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Short note  On the proof of Ptolemy’s Lemma

Dura Pauni¢ and Gerhard Wanner

Ptolemy’s Lemma. Let ABC D be a quadrilateral inscribed in a circle with sides a, b, ¢, d
and diagonals e, f, then (see Figure 2 (1))

ac+ bd = ef . (D

This lemma enabled Ptolemy to compute his famous table of chords (= 2sin %) and thus
initiate the developments of modern Astronomy, Geography and Trigonometry (see [1]).
Its historical importance is thus beyond any doubt. When the quadrilateral is a rectangle,
then (1) becomes al+b*r=¢e2ie., Pythagoras’ theorem.

N

Figure 1 Ptolemy’s proof in Copernicus’ autograph
De revolutionibus [4] (left); Callagy’s picture from [2] (right).

Ptolemy’s Proof. This proof remained the standard one for more than thousand years (see,
e.g., Figure 1, left). It consisted in drawing a line be (notation of that picture) such that the
angles abe and dbc are the same. This creates two pairs of similar triangles abe and dcb as
well as bec and bad. Thales’ theorem then allows the calculation of ae and ec respectively
and finally to prove (1) (for more details see, e.g., [5], Section 5.1).

This proof is short and simple, but it does not reflect the geometric content of the formula,
namely ac + bd = ef states that the sum of the areas of two rectangles is that of another
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rectangle. Or, if the areas are multiplied by a constant k = sin ¢, it would be nice to see,
without any calculation, that a parallelogram is the sum of two different parallelograms
with the same angle ¢. Such a proof can be made using ideas by Callagy [2] (see Figure 1,
right) L.

Figure 2 The parallelogram area proof in four acts.

Parallelogram area proof of Ptolemy’s Lemma. First we double the area A of a cyclic
quadrilateral ABC D by circumscribing it by the parallelogram parallel to the diagonals
(Callagy calls this “a well-known exercise in second year geometry”, see Figure 2 (2)). The
main idea is then the following: move A to E on the circle, with A E parallel to DB (Figure
2(3)). Thus the angle ¢ between the diagonals is reproduced at A (Eucl.1.29), then at B
(Eucl. 111.21), at D (Eucl.II1.22) and finally (Eucl. .29, Figure 2 (4)) at E. The triangle
E DB is mirror symmetric to ADB, with @ and d exchanged. Therefore both triangles
have the same area, i.e., D + B = A. For the areas of the parallelograms in Figures 2 (2)
and (4) we thus obtain

‘ 2.D+2-B=2-A (2)

All these parallelograms possess the same angle ¢, hence (1) is just (2) divided by k =
sing.

Remark added in proof. Our colleague Jan Hogendijk (Univ. Utrecht) has remarked a
nice connection of our proof with Ptolemy’s: If in Ptolemy’s picture the line be is extended

IFor an obituary notice on the Irish mathematician James Callagy (1908-1988) see [3].
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until the second point of intersection with the circle, one obtains precisely the line CE in
our Figure 2, (3) and (4), i.e., the common diagonal of the two parallelograms. This could
serve as a second motivation for the proof of Ptolemy’s Lemma presented here.
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