gehalten haben.

1 Verteilung von Schaltungen
Beim Herstellen eines Kalenders geht es oft darum, S Schaltungen auf einen Zyklus von
N Zeiteinheiten (im Folgenden meistens Jahre) zu verteilen. Z.B. müssen im Metonschen

Zyklus 7 embolistische Jahre (Mondschaltjahre) auf 19 Mondjahre verteilt werden.

Die Gregorianische Reform, dank der das Frühlingsäquinoktium und damit das

Datum des Osterfestes im Kalender wieder an den richtigen Platz gerückt wurde, ist im
letzten Heft, im ersten Teil dieser Arbeit, beschrieben worden. Aus dieser Beschreibung

gewinnen die Autoren im vorliegenden zweiten Teil eine Formel zur Berechnung
des Osterdatums, welche auf der Goldenen Zahl und der Epakte beruht. Die Neuerungen

der Gregorianischen Reform (Neulichtkalender, Sonnen- und Mondangleichung)
werden hier mathematisch modelliert und daraus die Osterformel entwickelt. Dieser
historisch motivierte Zugang hat den Vorteil, dass alle in der Formel vorkommenden
Grössen inhaltlich begründet sind. Im Gegensatz zu den anderen bekannten Osterfor-
meln handelt es sich also nicht um eine Präzisierung oder Vereinfachung der berühmten
Gaußschen Osterformel.
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Für beliebige Zahlen x e R werden wir die folgenden Bezeichnungen verwenden:

• M für die kleinste ganze Zahl, welche grösser oder gleich x ist;

• L-vJ für die grösste ganze Zahl, welche kleiner oder gleich x ist.

1.1 Die kanonische Verteilung von Schaltungen

Zerlegt man das Zeitintervall [0, N] in S gleich lange Teilintervalle, so sind die Zeitpunkte
m y, 1 ^ m ^ S, deren Endpunkte.

I
X

2-— 3* —
S s s

Intervalle | 1 1
L|

1
f—I—|

1
fJ

1 1-
Zeiteinheiten 12 3

S

H 1—H 1 h1—h

Figur 1 : Zerlegung in S gleich lange Teilintervalle

Für jeden Index m, 1 ^ m < S, definieren wir die Zahl km e N dadurch, dass der m-te

Zeitpunkt m j in die km-te Zeiteinheit ]km — 1 ,km\ fällt.

Somit gilt:
N

km - 1 < m — ^ km, 1 ^ S (1)
iJ

und folglich:

km —
N'

m —
S

1 ^ m ^ S. (2)

Definition. Die Folge k\ < kn ^ £3 < • • • ^ ks nennen wir kanonische Verteilung von S

Schaltungen auf N Zeiteinheiten. Dabei findet die ra-te Schaltung in der km-ten Zeiteinheit
statt.

Beispiel. Die kanonische Verteilung im Metonschen Zyklus (N 19, S 7) lautet:
3 ^ 6 ^ 9 ^ 11 ^ 14 < 17 ^ 19, denn:

*1

1 •
19 Ml

*3

3

kA

4- ?1

11

ks

[»*1
14

*6

Ml
17

kl

1

19

Tabelle 1 : Kanonische Verteilung im Metonschen Zyklus

Definition. Die aufsteigende Folge (kn )neu mit

k - N
n e

nennen wir zyklische Fortsetzung der kanonischen Verteilung.

(3)

Beispiel. Die zyklische Fortsetzung der kanonischen Verteilung im Metonschen Zyklus
sieht wie folgt aus:
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*1 *2 *3 *4 *5 *6 *7 *8 k9 *10 *11 *12 *13 *14 *15 *16 *17

3 6 9 11 14 17 19 22 25 28 30 33 36 38 41 44 47

Tabelle 2: Zyklische Fortsetzung der kanonischen Verteilung im Metonschen Zyklus

Hier gilt z.B.: k\i — £3 + 2 • 19 9 + 38 47, wobei 17 3 + 2-7.

Allgemeiner Fall: Zu jedem Index n > S gibt es eindeutige Zahlen i,m e N mit I ^ w +
S, so dass n m+i S, und es gilt:

N"
K km+i.s

N

(m + i S)

m h i N
S

N~
m —

S
+ i N

km + i N. (4)

Es stellen sich nun bei gegebener Zeiteinheit j die folgenden Fragen:

1. Wie viele Schaltungen haben bis und mit der Zeiteinheit j stattgefunden?

2. Wird in der Zeiteinheit j geschaltet?

Bis und mit der Zeiteinheit j haben n Schaltungen stattgefunden, falls k„ + 7 < kn+\.
Es gilt:

©kn ^ j < kn+\

" N'
n —

S
«S j < Cn + 1)

N'

N ^ N
4» n — ^ J < (n + 1) • —

S
4» n ^ j — < n + 1

N

4» n

Damit können wir beide Fragen beantworten:

1. Bis und mit der Zeiteinheit j haben

J '
N

J '
N

Schaltungen stattgefunden.
2. In der Zeiteinheit j findet genau dann eine Schaltung statt, wenn

SS

J (j ~ 1)

Definition. Die Funktion

s : 4 J

N

S
7 '

~N

1.

(5)

(6)

(7)

welche jeder Zeiteinheit j die Anzahl Schaltungen bis und mit der Zeiteinheit j zuordnet,

nennen wir die kanonische Schaltfunktion.
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1.2 Möglichst gleichmässige Verteilung von Schaltungen

Beispiel. Die Verteilung (tm)i^m^7 im Metonschen Zyklus (N =19, 5 7), gegeben
durch

'1 h '3 >4 '5 '6 '7

2 5 8 10 13 16 19

Tabelle 3: Verteilung 'm Metonschen Zyklus

geht aus der kanonischen Verteilung (km )\^m<:j durch eine Verschiebung um v 9 Jahre

hervor:

k. k, k, k. k. kfi k7
I 1 1—H 1 1—H 1 1—H 1—H 1 1—H 1 1—H 1——I 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

v I I1 I I I I I I I3 I I I I12 3 4 5 6 7 8 9 10 11 12

Figur 2: Vergleich von ('m )l<m<7 mit der kanonischen Verteilung

Bei der kanonischen Verteilung haben nach Formel (5) bis und mit dem 9. Jahr [9 • J =3
Schaltungen stattgefunden. Es gilt:

tm — ^m+3 9 (m + 3)-y — 9, 1 ^ m < 7.

Definition. Eine Folge t\ < • • - ^ ts nennen wir möglichst gleichmässige Verteilung
von S Schaltungen auf N Zeiteinheiten, wenn es Zahlen o,rfeNo gibt, so dass

tm — km-\-d v — (m + d)
N~

v, 1 < m < S. (8)

Die Verteilung t\ ^ ^ ts geht durch Verschiebung um v Zeiteinheiten aus der
kanonischen hervor. Die Zahl d ist die Indexverschiebung und kann durch v bestimmt werden
Nach Formel (5) gilt:

S

N
d (9)

Beispiele:

1. Die kanonische Verteilung ist möglichst gleichmässig (man wähle v — 0 und d 0).

2. Die Verteilung 2 ^ 4 < 6 < 8 Sj 10 ^ 12 ^ 14 ist nicht möglichst gleichmässig.

3. Wie oben erläutert, ist die Verteilung 2 ^ 5 < 8 ^ 10 ^ 13 ^ 16 ^ 19 im
Metonschen Zyklus möglichst gleichmässig.

Auch die Verteilung t\ < • - • < ts kann zyklisch fortgesetzt werden:
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'1 '2 '3 '4 '5 '6 '7 '8 '9 '10 '11 '12 '13 '14 '15 '16 '17

2 5 8 10 13 16 19 21 24 27 29 32 35 38 40 43 46

Tabelle 4: Fortsetzung der Verteilung 2<5<8<---<19

Zurück zum allgemeinen Fall:

Definitionen. Jede möglichst gleichmässige Verteilung t\ ^ ^ f.y, gegeben durch N,
S, d und d(v), kann zyklisch fortgesetzt werden. Die zyklische Fortsetzung (/,,)„wird
definiert durch:

N~
(n + d) —hi - v, ne N. (10)

Eine solche Fortsetzung nennen wir ebenfalls möglichst gleichmässig.

Für jede zyklische Fortsetzung gilt (vgl. Formel (4)):

tn tm + i N, wobei n m + i S und 1 < m < S. (11)

Auch für die zyklische Fortsetzung einer beliebigen möglichst gleichmässigen Verteilung
(fm)i<m<s betrachten wir die beiden Fragen am Ende von Abschnitt 1.1.

Bis und mit der Zeiteinheit j haben n Schaltungen stattgefunden, falls tn < j < tn+\. Wir
schliessen:

^ (10)
^ J < tn+1 44

N'
(n+d)- — - v ^ j < (n + 1 + d)

N

N N
44 (n + d) — - v j < (n + 1 + d) — - v

N N
44 (n + d) — < j + v < (n + 1 + d) —-

44 n + d < (j + v) — < n + 1 + d

S
44 n +v) • — — d < n + l

N

44 n (j + o)
N

d.

Damit können wir beide Fragen beantworten:

1. Bis und mit der Zeiteinheit j finden

u + o)'n (12)

Schaltungen statt.

2. In der Zeiteinheit j hndet genau dann eine Schaltung statt, wenn

U + v)- (j + v- 1)
N

1. (13)
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Definition. Die Funktion

4 j U + v).- -d,

welche jeder Zeiteinheit j die Anzahl Schaltungen bis und mit der Zeiteinheit j zuordnet,
nennen wir die zu N, S, v und d gehörige Schaltfunktion.

1.3 Verteilung von Schaltungen, die im Jahr jo beginnen

Es kommt vor, dass innerhalb einer Zeitrechnung erst ab einem bestimmten Jahr neue

Schaltregeln eingeführt werden. Sollen, ausgehend von der kanonischen Schaltfunktion

J ] N

Schaltungen erst ab einem Jahr jo stattfinden, so ist die neue Schaltfunktion 5 : N
gegeben durch:

0 ~ Ob - *1)) • ^s(j) (14)

wobei k\ |~1 • y] dasjenige Jahr bezeichnet, in dem die erste kanonische Schaltung
stattfindet.

Beispiel. Soll im Metonschen Zyklus die erste Schaltung im Jahr 1000 der Christlichen
Zeitrechnung stattfinden, so lautet die neue Schaltfunktion (k\ 3):

0 - 997)
19

Allgemeiner: Sollen, ausgehend von der Schaltfunktion einer möglichst gleichmässigen
Verteilung

u+>)•£_
Schaltungen erst ab einem Jahr jo stattfinden, so verändert sich die Schaltfunktion wie
folgt:

0 + v ~ Oo -0)) ^ -d, (15)

wobei t\ — [(1 + d) j ] — v, das Jahr der ersten Schaltung der gegebenen Verteilung ist.

Etwas komplizierter ist die Formalisierung der neuen Schaltregeln nach der Gregorianischen

Reform (1582).

Beispiel. Innerhalb von 400 Jahren sollen drei Schalttage ausfallen, und zwar in den

Säkularjahren 1700, 1800 und 1900 und dann erst wieder im Jahr 2100 (vgl. Teil 1,

Abschnitt 2.2 [AH17]). Für diese spezielle Situation betrachten wir zunächst die Schaltfunktion

a : N -> Z mit
j 3



Die Gregorianische Kalenderreform, Teil 2 95

Zur Abkürzung definieren wir für ein beliebiges Jahr j die Säkularzahl J Die

Schaltfunktion a kann somit dargestellt werden als

o(j)
3

4

In der nachstehenden Wertetabelle haben wir die für natürliche Zahlen unübliche
Intervallschreibweise verwendet.

j [1,100[ [100,200[ [200,300[ [300,400[ [400,500[ [500,600[ [600,700[

J T0Ö 0 1 2 3 4 5 6

°(j) 0 0 1 2 3 3 4

Tabelle 5: Wertetabelle der Funktion a

Die Schaltungen finden in den Jahren j mit a(j) — er (j — 1) 1 statt. Dies sind die

Säkularjahre 200, 300, 400, 600, 700, 800,... Wir wollen aber, dass die erste Schaltung
nicht im Jahr 200, sondern im Jahr 1700 stattfindet. D.h. wir vermindern das Argument
um 1500 Jahre und erhalten so die Schaltfunktion ag : N -» Z mit

aG (j) (J — 15) • - (16)

welche nun die Schaltungen zum richtigen Zeitpunkt bringt, nämlich in den Jahren 1700,

1800,1900,2100,...

2 Berechnung des Osterdatums

Wir verwenden die folgenden Bezeichnungen und Definitionen (vgl. Teil 1, Kapitel 2

[AH17]):

• j ist die Jahreszahl in der christlichen Zeitrechnung.

• Zum Jahr j gehört die Säkularzahl J J (vgl- Abschnitt 1.3).

• y (j) steht für die Goldene Zahl, die Position des Jahres j im zugehörigen kanonischen

19-jährigen Zyklus;

• e(j) bedeutet die Gregorianische Epakte: das Alter des zyklischen Mondes am 31.

Dezember des Vorjahres (vgl. Teil 1, Abschnitte 2.2 und 3.8);

• rjij) ist die Alexandrinische Epakte: das Mondalter am 22. März des Jahres j.
Falls die Abhängigkeit der Gregorianischen Epakte vom betreffenden Jahr j wesentlich ist,
schreiben wir e(y), sonst e. Dasselbe gilt für die Goldene Zahl und die Alexandrinische

Epakte.

Bekannt sind die Formeln für die Berechnung der Goldenen Zahl (Teil 1, Formel (6)) und
der Alexandrinischen Epakte (Teil 1, Formel (7))

• y (j) — 1 + j mod 19

• h(j) ((y (J) ~ 1) • U) mod 30
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2.1 Die Gregorianische Epakte

Wie wir dem Neulichtkalender (vgl. Teil 1, Kapitel 3 [AH 17]) leicht entnehmen können,
stimmt das Alter des zyklischen Mondes am 30. März mit der Gregorianischen Epakte e

des betreffenden Jahres überein. Z.B. ist für ein Jahr mit Epakte 5 der zyklische Mond
am 30. März 5 Tage alt. Im Gegensatz zur Definition von e gibt es hier keine Ausnahmen

(vgl. Teil 1, Abschnitt 3.8). Da die Alexandrini sehe Epakte rj das Mondalter am 22. März
bedeutet, ist der Mond im Julianischen Kalender am 30. März t] + 8 Tage alt. Anlässlich
der Gregorianischen Reform ist das Alter des zyklischen Mondes um 7 10 — 3 Tage

zurückgesetzt worden: Zehn Tage des Sonnenkalenders wurden ausgelassen und der
zyklische Mond wurde um drei Tage korrigiert. Die neuen zyklischen Monddaten stimmen
seither mit den astronomischen Daten recht gut überein. Also war der neue zyklische Mond
in den Jahren 1583 bis 1699 (vor der ersten Sonnenangleichung) am 30. März des
Gregorianischen Kalenders ^ + 8 — 7 ^+1 Tage alt, wobei bei den Epakten stets modulo 30

zu rechnen ist. Für die Jahre 1583 bis 1699 gilt somit

e — (rj + l) mod30 ((y — 1) • 11 + 1) mod30. (17)

Im Folgenden werden wir für die Berechnung der Epakte eines beliebigen Jahres j eine
Formel herleiten. Da wir uns dabei auf das Jahr 1583 beziehen, müssen wir sämtliche bis
und mit dem Jahr j stattgefundenen Sonnen- und Mondkorrekturen berücksichtigen.

1. Nach Teil 1, Abschnitt 2.2 wird in jedem Säkularjahr, dessen Jahreszahl durch
400 nicht ohne Rest teilbar ist, von der Epakte ein Tag subtrahiert (Sonnenangleichung).

Für ein beliebiges Jahr mit Säkularzahl J kann diese Angleichung aus

(J — 15) |J berechnet werden (vgl. Formel (16)). Für das Jahr 2435 gilt z.B.

(24 — 15) |J —6, denn für die Säkularjahre 1700, 1800, 1900, 2100, 2200

und 2300 muss je ein Tag subtrahiert werden.

2. Ebenfalls nach Teil 1, Abschnitt 2.2 wird in 2500 Jahren den Säkularjahren 8mal
(beginnend mit dem Jahr 1800 und mit den Abständen von sieben mal drei und einmal
vier Säkularjahren) zur Epakte jeweils ein Tag addiert (Mondangleichung). Für ein

Jahr mit Säkularzahl J berechnet sich diese Korrektur aus + |^(7 — 14) • ^
Formel (16)). Für das Jahr 2435 beträgt sie beispielsweise + |^(24 — 14) ^
denn für die Jahre 1800, 2100 und 2400 wurde bzw. wird je ein Tag addiert. Insgesamt

erhalten wir für die Gregorianische Epakte die folgende Formel:

(vgl.

3,

Satz 2.1

E(j) ((v(j)~ 1)11 + 1- (y - 15) - | + (J - 14) mod30.

Diese Formel entspricht dem Inhalt von Kapitel XI der „Explicatio" [Cla03, S. 105-133],
welches vorwiegend aus Tabellen besteht (Tabula Epactarum expansa, S. 110/111 und
Tabula Aequationis, S. 112-131). Im 16. Jahrhundert war man noch nicht in der Lage,
eine solche Formel aufzustellen.
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'XIX

Figur 3: Tabelle zur Bestimmung der Gregorianischen Epakte aus der „Explicatio" [Cla03, S. 110/111] unter
Berücksichtigung der Sonnen- und Mondangleichungen. Die Zuordnung zwischen den Buchstaben in der ersten

Spalte und den Jahrhunderten ist in weiteren Tabellen (Tabula Aequationis [Cla03, S. 112ff]) festgelegt.

Beispiele:

Jahr Goldene
Zahl

Sonnenangleichung Mondangleichung Epakte

7=12 [(y — 15) - Ij 1

>> =9 [(7 - 15) • | j 3

7 3 [(7 - 15) • |J 3

7=4 [(/— 15) • |J 6

7 1 [(y - 15) • |J 11

[(7-14).£|=0
[(/-14).&J 1

[(y -14) • 55J i

[(7-14).=3
[(7-14).=5

s (122- l)mod30= 1

E (89-3+l)mod 30 27

e (23 -3 + 1)mod30 21

E (34 — 6 + 3) mod 30 1

e (l-ll+5) mod 30 25

Tabelle 6: Beispiele Gregorianischer Epakten

2.2 Die Ostergrenze

Wie weiter oben gezeigt, kann die Gregorianische Epakte s als das Alter des zyklischen
Mondes am 30. März interpretiert werden. In einem Jahr mit Epakte s tritt somit e Tage

vor dem 31. März ein zyklisches Neulicht und 13 Tage später ein zyklischer Vollmond ein.

1. Wenn die Epakte kleiner als 24 ist, so fällt die Ostergrenze auf den Tag 31—e + 13

44 — e als Märzdatum. Die Ostergrenze fällt z.B. für Epakte e 19 auf den 25. März
(44 — 19 25) und für Epakte e 5 auf den 8. April (44 — 5 39 ; 39 — 31 8).
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2. Für Epakte + 24 ist 44 — e ein Datum vor dem 21. März, und es braucht einen
zusätzlichen zyklischen Mondmonat, um zur Ostergrenze zu gelangen. Für die
Bestimmung der Ostergrenze ist entscheidend, ob dieser zusätzliche Mondmonat voll
(30 Tage) oder hohl (29 Tage) ist. In den Abschnitten 3.2 und 3.4 von Teil 1 haben wir
festgestellt, dass der anschliessende Ostermonat nur für die Epakten 24 und xxv voll
ist. Dies bedeutet umgekehrt, dass der dem Ostermonat vorangehende zusätzliche
Mondmonat für diese Epakten hohl und für alle anderen voll ist.

Für jedes Jahr j unserer Zeitrechnung lässt sich die Ostergrenze OG(j), als Märzdatum,
mit Hilfe der Goldenen Zahl y (j) und der Epakte ep) wie folgt berechnen:

Satz 2.2

OG(j) 44 - 6-0')
gp)
24

•29 +
gp)
25

y(j)
12

gp)
25

gp)
26

Beweis.

Alle• Für Epaktenwerte s mit s < 24 reduziert sich die Formel zu OG 44
weiteren Terme werden in diesem Fall zu Null.

• Für 6 ^ 24 kommt ein zusätzlicher Mondmonat hinzu. Der Summand • 29

bedeutet, dass für e > 24 mindestens 29 Tage addiert werden.

- Für e 24 ist der zusätzliche Mondmonat hohl. Deshalb wird in der Formel

von Satz 2.2 nichts mehr addiert, denn wegen |^P2) — J 0 verschwinden

die letzten beiden Summanden.

- Für £ 25 und y ^ 12 sind wir im Fall e xxv. Auch in diesem Fall ist der
zusätzliche Monat hohl und auch hier wird in der Formel nichts hinzugefügt,

1 unddenn die letzten beiden Summanden heben sich gegenseitig auf:

W d^J ~ _^J)= L

- Für £ 25 und y < 12 ist der zusätzliche Mondmonat voll. Da 1 und

j2 — 0, ergeben die letzten beiden Summanden den Wert 1 : Es wird ein Tag

hinzugefügt.

- Für Werte £ mit £ > 26 ist der zusätzliche Mondmonat ebenfalls voll. Für
solche £ gilt £ii)

25 L*J
manden ist wieder gleich 1.

1, und die Summe der letzten beiden Sum-

Bemerkung. Dank einer Idee von Lichtenberg [Lic97] kann im Satz 2.2 auf die üblichen
Ausnahmeregeln verzichtet werden.

Die Formel von Satz 2.2 lässt sich noch etwas vereinfachen. Wir verwenden das folgende
Hilfsresultat:

Lemma 2.3

gp) Zill I gp) |\
25

_
12 J 1 25 26 J

KP -
25
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Beweis.

• Für Epaktenwerte e < 24 verschwinden beide Seiten der Gleichung.

• Für s 25 gibt es wieder zwei Fälle zu unterscheiden:

- Ist y < 12, so gilt 1.0, also sind beide Seiten gleich
I ^

- Ist jedoch V > 12, so ist 1 und beide Seiten sind gleich Null - wir
sind im Fall der Epakte xxv.

• Im Fall von e ^ 26 ist die linke Seite gleich 1. Aber auch |^—= 1 denn für

solche e gilt stets e — |^J ^ 25.

Die Formel für die Ostergrenze des Jahres j lässt sich somit wie folgt darstellen:

Korollar 2.4

OG(j) 44 - e(j) +
cQ)
24

29 +
<U) - [i+J

25

Beispiele:

• j 1702: Nach Tabelle 6 ist e 1. Die Formel von Satz 2 (bzw. von Korollar 4)
ergibt dann OG 44 — 1 43. Die Ostergrenze war somit am 12. April.

• j 1965: Gemäss Tabelle 6 gilt e 27. Nach der Formel von Satz 2 (Korollar 4) ist
dann OG 44 — 27 + 30 47. Die Ostergrenze war somit am 16. April.

• j 2016: Tabelle 6 liefert e — 21. Die Formel ergibt dann OG 44 — 21 23. Die
Ostergrenze war am 23. März.

• j 2435: Es gilt s 1 (vgl. Tabelle 6), also dieselbe Epakte wie im Jahre 1702.

Dann stimmen auch die Ostergrenzen überein: OG 44 — 1 43, der 12. April.

• j - 3097: Gemäss Tabelle 6 ist e 25. Wegen y 1 sind wir nicht im Fall xxv. Es

folgt OG 44 — 25 + 30 49. Die Ostergrenze wird am 18. April eintreten.

2.3 Das Osterdatum

Wir nummerieren die Wochentage wie folgt:

0 1 2 3 4 5 6

Sonntag Montag Dienstag Mittwoch Donnerstag Freitag Samstag

Tabelle 7: Nummerierung der Wochentage

Wir beziehen uns im Folgenden nicht auf das Jahr 1583 sondern auf das darauffolgende
Säkularjahr. Die Formel, die wir herleiten, kann dadurch etwas übersichtlicher gestaltet
werden, und ist dennoch auch für die Jahre von 1583 bis 1599 gültig.
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Mit der Information, dass der 29. Februar 1600 ein Dienstag war (Wochentagsnummer 2)
bestimmen wir für ein beliebiges Jahr j (mit j > 1600) die Wochentagsnummer wq (j
des 0. März (des letzten Tages im Februar):

m(j) \2 + (j - 1600) +n

-H(j - 1600)

(j - 1600) • i
(J — 15) •

V ~ 15)

I mod 7.

IJ) mod 7

(18)

Dabei haben die Summanden die folgende Bedeutung:

1. Da 365 mod 7 1, nimmt die Tagesnummer (modulo 7) pro Jahr um 1 zu. Dies wird
durch den Term j — 1600 ausgedrückt.

2. Im Fall eines Schaltjahrs nimmt die Tagesnummer (modulo 7) um 2 zu. Die Anzahl

beschrieben.der Schalttage wird durch den Term j — 1600)

3. Wie in der Formel (16) für die Gregorianische Epakte bedeutet | (7 — 15) • |J die

Anzahl der in Säkularjahren ausfallenden Schalttage. Diese muss von der Tagesnummer

subtrahiert werden (modulo 7).

4. Für die zweite Darstellung (Formel (18)) haben wir verwendet, dass

O — 1600) + (jj - 1600) ij [(y - 1600) + (j - 1600) ij
1(7 - 1600) • §

mod 7 =128 mod 7 2. Also war der

Beispiele:

j 1702: wo(j) (2 + [l02 • |J - [2 • |J)
28. Februar 1702 ein Dienstag.

• j 1965: wo(j) (2 + |^365 • |J — |^4 mod7 455 mod7 0. Somit war
der 28. Februar 1965 ein Sonntag.

• j 2016: wo(j) (2+ [416- |J - [5 • |J)mod7 519mod7 1. Der 29.

Februar 2016 war ein Montag.

• j 2435: w0(j) (2 + |^835 • |J —
I 9 - mod7 1039mod7 3. Der 28.

Februar 2435 wird ein Montag sein.

• j 3097: w0(j) (2+ [l497 • fj - |^15 • |J) mod7 1862mod7 0. Der 28.

Februar 3097 wird ein Sonntag sein.

Die Wochentagsnummer w\(j) der Ostergrenze im Jahr j ist die Summe der Oster-

grenze OG(j) als Märzdatum und der Wochentagsnummer wo(j) des 0. März, modulo 7

gerechnet:

101(7) (OG(j) + w0(j)) mod7. (19)
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Nach unserer Nummerierung der Wochentage ist Ostern 7 — w\(/) Tage nach der Oster-

grenze. Somit können wir das Osterdatum OD(j) des Jahres j als Märzdatum wie folgt
berechnen:

Satz 2.5

OD(j) OG(j) + 7 — wi(j).

Beispiele:

Jahr Ostergrenze Wochentag Ostergrenze
Datum

Ostern Märzdatum Osterdatum

1702 tui (43 + 2) mod7 3 Mi, 12. April OD 43 + 7 - 3 47 16. April

1965 u>l (47 + 0) mod7 5 Fr, 16. April OD 47 + 7 - 5 49 18. April

2016 t«l (23 + 1) mod 7 3 Mi, 23. März OD 23 + 7 - 3 27 27. März

2435 tui (43 + 3) mod 7 4 Do, 12. April OD 43 + 7 - 4 46 15. April

3097 t«! (49 + 0) mod7 0 So, 18. April OD 49 + 7 - 0 56 25. April

Tabelle 8: Beispiele von Osterdaten

2.4 Zusammenfassung

Mit j bezeichnen wir die Jahreszahl und mit J die zugehörige Säkularzahl in unserer
Zeitrechnung. Ferner bedeutet y die Goldene Zahl.

Das Osterdatum des Jahres j kann wie folgt in 5 Schritten berechnet werden:

e(J) (()' 0) - 1) • H + 1 - [U ~ 15) |j + |_D - 14) ^J) mod30 Gregorianische
Epakte

OGU) 44 - e(j) +[^J-29 + L#J-L^J([#J-[^J) Ostergrenze
(als Märzdatum)

wqU) (2 + [u - 1600) |J - [(7 - 15) • |J) mod7

Wochentags-
nummer des
0. März
(28./29. Februar)

">l0) (OG(j) + w0(j)) mod 7

Wochentagsnummer

der
Ostergrenze

OD(j) OG(j) + 1 — w\(j)
Osterdatum
(als Märzdatum)
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